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Do LLMs Understand Visual Anomalies?
Uncovering LLM’s Capabilities in Zero-shot Anomaly Detection

Anonymous Author(s)

ABSTRACT

Large vision-language models (LVLMs) are markedly proficient
in deriving visual representations guided by natural language. Re-
cent explorations have utilized LVLMs to tackle zero-shot visual
anomaly detection (VAD) challenges by pairing images with tex-
tual descriptions indicative of normal and abnormal conditions,
referred to as anomaly prompts. However, existing approaches de-
pend on static anomaly prompts that are prone to cross-semantic
ambiguity, and prioritize global image-level representations over
crucial local pixel-level image-to-text alignment that is necessary
for accurate anomaly localization. In this paper, we present ALFA,
a training-free approach designed to address these challenges via a
unified model. We propose a run-time prompt adaptation strategy,
which first generates informative anomaly prompts to leverage the
capabilities of a large language model (LLM). This strategy is en-
hanced by a contextual scoring mechanism for per-image anomaly
prompt adaptation and cross-semantic ambiguity mitigation. We
further introduce a novel fine-grained aligner to fuse local pixel-
level semantics for precise anomaly localization, by projecting the
image-text alignment from global to local semantic spaces. Ex-
tensive evaluations on the challenging MVTec and VisA datasets
confirm ALFA’s effectiveness in harnessing the language poten-
tial for zero-shot VAD, achieving significant PRO improvements of
12.1% on MVTec AD and 8.9% on VisA compared to state-of-the-art
zero-shot VAD approaches.
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Figure 1: Overview of ALFA, a training-free zero-shot VAD
model focusing on vision-language synergy. The first and
third prompts are generated by an LLM to describe normal
and abnormal images, respectively. The second prompt, how-
ever, shows an ambiguous description, posing a challenge
in accurately determining the image label, a phenomenon
known as cross-semantic ambiguity.

1 INTRODUCTION

Visual anomaly detection (VAD) has gained momentum in a wide
spectrum of domains, including industrial quality control [2, 37],
video surveillance [14, 44], medical diagnostics [10, 33, 53] and etc.
This complex task involves both anomaly classification and localiza-
tion for images, i.e., image-level and pixel-level anomaly detection.
Inevitably, VAD faces two fundamental challenges due to the nature
of its detection targets. First, the diversity of image objects makes
the categories of anomalies a long-tail distribution [39]. To address
the diverse range of images, a universal, category-agnostic model
is required, as opposed to the traditional approach of deploying
dedicated models for specific visual inspection tasks. The latter
approach is unscalable and inefficient due to the long tail charac-
teristic of the problem [26, 31]. Second, anomaly images are rare
and have great variations [6, 19, 60]. In real-world applications like
industrial VAD, collecting a sufficient and diverse training sample
set is both costly and time-consuming. This scarcity complicates
the training of traditional one-class or unsupervised VAD models,
especially in cold-start scenarios [37].

The introduction of zero-shot methods offers a promising solu-
tion to these challenges. The emergence of large-scale models [23,
35] has revolutionized VAD profoundly. Recently, several large
vision-language models (LVLMs) have been introduced for zero-
shot VAD [4, 13, 17, 19, 58]. These works harness the exceptional
generalization ability of LVLMs, pre-trained on millions of image-
text pairs, which showcase promising zero-shot performance in
both seen and unseen objects. Nonetheless, due to the inherent
lack of comprehensive information on data and the absence of
explicit supervision, the zero-shot regime remains particularly chal-
lenging, with significant potential yet to be exploited compared to
fully-supervised benchmarks.
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There are two major limitations. First, existing works rely on
fixed textual descriptions of images, termed anomaly prompts, in-
cluding both abnormal and normal prompts. In LVLM-based VAD,
anomaly prompts elucidate the semantics of normalities and anom-
alies and guide the vision modules on how the two states are defined,
the quality of which, therefore, plays a critical role in the zero-shot
detection capability of LVLMs. The current practice of manually
crafting prompts demands extensive domain expertise and con-
siderable time, while also facing the challenge of cross-semantic
ambiguity, which is illustrated in Figure 1 and will be discussed in
depth in Sec. 4.2. This limitation calls for more informative and
adaptive anomaly prompts. Second, although LVLMs, trained for
image-text cross-modal alignment, can detect anomalies globally by
aligning image-level representations with anomaly prompts, they
face difficulties in localizing anomalies precisely, i.e., achieving
pixel-level detection. Such local pixel-level alignment is central to
zero-shot anomaly segmentation [19].

