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Appendix

A DATASETS DETAILS

To align with the requirements of VLM-based models, the necessary step is to transform all evalu-
ation datasets into a textual format, specifically structured as question-answer pairs. In this section,
we will delve deeper into the specifics of various datasets, including 3D object detection (§A.1), 3D
lane detection (§A.2), driving captioning (§A.3), and ego planning (§A.4).

Detection

Map

Caption Planning

There are six images captured by the 
surround view cameras in driving 
vehicle. They are uniformly represented 
as queries embeddings<query>. 
Designate the positive y-axis as the 
forward direction and the positive x-axis 
as the right direction. Carry out the 
visual detection task within the Bird's 
Eye View (BEV) context. Be cautious 
not to exceed a detection range of 50 
meters.

bicycle: [338, 354, 482], [682, 768, 
481], ... , [340, 302, 480]; 
pedestrian: [426, 456, 483], ... , 
[510, 241, 483].

There are six images captured by the 
surround view cameras in driving 
vehicle. They are uniformly represented 
as queries embeddings<query>. 
Please carry out the centerline 
detection task, adopting the            
Bird's Eye View (BEV) perspective. Be 
cautious not to exceed a detection 
range of 50 meters.

Lane: [542, 432, 500], [563, 416, 500], 
[585, 400, 500], [606, 385, 500]; [526, 
505, 500], [645, 523, 500], [635, 658, 
500], [622, 749, 500]; ... ; [492, 436, 
500], [524, 402, 500], [558, 378, 500], 
[591, 354, 500].

There are six images captured by the 
surround view cameras in driving 
vehicle. They are uniformly represented 
as queries embeddings<query>. 
Communicate a narrative of the setting 
within CAM_BACK_RIGHT view image.

This image depicts an outdoor setting 
during the day. The sky is overcast, with 
no direct sunlight visible, suggesting that 
the weather is sunny. There are no 
visible indications of rain or strong wind, 
as the plants and trees appear still and 
the chairs are neatly organized.The 
scene is a quiet street, without any 
visible traffic, such as moving cars. 
There are no traffic lights in view, so 
their status or any countdowns cannot be 
described. There are also no traffic signs 
present in the CAM_BACK_RIGHT. the 
foreground, there is an empty road with a 
solid white line running along the side, 
which typically indicates a boundary that 
should not be crossed by vehicles. This 
could be a lane marking or a parking 
restriction, but without a specific sign, the 
exact regulation is not clear.To the right 
side of the image, there's an outdoor 
seating area of a restaurant, named 
"Rai's" with several empty chairs and 
tables, suggesting that it might not be a 
busy period for the establishment.There 
are no vehicles or other forms of 
transportation in the image, which could 
either indicate that this photo was taken 
during a time of day with low traffic or that 
this street is not a major thoroughfare.

There are six images captured by 
the surround view cameras in 
driving vehicle. They are uniformly 
represented as queries 
embeddings<query>. Define the 
positive y-axis as the forward 
direction and the positive x-axis as 
the right direction. The speed of the 
vehicle is defined as [velocity along 
the x-axis, velocity along the y-axis]. 
The acceleration of the vehicle is 
defined as [acceleration along the x-
axis, acceleration along the y-axis]. 
The ego car will turn left in future. 
Kindly furnish suitable waypoints for 
the vehicle's trajectory based on the 
provided particulars. Waypoints 
ought to adhere to the [x, y] format, 
with each waypoint spaced at 0.5-
second intervals within a continuous 
3.0-second timeframe. For planning 
tasks, please pay attention to driving 
safety and avoid vehicle collisions 
during driving in continous time."

Ego car speed value:[490, 531, 
500]. Ego car acceleration 
value:[480, 531, 500]. Based on 
the ego car speed and acceleration 
you predicted, requeset the ego car 
planning waypoint in 3-seconds: 
[498, 514, 500], [494, 530, 500], 
[488, 547, 500], [478, 564, 500], 
[465, 581, 500], [449, 594, 500].

bicycle: [338, 354, 482]

planning waypoint in 3-seconds: [498, 514, 500], [494, 
530, 500], [488, 547, 500], [478, 564, 500], [465, 581, 
500], [449, 594, 500].

pedestrian: [426, 456, 483]  There's an outdoor seating area of a restaurant, named 
"Rai's" with several empty chairs and tables.

lane: [526, 505, 500], [645, 523, 500], 
[635, 658, 500], [622, 749, 500]

FRONT_RIGHT

FRONT

FRONT_LEFT

BACK

BACK_LEFT BACK_RIGHT

Views

Figure 1: Our constructed question-answer pairs for VLM-based methods. It transforms several
critical driving reasoning tasks, such as 3D object detection, map perception, environment caption,
and ego-car planning, into a uniform text format.
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A.1 3D OBJECT DETECTION

