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1 ALGORITHM OF MULTI-STEP ERROR
MINIMIZATION (MEM) GENERATION

Algorithm 1: Multi-step Error Minimization (MEM)
Input: Clean image-caption pairs (I, T), Stop Error A,
Optimization steps M
Output: Image perturbation §, Text trigger set ¢,
1 Initial §, t;

2 repeat

3 for min 1...M do

4 i, I;, T; = Next(I, T);

5 0 = Optimize (I; + 6;, T; + t;);
6 end

7 for (I;, T;) in (I,T) do

8 t; = HotFlip(1;, T;, 6, 6;, t;);

9 i =PGD(I;, T;, 0, 6i, ti);

10 di = Clip(6;, —€, €);
1 end

12 until -LCLIP < A

2 VISULIZATION OF RESULTS ON OTHER
RESULTS.

In the main experiment, due to space constraints, we only present
the variation curves of Training Loss and Medr Metric on Flick30.
Here, we provide additional results depicting curve changes of Loss
and Medr on Flick8k and MS-COCO as illustrated in the Figure 1
and 2.

We observe that the unlearnable examples generated by our
MEM method on either dataset can induce a rapid drop in loss,
leading the model to converge to a local optimum. Consequently,
the model may learn shortcuts instead of genuine features, thereby
safeguarding private data.

3 DIFFERENT LENGTH OF TEXT TRIGGER

In the main experiment, our MEM method selected text triggers of
lengths 3 and 5 for data protection. In this section, we fully explore
the effect of different lengths of text as triggers on model learning
shortcuts. Intuitively, longer text triggers are more obvious to both
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Figure 1: Training loss curves and Testing metric Medr curves
on Flick8K with different methods.
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Figure 2: Training loss curves and Testing metric Medr curves
on MS-COCO with different methods.

humans and models, and thus models are more likely to learn the
correlation between noise and text triggers. In the table 1, we can
observe that, as intuitively, longer triggers can make the model’s
retrieval results worse, but when the trigger length goes to 7, the
poisoning effect approaches saturation. Also, surprisingly, we find
that even when the trigger length is set as 1, MEM-1 is still effective.
Finally, if when no text triggers are set, our method degenerates
into EM. therefore, the results of EM are also the results of our
ablation experiments for MEM.

4 RESISTANCE TO DATA AUGMENTATION
AND ADVERSARIAL TRAINING

We have showcased the effects of our unlearnable examples in
scenarios where hackers train "normally" However, several defense
mechanisms have been proposed against avaliability attacks with
unlearnable examples, which a victim could potentially employ.
Therefore, in this section, we evaluate the effectiveness of various
popular defenses against our method.

4.1 Image Defense

Adversarial training. Previous works on unlearnable examples
against image classification indicates that adversarial training is
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Table 1: Performance of different length of text triggers.

Length=1 Length=3 Length=>5 Length=7
Metric Image — Text Text — Image Image — Text Text — Image Image — Text Text — Image Image — Text Text — Image
R@10 43 2.5 3.8 2.2 3.9 2 3.5 2
Medr 376 280 412 308 445 325 478 337

Table 2: Performance of various defenses. We use MEM-3 on the Flickr30K. Best defense power is in bold.

Image — Text Text — Image

Defense R@10 Medr R@10 Medr

Clean 46.5 12 42.7 16

MEM-3 (ours) 3.8 412 2.2 308

Adv. Training 36.6 48 13.7 80

Random Noise 3.6 422 25 315

Image Defense Mixup 7.6 327 5.6 235
Cutout 3.9 384 2.7 298

Random Insertion 3.6 425 2.5 306

Random Deletion 3.6 430 25 324

Text Defense Random Swap 3.4 417 2.1 322
Synonym Replacement 3.7 399 2.9 298

the most effective defense [1-3]. Intuitively, this is because the
poisoned data resides within a small /s, ball of the clean data. Ad-
versarial robustness ensures that the model maintains consistent
output within a small neighborhood around an input sample. As a
result, its high accuracy on the unlearnable training set can gener-
alize to the clean test set. In our experiment, we employ adversarial
training on images using multimodal contrastive learning (MCL).
We generate adversarial samples based on CLIP loss and evaluate
the defense capabilities of adversarial training with images against
unlearnable examples in MCL. From Table 2, we can observe that
Adversarial training for images still work under Multimodal con-
trastive learning, while it hurts the model’s performance and make
a high cost.

Data augmentation. Data augmentations have also been exten-
sively studied as defense mechanisms against unlearnable examples.
We test three traditional data augmentations: Random Noise, which
adds random white noise to the input; Mixup, which blends two
images and their corresponding captions to create new training
samples; and Cutout, which excises certain parts of the input. From
the Table 2, we observe that similar to the defense results of these
methods in image classification, these data augmentation methods
are limited in their effectiveness, although they can provide slight
defense against usability attacks.

4.2 Text Defense

Data augmentation. In our experiment on text augmentation, we
employed four common techniques: Random Insertion, Random
Deletion, Random Swap, and Synonym Replacement. Random In-
sertion involves randomly inserting new words or phrases into the
text to increase linguistic diversity. Random Deletion randomly
removes some words or phrases from the text to simulate text in-
completeness. Random Swap randomly exchanges the positions of
adjacent words in the text, altering the sentence structure. Synonym
Replacement replaces some words in the text with their synonyms

while maintaining the sentence’s meaning. Through experimenta-
tion with these text augmentation techniques, our aim is to evaluate
their impact on defense performance. From Table 2, we find that
none of them can effectively defend against unlearnable examples,
possibly because these data enhancements operate on the entire
sentence, whereas our MEM-3 attacks focuses on modifying the
beginning of the headline.

5 VISULIZATION OF UNLEARNABLE
EXAMPELS

In Figure 3 and 4, we visualize more perturbed images and captions
from the MS-COCO with MEM-3 and MEM-5. We observe that
by limiting the noise in the images, the images in the generated
unlearnable examples do not differ significantly from the clean
images, thus not affecting the user’s perception. As for the text in
the unlearnable examples, although the text trigger at the beginning
may cause some user ambiguity, the use of short triggers in long
sentences does not significantly affect the user’s reading experience.
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Couch were sensational a
dog plays in the snow.

Grassy bike iha young child
is held above a man 's head
as her hair flies in the air.

Race apache soccer a dog
runs toward the camera, wearing a white shirt and
his tongee hanging out the hat on the sidelines of a
side of his mouth. game.
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Figure 3: Samples of multimodal unlearnable examples in Flickr30k with noise € = 8/255 and text trigger length as 3.

Basketball slamwears byron
thing a man is playing fetch
with adog .

Rise up joyable harvest
venison a group of santas are
walking in the city.

football snowy snowy
clesnowy a person on a
bmx bike .

Quin pipelines borrow ffey
elon a man in a purple suit
is standing by a purple
case playing a guitar.

Mawards butter jacques gypsy
siren the man is wearing a
black shirt and holding up a
blue item in a window.

Tarts aded butter tj dogs
girl jumping rope in
parking lot.

Figure 4: Samples of multimodal unlearnable examples in Flickr30k with noise € = 8/255 and text trigger length as 5
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