In this paper, we focus on zero-shot modeling and address the lim-
itations of existing models with a proposal called ALFA - Adaptive
LLM-empowered model for zero-shot visual anomaly detection
with Fine-grained Alignment. We introduce a run-time prompt
adaptation strategy to efficiently generate informative and adaptive
anomaly prompts, which obviates the need for laborious expert
creation and tackles cross-semantic ambiguity. Leveraging the zero-
shot capabilities of an LLM [3] that is renowned for its proficient
instruction-following abilities [24], this strategy automatically gen-
erates a diverse range of informative anomaly prompts for VAD.
Next, we present a contextual scoring mechanism to adaptively
tailor a set of anomaly prompts for each query image. To fully ex-
cavate the local pixel-level semantics, we further propose a novel
fine-grained aligner that generalizes the image-text alignment pro-
jection from global to local semantic space for precise anomaly
localization. This cross-modal aligner enables ALFA to achieve
global and local VAD within one unified model without requiring
additional data or fine-tuning. We summarize our main contribu-
tions as follows:

o We identify a previously unaddressed issue of cross-semantic
ambiguity. In response, we present ALFA, an adaptive LLM-
empowered model for zero-shot VAD, effectively resolving this
challenge without the need for extra data or fine-tuning.

e We propose a run-time prompt adaptation strategy that effec-
tively generates informative anomaly prompts and dynamically
adapts a set of anomaly prompts on a per-image basis.

e We develop a fine-grained aligner that learns global to local
semantic space projection, and then, generalizes this projection
to support precise pixel-level anomaly localization.

e Our comprehensive experiments validate ALFA’s capacity for
zero-shot VAD across diverse datasets. Moreover, ALFA can be
readily extended to the few-shot setting, which achieves state-
of-the-art results that are on par or even outperform those of
full-shot and fine-tuning-based methods.

2 RELATED WORK

Vision-language modeling. Large Language Models (LLMs) such
as GPT [3] and LLaMA [46] have achieved remarkable performance

Anon.

on NLP tasks. Since the introduction of CLIP [35], large Visual-
Language Models (LVLMs) like MiniGPT-4 [59], BLIP-2 [27], and
PandaGPT [43] have shown promise across a range of language-
guided tasks. Without additional fine-tuning, text prompts can
be used to extract knowledge in the downstream image-related
tasks such as zero-shot classification [32], object detection [21],
and segmentation [49]. Consequently, LVLMs offer the potential to
advance language-guided anomaly detection in a zero-shot manner.
In this paper, we delve deeper into exploring how to optimize the
utilization of LVLMs for visual anomaly detection (VAD).
Visual anomaly detection. Given the scarcity of anomalies, con-
ventional VAD approaches primarily focus on unsupervised or
self-supervised methods relying exclusively on normal images.
These approaches fall into two main categories: generative mod-
els [26, 31, 36, 50, 56] that utilize an encoder-decoder framework
to minimize the reconstruction error, and feature embedding-based
models that detect anomalies by discerning variations in feature dis-
tribution between normal and abnormal images. The latter includes
one-class methods [30, 38, 47], memory-based models [16, 34, 37]
and knowledge distillation models [1, 12, 40, 52] hinging on the
knowledge captured by networks pre-trained on large dataset.
Recent research has delved into zero-shot VAD, reducing re-
liance on either normal or abnormal images and offering a unified
anomaly detection model applicable across various image cate-
gories [4, 13, 17, 19, 28, 58, 61]. Notably, WinCLIP [19] pioneers
the potential of language-driven zero-shot VAD, leveraging CLIP
to extract and aggregate multi-scale image features. MuSc [28] pro-
poses a looser zero-shot approach that utilizes a pre-trained Vision
Transformer (ViT) [15] to extract patch-level features and assesses
anomaly scores by comparing the similarity of patches between the
query image and hundreds of unlabeled images. However, these ap-
proaches still suffer from several limitations, which require manual
prompt crafting, intricate post-processing of extra data, and addi-
tional fine-tuning. In contrast, ALFA is a training-free model for
zero-shot VAD, obviating the need for extra data or additional fine-
tuning, and generates informative and adaptive prompts without
costly manual design.
Probing through visual prompt engineering. In VAD, prompts
describe image content to assess anomaly levels by aligning with
both normal and abnormal prompts. Traditional prompt engineer-
ing [25, 29, 42] that adjusts the model with learnable tokens is
unsuitable due to data requirements. Existing efforts [1, 4, 8, 13,
17, 19, 45] typically hand craft numerous descriptions for detec-
tion, e.g., WinCLIP [19] using a compositional prompt ensemble
and SAA [4] employing a prompt regularization strategy. However,
these predefined-based approaches are inefficient and suboptimal.
Recent studies have explored using LLMs to generate prompts for
object recognition [21, 51], potentially alleviating the challenge of
inefficient prompt design. However, directly applying this approach
to VAD tasks leads to cross-semantic ambiguity, caused by textual
descriptions encompassing various aspects of an image, some of
which may not be present or prominent in the query image. To
avoid this, this paper proposes a run-time prompt adaptation strat-
egy utilizing an LLM, coupled with a contextual scoring mechanism,
to generate informative and adaptive prompts, which effectively
addresses the cross-semantic issue.
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Run-time Prompt Adaptation
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Figure 2: Workflow of ALFA with the run-time prompt adaptation strategy, which generates informative prompts and adaptively
manages a collection of prompts on a per-image basis via a contextual scoring mechanism. Furthermore, a fine-grained aligner
is introduced to generalize the alignment projection from global to local for precise anomaly localization.

3 PRELIMINARY

3.1 Visual Anomaly Detection

Anomaly detection aims to detect data samples that deviate from
the majority or exhibit unusual patterns. Particularly, this paper
focuses on visual anomaly detection (VAD), the objectives of which
are to (1) detect anomalies globally for images, and (2) localize
anomalies for pixels of each image locally, as formulated below:

DEFINITION 1 (VISUAL ANOMALY DETECTION). Given an image
x € REXWXC 'VAD qims to predict whether x and all its individual
pixel x;j, are anomalous or not, where 0 < i < H and0 < j < W.