The 3D object detection utilized in the VLM-based method (2D/3D visual tokenizers with LLM)
evaluation is based on nuScenes (Caesar et al., 2020). To adapt to the inputs and outputs of LLM,
we convert the detection task into a text-format question-answer task. Here, the question is ran-
domly sampled from a pool that is listed in Table 1. As seen, we set a special token ‘<query>’ to
accept tokens from 3D tokenizers. If the inputs are six-view images, we replace the text ‘They are
uniformly represented as queries embeddings<query>’ in question with ‘They represent left rear im-
age<query>, left front image<query>, direct front image<query>, right front image<query>, right
rear image<query>, and direct rear image<query>.’. As for the answer, we choose the category
name and 3D center points of each bounding box, as shown in Figure 1. To facilitate more efficient
localization, we discretize the bird’s-eye view (BEV) space ranging from -50 meters to +50 meters
into 1,000 bins.

• "There are six images captured by the surround view cameras in driving vehicle. They are uni-
formly represented as queries embeddings<query>. Define the positive y-axis as the forward di-
rection and the positive x-axis as the right direction. Please complete the visual detection task
under the Bird’s Eye View (BEV) perspective. Ensure that the detection range does not exceed 50
meters."

• "There are six images captured by the surround view cameras in driving vehicle. They are uni-
formly represented as queries embeddings<query>. Establish the positive y-axis as the frontward
direction and the positive x-axis as the rightward direction. Kindly execute the visual detection
task within the Bird’s Eye View (BEV) framework. Be mindful not to exceed a detection range of
50 meters."

• "There are six images captured by the surround view cameras in driving vehicle. They are uni-
formly represented as queries embeddings<query>. Set the forward direction as the positive y-axis
and the right direction as the positive x-axis. Please carry out the visual detection task within the
Bird’s Eye View (BEV) context. Ensure that the detection range remains within 50 meters."

• . . . . . .

Table 1: Question pool of 3D object detection for VLM-based methods.

A.2 3D LANE DETECTION

We formulate a 3D lane detection dataset with question-answer pairs based on the OpenLane-V2
Subset-B (Wang et al., 2024), which itself originates from the nuScenes dataset. A representative
is shown in Figure 1. Their questions are sampled from Table 2, and the corresponding answer
comprises a set of four lane points. Analogous to the 3D object detection dataset, we discretize the
BEV space, spanning from -50 meters to +50 meters, into 1,000 bins.

• "There are six images captured by the surround view cameras in driving vehicle. They are uni-
formly represented as queries embeddings<query>. Please complete the centerline detection task
under the Bird’s Eye View (BEV) perspective. Ensure that the detection range does not exceed 50
meters."

• "There are six images captured by the surround view cameras in driving vehicle. They are uni-
formly represented as queries embeddings<query>. Be mindful not to exceed a detection range of
50 meters."

• "There are six images captured by the surround view cameras in driving vehicle. They are uni-
formly represented as queries embeddings<query>. Could you complete the task of detecting the
centerline from the Bird’s Eye View (BEV) perspective? Ensure that the detection range remains
within 50 meters."

• . . . . . .

Table 2: Question pool of 3D lane detection for VLM-based methods.
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A.3 DRIVING CAPTIONING

Our driving captioning dataset is created through the annotation of nuScenes, leveraging the capabil-
ities of GPT-4V. The specific prompt utilized in GPT-4V is detailed in Table 3, while an illustrative
example is presented in Figure 1. It is worth mentioning that, to harness the full potential of GPT-4V,
we request a unique description for each individual view, resulting in a total of approximately 180k
question-answer pairs.

• "Describe the current traffic conditions. If there are traffic lights in the image, describe the status
of all the traffic lights, including any countdowns; if there are none, please do not respond. If there
are traffic signs in the picture, identify and explain each one; if there are none, no explanation is
necessary. If there are other vehicles in the picture, describe them in more detail. Please ensure
the answer does not exceed 600 words. Answers must be in English."

Table 3: Prompt used in GPT-4V for caption generation.

A.4 EGO PLANNING

Similar to 3D object and lane detection, we adapt the nuScenes dataset into a question-answer pairs
format. Following the chain-of-thought approach, we prompt our model to generate safe driving
plans and to describe various ego states, such as velocity and acceleration. The specific questions
used are sampled from Table 4. For the answers, the model predicts the current state’s velocity
and acceleration and then generates the ego-car’s planning waypoints for the next 3 seconds at 0.5-
second intervals. This approach mirrors our methods in 3D object detection and 3D lane detection,
where we discretize the BEV space, which ranges from -50 to +50 meters, into 1,000 bins. Similarly,
we discretize both velocity and acceleration across a range from -50 m/s (m/s2) to +50 m/s (m/s2)
into 1,000 bins each.