In this study, we seek to develop a category-agnostic VAD ap-
proach that exhibits generalizability across categories ¢; € C, al-
lowing the model to readily adapt to new categories without model
retraining or parameter fine-tuning. Formally, for Vx € ¢;, VAD
can be achieved by computing anomaly scores S;, Sp = M(x; Op,)
for both global image-level S; € [0, 1] and local pixel-level S, €

[0, 1]HXWX1 ysing a detection model M(-) parameterized by ©,5,.

3.2 Zero-shot Anomaly Detection with LVLMs

LVLMs provide a unified representation for both vision and lan-
guage modalities, leveraging contrastive learning-based [7] pre-
training approaches to learn a shared embedding space. Given
million-scale image-text pairs {(xjc.i, tJC.i)|O < j < njci € C},
where n; is the number of pairs in category c;, LVLMs train an
image encoder f(-) and a text encoder g(-) by maximizing the cor-
relation between f (xJC.i) and g(t;i) measured in cosine similarity
<f (x;i ), g(tji )>. This strategy effectively aligns images with text
prompts in LVLMs.

LVLMs can be adopted for zero-shot language-guided anomaly
detection for images. For instance, given an image x;, two prede-
fined text templates, i.e., "a photo of a normal [c;]" and "a photo
of an abnormal [c;]" and the extracted text tokens t* and ¢~ corre-
spondingly, anomaly detection is achieved by exploiting the visual

information extracted by the image encoder and computing an
anomaly score for category c;:

exp(< F(x),9(t7) >)
Sre(rre) exp(< (). 9(1) >)

which basically measures the proximity of the image x; to the
abnormal text template of category c; by tapping into the vision-
language alignment capability of LVLMs.

S(x57) = )

4 METHODOLOGY

4.1 Overview

In this paper, we propose an LLM-empowered LVLM model ALFA
for zero-shot VAD. As shown in Figure 2, ALFA first introduces a
run-time prompt (RTP) adaptation strategy to generate informa-
tive prompts and adaptively manage a collection of prompts on a
per-image basis via a contextual scoring mechanism (see Sec. 4.2).
Unlike conventional run-time adaptation approaches, which require
fine-tuning their pre-trained models during inference, our strategy
functions without the requirement for any parameter update. Fur-
thermore, we present a training-free fine-grained aligner to bridge
the cross-modal gap between global and local semantic spaces,
enabling precise zero-shot anomaly localization (see Sec. 4.3).

4.2 Run-time Prompt Adaptation

The quality of textual prompts significantly influences the zero-shot
detection capabilities of LVLMs. Figure 3 provides a visual overview
of our prompt generation and adaptation process, with more details
elaborated below.

Informative prompt generation. Staying in line with the prompt
learning trend [22, 57], we first employ general expert knowledge to
initialize the contrastive-state prompts, unlocking LVLMs’ knowl-
edge guided by language. We design unified templates with specific
contents to generate comprehensive prompts covering task-relevant
concepts thoroughly, which contrasts with prior approaches that
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Figure 3: Overview of the run-time prompt adaptation.

either manually define image descriptions or integrate complex
multifaceted prompts [4, 13]. Next, we decompose the unified
anomaly prompt into components as: “A {domain} image of a {state}
{class} [with {specific details}]", encompassing domain, state, and
optional specific details sections. Then, we can readily generate
contrastive-state prompts Tcs = {tf,, t;;} as the base anomaly
detector, where ty = {t ;.- ’t:s,nt-s Ltz =
nt, and nz; indicate the number of normal and abnormal prompts
generated by the unified template.

Recognizing the potential for domain gaps to introduce language
ambiguity, especially with a generic prompt, base anomaly detector
derived from the unified template falls short. LLMs are reposi-
tories of extensive world knowledge spanning diverse domains,
serving as implicit knowledge bases that facilitate effortless natural
language queries [9]. This knowledge includes visual descriptors,
enabling LLMs to furnish insights into image features. To avoid
the costly and non-scalable practice of manually crafting prompts
using domain-specific knowledge, we efficiently tap into LLMs for
more informative prompts. To this end, we design prompts to query
an LLM, e.g., "How to identify an abnormal bottle in an image?".
Using this approach, we can derive precise descriptions of a wide
range of objects in normal and abnormal states as 7 = {t;, t; h
where t; = {t;"O, e ,t;n; 1 t; = {t;o, e ,tg”n; }, and n; and ng
indicate the number of normal and abnormal prompts generated
by the LLM.

Remark. In dealing with the diverse and unpredictable nature of
anomalies, language offers the essential information to discern
defects from acceptable deviations. Building upon the insights
from [32], we can enhance interpretability in VAD decisions by
leveraging the capabilities of LLMs. Specifically, LLM can be em-
ployed to produce feature descriptions regarding anomalies. These
descriptions can be provided to the LVLM to compute the logarith-
mic probability of each description pertaining to the image query.
By examining the descriptors with high scores, we can gain insights
into the model’s decision. More details are provided in Section 5.4.

Cross-semantic ambiguity. In an ideal scenario, LVLMs for zero-
shot VAD should be capable of recognizing the close correlation
between normal images and their respective normal prompts, while

{tc_s,O’ o tc_s,ngs}'

Anon.
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Figure 4: Visualization of ALFA’s semantic space.

identifying a more distant association with abnormal prompts. The
relative distances to normal and abnormal prompts are crucial for
LVLMs to detect anomalies effectively. However, by visualizing the
semantic space of LVLMs, we observed an overlap and intersection
in the feature distributions of both normal and abnormal prompts,
as depicted in Figure 4 (a). This leads to situations where the features
of certain anomalous images are closer to normal prompts while
being distant from certain abnormal prompts.

We refer to this phenomenon as cross-semantic ambiguity.

We attribute this phenomenon to the intricate nature of textual
descriptions and the semantic correlation between text and image.
This is exacerbated by prompts covering diverse aspects of the im-
age, some of which might not be salient or even absent in certain
images. Anomaly detection is thus susceptible to cross-semantic
ambiguity poisoning. Therefore, there is a pressing need for an
effective remedy to adaptively manage a set of normal and abnor-
mal anomaly prompts corresponding to each query image without
semantic overlap.
Contextual scoring mechanism. To address the persistent chal-
lenge of the cross-semantic ambiguity in VAD, we propose a contex-
tual scoring mechanism, which adaptively adjusts a set of anomaly
prompts on a per-image basis.

Specifically, given a query image x € and the vanilla
anomaly prompts Tognitza = {705, 76} = {E t £, 7}, their
embeddings can be obtained using the pre-trained image and text
encoders of LVLMs, denoted as f(x) € R4 and g(t) € RY, where
t € Tyanilla and d denotes the dimension of the latent semantic
space. We calculate the cosine similarity between the embeddings
of the query image x and normal {t, t;} and abnormal prompts
{tcs, ty } respectively as:

RHXWXC

d} (x) = < £, g(tF) >, 1} € {4, 1)) @)
d5 (x) = < f(2).g(t}) > 17 € {1517} 3)

Ideally, the distances between images and prompts for normal
and abnormal categories should fall into two non-overlapping in-
tervals. Specifically, normal images should be closer to normal
prompts, while their distance to abnormal prompts should be far-
ther, and vice versa for abnormal images. However, in practice,
considering the heterogeneous nature of textual descriptions, not
all descriptions of normal or abnormal conditions can be observed
in a single image, which leads to the presence of some redundant
or even noisy prompts that could negatively impact the model’s
detection performance. In this regard, we formulate the contextual
score as a logistic function [20] to quantify the prompt’s impact
in discerning abnormalities from normal occurrences. For each
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prompt t € Tyaninrg, its contextual score is calculated as follows,

1 @
k| D (0.4 - Dia(1).45)|

Se(t) =

1+e

where dy (t) represents the cosine similarity between the prompt

t and the query image x, and k is an adjustment parameter that

controls the slope of the scoring function. Empirically, we set k to

1, ensuring the scoring function exhibits a moderate rate of change

beyond the interval. D (-, -) is used to calculate the distance between
a point and an interval as follows,

D(dy(t), df) =max(0, max (min{d} (x) } ~ d (1), d (1) ~max{d} (x)}))
D (dy (1), d; ) =mas(0, max(min{(d; (x)) ~dx (1), dx (1) ~max{d; (x)}))

The contextual score Sc(t) of the prompt ¢ is constrained within
the range [0, 1]. Considering the interval [min; {d} (x)}, max;{d] (x)}]
and [min;{d; (x)}, max;{d; (x)}], when the distance between the
prompt and the query image in the semantic space dy(t) places
farther from another interval than the one it belongs to, the con-
textual score approaches 1, indicating a strong relevant, and vice
versa. In cases where the distance dy (t) straddles both intervals, the
score settles at 0, indicating an indeterminate relevance. Therefore,
during inference, we employ the contextual scoring mechanism
to filter out prompts with a contextual score of 0, retaining only
those in non-overlapping intervals, represented as 7 := {7+, 7 "},
with 7 and 7~ representing the normal and abnormal prompts,
respectively.

We outline the procedure of RTP adaptation in Algorithm 1, and
visualize the feature distribution of prompts processed through
the contextual scoring mechanism in Figure 4 (b), which demon-
strates that the proposed contextual score effectively addressed the
cross-semantic ambiguity. Notably, the anomaly prompt 7 varies
depending on the specific query image, which aligns with the intu-
itive notion that prompts and their numbers tailored to different
object classes should naturally differ. Even within the same class, dif-
ferent images necessitate different emphases on individual prompts.
Consequently, the implementation of the contextual scoring mech-
anism offers an adaptive approach to managing a set of prompts
on a per-image basis, which enables the selected prompts that are
better suited to the unique characteristics of each query image, thus
enhancing the overall effectiveness of anomaly detection.