B MODEL DETAILS

B.1 3D TOKENIZERS PRE-TRAINING

We pre-train two distinct 3D tokenizers: StreamPETR (Wang et al., 2023) and TopoMLP (Wu et al.,
2024). StreamPETR (Wang et al., 2023) is designed for multi-view 3D object detection. We utilize a
ViT-L backbone (Fang et al., 2023) and process images at a high resolution of 800x1600. Moreover,
we follow the official training schedule established for the nuScenes dataset. TopoMLP (Wu et al.,
2024) focuses on constructing vectorized maps from multiple views. To maintain methodological
consistency with StreamPETR, we employ the same ViT-L backbone and resolution. The training
strategy for TopoMLP also mirrors the official.

B.2 3D-TOKENIZED LLM

Query Representation. For the innate priors of the 3D physical world, the query-based BEV frame-
work is introduced. These DETR-style methods, StreamPETR and TopoMLP, extract target-aware
query embeddings aka query representations (content) with reference points (localization) to repre-
sent objects from multi-view images.

Reference Point Embeddings. As previously mentioned, a target is characterized by both its con-
tent and location. We integrate the query embeddings by adding reference point embeddings, which
are generated from reference points via a single linear layer, to formulate the 3D tokens that rep-
resent target information. A notable aspect of our setup is we initialize the weight of the reference
point projector to zero.

Memory Queue. Taking inspiration from StreamPETR, our approach involves the storage of his-
torical queries to preserve continuity in time, as memory queues. Specifically, we concatenate these
memory queries with current queries for temporal modeling. To elaborate, our method includes stor-
ing queries from three additional frames that exhibit the highest confidence—specifically, the top-K
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• "The six images include objects that are uniformly represented as 3D detection query embed-
dings<query> and map query embeddings<query>. Define the positive y-axis as the forward
direction and the positive x-axis as the right direction. The speed of the vehicle is defined as
[velocity along the x-axis, velocity along the y-axis]. The acceleration of the vehicle is defined as
[acceleration along the x-axis, acceleration along the y-axis]. The ego car will turn left in future.
Kindly furnish suitable waypoints for the vehicle’s trajectory based on the provided particulars.
Waypoints ought to adhere to the [x, y] format, with each waypoint spaced at 0.5-second intervals
within a continuous 3.0-second timeframe. For planning tasks, please pay attention to driving
safety and avoid vehicle collisions during driving in continous time. "

• "The six images include objects that are uniformly represented as 3D detection query embed-
dings<query> and map query embeddings<query>. Define the positive y-axis as the forward
direction and the positive x-axis as the right direction. The speed of the vehicle is defined as
[velocity along the x-axis, velocity along the y-axis]. The acceleration of the vehicle is defined as
[acceleration along the x-axis, acceleration along the y-axis]. The ego car will turn right in future.
We request your provision of pertinent waypoints for the vehicle’s route in accordance with the
given information. Waypoints should conform to the format [x, y], with spacing set at 0.5-second
intervals over a continuous duration of 3.0 seconds. For planning tasks, please pay attention to
driving safety and avoid vehicle collisions during driving in continous time. "

• "The six images include objects that are uniformly represented as 3D detection query embed-
dings<query> and map query embeddings<query>. Define the positive y-axis as the forward
direction and the positive x-axis as the right direction. The speed of the vehicle is defined as
[velocity along the x-axis, velocity along the y-axis]. The acceleration of the vehicle is defined
as [acceleration along the x-axis, acceleration along the y-axis]. The ego car will go stright in
future. Please submit fitting waypoints for the vehicle’s course based on the supplied data. En-
sure waypoints are structured as [x, y] and spaced at intervals of 0.5 seconds across a continuous
3.0-second period. For planning tasks, please pay attention to driving safety and avoid vehicle
collisions during driving in continous time. "

• . . . . . .

Table 4: Question pool of ego planning for VLM-based methods.

queries, where in our implementation, K is set to 256. The management of these queues adheres to
a first-in, first-out (FIFO) principle.

Our 3D-tokenized LLM, Atlas, integrates the 3D tokenizers described earlier with an LLM, specifi-
cally the Vicuna-1.5. This LLM has been pre-trained on a diverse open-world data corpus, providing
a robust foundation for understanding and processing spatial-temporal. Atlas follows most of the
basic settings in Merlin, with a batch size of 1, a learning rate of 2e-5, and the AdamW optimizer
with a weight decay of 1e-4. We implement a linear warm-up phase consisting of the first 3% steps
in total. Following the warm-up, we transition to a cosine learning rate strategy. The maximum
length of prompt tokens is 4096.