4.3 Fine-grained Aligner

Since anomaly localization requires predicting anomalies at the
pixel-level, acquiring dense visual features is necessary. However,
LVLMs enforce cross-modal alignment globally for images and text,
creating a cross-modal gap between the global prompt embeddings
and local patch token embeddings. WinCLIP [19] attempts to ad-
dress this issue by employing a sliding window to generate patch
embeddings in a manner that simulates processing the global im-
age instead of using patch-wise embeddings from the penultimate
feature map. However, the localized patch may not encompass the
description of the global image in the text prompt, leading to sub-
optimal performance. While AnomalyGPT [17] achieves alignment
by generating pseudo-anomaly samples and introducing additional
training, which is operationally intricate and lacks efficiency. Conse-
quently, we propose a training-free fine-grained aligner to explicitly
model the mapping between global and local semantic spaces.
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Algorithm 1 Run-time Prompt Adaptation

Input: Query image x, pre-trained image encoder f (), pre-trained text
encoder g(-)
Output: Anomaly prompts 7 := {7, 7~}
Initialization: Template-based prompt generator Gr, LLM-based prompt
generator G,

1: Generate 7cs by the template-based prompt generator G

2: Generate 7G by the LLM-based prompt generator Gr.

3: Caculate the the cosine similarity between f(x) and g(¢) as Eq.(2) and

EQ~(3), t € Toanilla = {7cs, TG}

4: for t in Tyanitla do

5: Calculate the contextual score S¢(¢) using Eq.(4)
6: if S¢(¢)>0 then

7 Add t into T

8: end if

9: end for

10: return Anomaly prompts 7~

Given a query image x and its corresponding anomaly prompts
T, their embeddings can be denoted as f(x) € RY and g(t) € RY,
where t € 7 and d denotes the dimension of the latent space. Math-
ematically, the encoder architecture consists of vision transformers
(ViT) [15] based on multi-head self-attention (MHSA) and a feed-
forward network (FFN) with layer normalization (LN) and residual
connections that can be expressed as:

3 = MHSA(LN(Z/™1)) + 271 (5)
Z = FEN(LN(3))) + 3! (6)

where MHSA can be further formulated as:
ql,m — Zl—lwé,m’ kl - Zl_IWIé’m, z)l - Zl—lwzf,m @)

I l,mkl,mT
z°™ = softmax(——— )", m=1,--- ,M (8)
Vd

2= concat(zl’l, S ,zl’M)Wol 9)
where z° = [0,p1, - ,pNn], v represents the [CLS] token and
p1,- -+, pN are the patch tokens of the query image x with a reso-

lution H X W, and M denotes the number of attention heads.

In image processing, the Query-Key retrieval pattern at the final
layer can be conceptualized as a type of global average pooling
mechanism for capturing visual global descriptions. Concurrently,
the Value component serves to furnish comprehensive information
regarding each position or region within the image. In the current
task, our aim is to delve into the interplay between global and local
semantic information. Therefore, by adjusting the configuration of
the Value, whose ensemble forms the output of the final attention
mechanism, we can achieve a more nuanced handling of global and
local information by the model. Consequently, the model gains the
capability to discern the intricate correlation between global and
local in a more adaptable manner.

Specifically, for a dense visual input x;; = x © m;;, where
mij € {0, 1XW represents the mask that is locally active for
a kernel around (i, j) and © denotes the element-wise product, we
can similarly obtain the visual embedding as fj;; = f(x©Om;;) € RY.
In this procedure, the value matrix Ué ;; for local feature extraction

in layer I can be obtained as described in Eq. 7. While the value
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Figure 5: Qualitative results of zero-shot VAD. Annotated orange regions indicate detected anomalies, showcasing effective
localization of ALFA across diverse anomalies (e.g., broken and bent of varying sizes and quantities) within various classes.

matrix for global feature extraction f(x) in layer I can be similarly
represented as UIG. To this end, we can learn a projection from
global to local semantic space by a transformation matrix Wr ;; as
11—l
Wr.ij% = PLij
For the text modality, the global anomaly prompt embedding
Fre = [f;GfTTG] € R¥*4 can be generated by computing embed-
dings via the text encoder for respective anomaly labels. Next, we
project the global anomaly prompt embedding 7 into the local

semantic space as Frr,;j = [ fT+L i L ij] € R2xd according to each

patch token embedding Fyy,;; = [fi,ij] € R by the transformation
matrix Wr;;.

After aligning the local embeddings of the anomaly prompt and
dense image patch, we calculate the class token-based anomaly
score Sg(x) for the image query x and generate an anomaly map
using the aligned local embeddings as follows:

exp(< f(x), frg >)
XfieFre exp(< f(x), fir >)
€Xp(< ﬁ’ij’fT_L,ij >)

Zher ep(< fLijs ft >)

Sg(x) =

(10)

S (xij) = (11)

Likewise, we can implement multi-scale masked images to gen-
erate multi-scale visual embeddings paired with corresponding
prompt embeddings. Using these, we calculate multi-scale anom-
aly maps and average them through harmonic averaging [19] for
anomaly localization of a given query. Relying on the premise that
an image can be classified as anomalous upon the detection of a
single anomalous patch, the anomaly score for the image query is
determined by combining the classification score in Eq. 10 with the
maximum value of averaged multi-scale anomaly map as follow:

S(3) = 3(S6(x) + max 5, (x1) (12

Our ALFA adeptly accommodates few-shot scenarios by employ-
ing a memory bank to store patch-level features from normal sam-
ples, illustrated in Figure 2. Anomaly localization is subsequently
improved on top of S; by calculating distances between query
patches and their nearest counterparts in the memory bank.

Table 1: The performance of zero-shot anomaly detection.
Bold indicates the best performance.

Task Method MvTec VisA
AUROC  AUPR  Fl-max AUROC AUPR  Fl-max
CLIP-AC [35] 74.1 89.5 87.8 58.2 66.4 74.0
WinCLIP [19] 91.8 96.5 92.9 78.1 81.2 79.0
Image-level
AnoVL™ [13] 91.3 96.3 92.9 76.7 79.3 78.7
ALFA 93.2 97.3 93.9 81.2 84.6 81.9
Task Method pAUROC  PRO  pFl-max pAUROC PRO  pFl-max
Trans-MM [5] 57.5 21.9 12.1 49.4 10.2 3.1
MaskCLIP [55] 63.7 40.5 18.5 60.9 273 73
Pixel-level WinCLIP [19] 85.1 64.6 31.7 79.6 56.8 14.8
AnoVL™ [13] 86.6 70.4 30.1 83.7 58.6 13.5
ALFA 90.6 78.9 36.6 85.9 63.8 15.9

5 EXPERIMENTS

In this section, we systematically evaluate ALFA for image-level and
pixel-level anomaly detection through quantitative and qualitative
analyses on various benchmarks. Ablation studies and explainable
VAD results are also presented. Further implementation details and
comprehensive experimental results are provided in the Appendix.

5.1 Experimental Setup

Datasets. Our experiments are based on MVTec [2] and VisA [62]
benchmarks, both containing high-resolution images with full pixel-
level annotations. MVTec includes data for 10 single objects and 5
textures, while VisA includes data for 12 single or multiple object
types. As our framework is entirely training-free, we exclusively
utilize the test datasets for evaluation.

Metrics. We use Area Under the Receiver Operating Characteris-
tic (AUROC), Area Under the Precision-Recall curve (AUPR), and
F1-score at optimal threshold (F1-max) as image-level anomaly de-
tection metrics. Besides, we report pixel-wise AUROC (pAUROC),
Per-Region Overlap (PRO) scores, and pixel-wise F1-max (pF1-max)
in a similar manner to evaluate anomaly localization.
Implementation details. We employ the OpenCLIP implementa-
tion [18] and its publicly available pre-trained models. Specifically,
we use the LAION-400M [41]-based CLIP with ViT-B/16+ as our
foundational model and GPT-3.5 (gpt-3.5-turbo-instruct) for anom-
aly prompt generation. Further setup details and the prompts list
considered in this paper are available in the Appendix.
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Table 2: Component-wise analysis of ALFA on MVTec.

RTP adaptation Fine-grained Image-level, Pixel-level

Template LM S,  “E"T (AUROC, pAUROC) (AUPR, PRO) (Fi-max, pFl-max)
X X X X (34.2,-) (68.9, -) (83.5,-)
v X X x (86.6, 79.4) (92.5, 59.2) (90.6, 26.8)
v v ox X (89.9, 83.6) (95.2, 62.9) (92.0,30.7)
v v v x (92.0, 85.9) (96.5, 68.8) (93.0,32.2)
v v v v (93.2, 90.6) (97.3, 78.9) (93.9, 36.6)

5.2 Zero-shot anomaly detection

In Table 1, we compare ALFA with prior arts on MVTec and VisA
benchmarks for both image-level and pixel-level zero-shot anom-
aly detection. Specifically, we compare ALFA with CLIP-AC [35]
for image-level anomaly detection, Trans-MM [5] for pixel-level
anomaly detection, and WinCLIP [19] and AnoVL [13] for both
image-level and pixel-level anomaly detection. For fairness, we
use AnoVL™ [13] for comparison, representing AnoVL without
fine-tuning and data augmentation, while the comparison with the
complete AnoVL is presented in Sec. 5.6. More details about the
baselines are available in the Appendix A. For both image-level
and pixel-level VAD, ALFA demonstrates significant improvements
over all baselines across all metrics on both benchmarks. Notably,
compared to the runner-up, we achieve a 12.1% enhancement in
PRO for pixel-level anomaly detection on MVTec and a 8.9% im-
provement on VisA. Similarly, for image-level anomaly detection,
we outperform the suboptimal method by 1.5% on MVTec and by
4.0% on VisA in terms of AUROC. A detailed breakdown of these
gains is presented in Section 5.3 through ablation studies.
Qualitative results. In Figure 5, qualitative results for different
objects with various anomalies are showcased. In all instances,
ALFA yields an anomaly map that exhibits greater concentration
on the ground truth compared to previous methods, aligning with
the findings from the quantitative results. Subtle, ALFA fares better
under various sizes and quantities of anomalies, demonstrating its
versatility. More visualizations can be found in the Appendix C.

5.3 Ablation Study

Component-wise analysis. Ablation studies on key ALFA mod-
ules, including RTP adaptation and the fine-grained aligner, demon-
strate their significant contributions to overall detection perfor-
mance, detailed in Table 2. Employing a one-class design using only
normal prompts as a baseline in the first row, we emphasize the
significance of template-based and LLM-based prompt generator
in capturing various anomalous patterns. The contextual scoring
mechanism, denoted as S, in Table 2, further enhances performance
by adaptively managing the anomaly prompts customized for each
query image without cross-semantic issue. Furthermore, the fine-
grained aligner proves to be a crucial contributor, especially in
enhancing pixel-level anomaly detection in zero-shot scenarios.