C 3D DETECTION RESULTS

Precion-Recall Curve. In the paper text, we present a comparison of the F1 scores between task-
specific models and Atlas in 3D detection, focusing on predictions with a confidence score above
0.3, which yielded the highest F1 score. Additionally, we illustrate the performance variations of
PETR, StreamPETR, and Atlas through the Precision-Recall curves at different positive thresholds,
as shown in Figure 2. It’s important to note that Atlas does not generate confidence scores; therefore,
we treated all its predictions as positive samples for the purpose of calculating precision and recall.
Although Atlas shows slightly weaker performance in making fine-grained predictions (specifically
at a threshold of 0.5 meters), it excels in scenarios with larger thresholds. This observation suggests
that large language models like Atlas might struggle with highly precise numerical predictions but
perform well when broader tolerances are acceptable.
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Figure 2: Compare of 3D detection with various thresholds. We provide the precision-recall
curves of PETR and StreamPETR. As the predictions from Atlas do not include confidence scores,
we calculate the precision and recall across all predicted samples.

D MORE QUALITATIVE RESULTS

D.1 QUALITATIVE RESULTS OF 3D DETECTION

We visualize the prediction results of the Atlas model in 3D detection tasks, as shown in Figure 3.
The results align well with our performance metrics, demonstrating a notably high recall rate. This
high recall is particularly important in practical applications of autonomous driving, where accu-
rately detecting every potential obstacle, like pedestrians, is critical. Furthermore, the model main-
tains its accuracy even in complex scenarios characterized by high pedestrian density or closely
packed targets. Moreover, Atlas proves robust under challenging environmental conditions. For
instance, even on rainy days, the model continues to perform strongly. This resilience is essential
for the reliability needed in real-world applications, ensuring consistent performance regardless of
weather conditions.

D.2 QUALITATIVE RESULTS OF 3D LANE DETECTION

We showcase the visualization outcomes of Atlas in its application to 3D lane detection, depicted in
Figure 4. While the quantitative performance does not surpass task-specific models, Atlas demon-
strates noteworthy qualitative performance. As seen, our model performs well in challenging road
situations because it accurately recognizes road crossings and dividings.

D.3 QUALITATIVE RESULTS OF PLANNING

We also demonstrated the adaptability of Atlas’s driving plans across various weather conditions in
Figure 5. Notably, even during rain, Atlas effectively plans its future travel trajectories with consid-
erable diversity. This capability underscores the model’s robustness in challenging environments.
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Figure 3: Qualitative results of Atlas on 3D object detection. The red circles represent the pre-
dicted objects and green circles represent the ground truth.
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Figure 4: Qualitative results of Atlas on map detection. The red represent the predicted lane and
green represent the ground truth.
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Figure 5: Qualitative results of Atlas on ego-car planning. Atlas outputs multiple potential plan-
ning trajectories within diverse weather and scenarios.
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Furthermore, Atlas impressively maintains compliance with traffic signals, such as stopping at red
lights, without having undergone specific training for traffic light recognition. This aspect highlights
the model’s inherent understanding and application of world knowledge relying on LLM. Addition-
ally, the model’s diverse planning strategy enables it to effectively balance the decisions between
maintaining its current lane and executing lane changes for overtaking. This flexibility greatly en-
hances the variety of possible travel routes, adapting dynamically to the flow of traffic and road
conditions.

E FAILURE CASES

Figure 6: Overly conservative

Figure 7: Violation of traffic regulations

Discussing error examples in our model, Atlas, provides valuable insights that can guide future
improvements. In this section, we analyze two primary types of failure observed during our experi-
ments:

Overly Conservative Behavior. Atlas tends to make overly conservative decisions, favoring cau-
tion even when the path ahead is clear, as shown in Figure 6. This behavior results in a lower travel
efficiency as the model opts to prioritize safety excessively. Our analysis suggests that this con-
servatism is likely rooted in the sampling bias of the nuScenes dataset. This dataset predominantly
includes safer driving examples and favors lower-speed scenarios, which may have influenced Atlas’
decision-making strategy. To address this issue, incorporating a substantial amount of closed-loop
data could be beneficial. This would provide Atlas with more dynamic and varied driving scenarios,
potentially reducing its overly conservative tendencies.

Violation of Traffic Regulations. Despite Atlas having learned to adhere to several traffic rules, it
occasionally fails to comply with traffic light signals, as shown in Figure 7. Specifically, Atlas may
proceed through intersections during a red light. This error stems from the model’s lack of explicit
traffic light information in its current framework. To mitigate this issue, integrating enhanced traffic-
related data queries could be crucial. By providing Atlas with more explicit and detailed traffic signal
information, we can improve its compliance with traffic laws and overall decision-making accuracy.

These findings highlight critical areas for further research and development. Enhancing the dataset
and incorporating explicit models of traffic elements such as lights and signs are promising avenues
for improving Atlas’ performance and reliability.
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