Analysis on anomaly prompt. In Table 3, we demonstrate that
ALFA achieves superior detection performance while significantly
reducing human efforts in designing prompts. We present the num-
ber of prompts per label employed by each method. In general,
LVLMs tend to exhibit improved performance with an increase in
the number of prompts. However, when cross-semantic ambiguity
limits the effectiveness of prompts, increasing their number may
not necessarily lead to performance improvement, as evidenced by
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Input Query: Prediction: There is an anomaly in the image because...

*  Structural Defects: — 0.336

capsules with dents, or other structural irregularities.

+  Surface Blemishes: NN 0.307

unexpected deformities present on the capsule.

« Irregular Shape : [ 0.278

capsules with shapes that significantly differ from the expected standard.
* Localized Discoloration .

specific areas on the capsule exhibiting abnormal color changes.

« Texture Anomalies:

deviations from the typical texture of normal capsules.

Output Anomaly Map:
a

Figure 6: Interpretable VAD results for capsules in Visa bench-
mark. The top five descriptors are listed as factors influenc-
ing the decision-making.

Is there any anomaly in
the image?

Table 3: Ablation analysis of anomaly prompt on MVTec.

#Prompts Methods AUROC AUPR Fl-max
154 (all manual) WinCLIP [19] 91.8 96.5 92.9
462 (all manual) AnoVL [13] 91.3 96.3 92.9
ALFA with GPT-3 92.2 96.7 93.2
146 (only 72 manual) ALFA with GPT-3.5 92.9 97.2 93.6
+ syntactic consistency 93.2 97.3 93.9

the results of AnoVL and WinCLIP as shown in Table 3. In ALFA,
the range of prompts per label on each class spans from 88 to 216,
with an average of 146. Notably, we only design 72 prompts based
on the template, a notable 53.2% reduction as compared to over
150 required by baselines, for better detection results, showcasing
ALFA’s ability to effectively tackle the cross-semantic issue and
unlock the full potential of language for zero-shot VAD. We also as-
sess the effect of varying numbers of prompts from template-based
and LLM-based generator, with additional results in Appendix B.
We further assess ALFA using GPT-3 (text-davinci-002) and GPT-
3.5 (gpt-3.5-turbo-instruct) for automatic prompt generation, ob-
serving superior performance with GPT-3.5. To examine the scala-
bility of ALFA, we also conduct tests on various CLIP backbones,
with detailed results provided in the Appendix B. Moreover, by
augmenting the input query of the GPT-3.5 as "state the description
beginning with: An abnormal/normal image of {class}", the resulting
prompts are formulated to preserve syntactic consistency to the
greatest extent possible, aligning with the text in CLIP pre-training
dataset. This augmentation contributes to further improved results.

5.4 Interpretability

We present results for explainable anomaly detection in Figure 6,
where the bars illustrate the descriptor similarity to the image
predicted as an anomaly in the CLIP latent space. Concretely, we
condition descriptors on the class name by prompting the language
model with the input:

"Q: What are useful descriptions for distinguishing an anomaly
{class} in a photo?

A: There are several key descriptions to tell there is an anomaly
{class} in a photo:

non

where "-" is used to generate point-by-point characterizations as
descriptors. Figure 6 shows the top five descriptors that emerge

from GPT-3.5, encompassing colors, shapes, and object parts for
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Table 4: Image-level performance on few-shot VAD.

MVTec VisA
Setup Method

AUROC AUPR F1-max AUROC AUPR F1-max

PatchCore [37]  83.4+3.0  92.2+1.5  90.5%15  79.9+2.9  82.8+23 81716

1-shot  WinCLIP [19]  93.122.0  96.5+0.9  93.7+1.1  83.8+4.0  85.1+4.0  83.1%17
ALFA 94.5+1.5 97.9+14 94.9+0.9 85.2+2.0 87.3x2.1 84.9+1.6
PatchCore [37]  86.3+3.3  93.8+1.7 92.0+15  81.6+4.0  84.8+3.2 82518

2-shot  WinCLIP [19]  94.4+13  97.0+0.7 94408  84.6+24 858427 83.0+14
ALFA 95.9+0.9 98.4+0.6 95.6+0.6 86.4+1.2 87.5:1.8 85.2+1.4

PatchCore [37]  88.8+2.6  94.5+1.5 92.6+1.6  85.3+2.1  87.5+2.1 84.3+13

4-shot  WinCLIP [19]  95.2+13  97.3+0.6 94.7+0.8  87.3+1.8  88.8+1.8 84.2%16
ALFA 96.5+0.6 98.9+0.6 96.0+0.7 88.2+0.9 89.4+14 85.5:+1.2

Table 5: Pixel-level performance on few-shot VAD.

MVT VisA
Setup Method « e

PAUROC ~ PRO  pFl-max pAUROC  PRO
PatchCore [37]  92.0£10  79.7+20 504421 95440.6  80.5+25  38.0+1.9

l-shot WinCLIP[19] 952405 87112 559427 96.4%04 851421 41323
ALFA 96.8+0.5 89.6+1.2 57.7+1.6 97.2+0.8 86.4+12 42.9+1.9
PatchCore [37]  93.3£0.6  823+13 530417 96.140.5 826+23  41.0£3.9

2-shot  WinCLIP [19]  96.0+0.3 88409 584+17 96.8+03 862+14 435433
ALFA 97.2404 91.0+0.9 59.9+1.6 97.740.8 87.2+12 45.6+2.0
PatchCore [37]  943+0.5 843+1.6 550419 968403 84914  43.9+3.1

4-shot  WinCLIP [19]  96.240.3 89.0+£0.8 59.5+1.8 97.2402  87.6£0.9 47.043.0
ALFA 97.6+0.3 91.6+0.6 60.3x1.0 98.1+0.4 89.2+1.2 47.9+2.6

pF1-max

both class-specific and class-agnostic descriptions. These descrip-
tions enable ALFA to look at cues easily recognizable by humans,
enhancing interpretability for decision-making in VAD tasks.

5.5 Few-shot Generalization

We expand the capabilities of ALFA to include the few-shot setting,
allowing for enhanced performance across scenarios with limited
data. We report the mean and standard deviation over 5 random
seeds for each measurement in Table 4 and Table 5. We benchmark
ALFA against PatchCore [37] and WinCLIP [19]. PatchCore utilizes
few-shot images for generating nominal information in its mem-
ory bank, and the full-shot version of PatchCore will be discussed
in Section 5.6. In this setting, ALFA consistently outperforms all
baselines across all metrics, highlighting the efficacy of language
prompts and multi-modal alignment for VAD. Moreover, with an
increase in the shot number, ALFA exhibits improved performance,
emphasizing the synergy between language-driven and reference
normal image-based models.

As our anomaly score and anomaly map are dual-composite,
we conduct further ablation studies on their distinct components,
detailed in Table 6. For image-level VAD, as the number of shots
increases, the significance of Sg in anomaly score gradually be-
comes evident, as it allows the introduction of information from
normal images in the memory bank to serve as supervision for
VAD. Meanwhile, max Sy consistently brings further performance
improvement based on Sg. For pixel-level VAD, we assess the im-
pact of image features generated by masks of various scales, using
patches as the unit and a patch size of 16x16 in our foundational
model. We also report the average inference time per image across
different few-shot settings, evaluated on a server with Xeon(R) Sil-
ver 4214R CPU @ 2.40GHz (12 cores), 128G memory, and GeForce
RTX 3090. We find that integrating image features at different scales
notably improves performance by incorporating local information.

Anon.

Table 6: Component-wise analysis of anomaly score and
anomaly map on MVTec.

Anomaly Score #shot (AUROC)

SG max Sg, 0 1 2 4
v X 91.2 912 912 912
X v 86.2 90.6 92.0 948
v v 932 945 959 965

Multi-scale Average #shots (pAUROC)

Mask Inference Time (s) 0 1 2 4
[2] 0.64+0.03 889 936 951 958
[2,3] 1.16+0.06 90.6 96.8 97.2 976
[2,3,4] 1.92+0.14 909 972 978 979

Table 7: Comparison of supervised paradigms on MVTec.

Methods Setup AUROC  pAUROC
#shots Training mode

PaDiM [11] full-shot Unsupervised 84.2 89.5
JNLD [54] full-shot Unsupervised 91.3 88.6
UniAD [48] full-shot Unsupervised 96.5 96.8
AnoVL [13] 0-shot Finetuned 91.3 89.8
AnomalyGPT [17] 0-shot Finetuned 97.4 93.1
AnomalyCLIP [58] 0-shot Finetuned 91.5 91.1
PatchCore [47] full-shot Training-free 99.6 98.2
SAA+ [4] full-shot Training-free - 81.7
MuSc [28] many-shot (42-176)  Training-free 97.8 97.3
ALFA 0-shot Training-free 93.2 90.6
ALFA 4-shot Training-free 96.5 97.6

However, scaling up the size comes at the cost of increased computa-
tional demands, impacting inference speed. Thus, we opt for a scale
range of [2,3] to achieve an optimal trade-off between inference
speed and performance.

5.6 Comparison on varied supervised paradigms

We benchmark ALFA against prominent unsupervised and finetune-
required VAD methods in a unified setting for fairness. Most base-
lines undergo training or fine-tuning on normal samples encom-
passing all classes within the dataset. Additionally, we include three
full/many-shot training-free methods, PatchCore [37], SAA+ [4]
and MuSc [28]. As depicted in Table 7, our zero-shot ALFA is com-
petitive with the baselines that require more information whether
in the form of additional normal samples or training. In the 4-shot
scenario, ALFA surpasses most baselines, underscoring the comple-
mentary roles between language and vision in VAD.

6 CONCLUSIONS

In this paper, we present an adaptive LLM-empowered model ALFA
that focuses on vision-language synergy for VAD. Capitalizing
on the robust zero-shot capabilities of LLMs, the proposed run-
time prompt adaptation strategy effectively generates informative
prompts by tapping into the vast world knowledge encoded in their
billion-scale parameters. This adaptation strategy is complemented
by a contextual scoring mechanism, ensuring per-image adaptabil-
ity while mitigating the cross-semantic ambiguity. Additionally, the
introduction of a novel training-free fine-grained aligner further
bolsters ALFA, generalizing the alignment projection seamlessly
from the global to the local level for precise anomaly localization.
Experimental results demonstrate ALFA’s superiority over existing
zero-shot VAD approaches, providing valuable interpretability.
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