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A IMPLEMENTATION DETAILS
A.1 Data pre-processing
We employ the data pre-processing pipeline outlined in the Open-
CLIP implementation [7] for both the MVTec [1] and VisA [15]
benchmarks. This process entails channel-wise standardization us-
ing the pre-computed mean [0.48145466, 0.4578275, 0.40821073]
and standard deviation [0.26862954, 0.26130258, 0.27577711] after
normalizing each RGB image to [0, 1]. Subsequently, we apply bicu-
bic resizing based on the Pillow implementation (PIL). We note that
CLIP requires a square-shaped resolution for input image queries.
To adapt CLIP to non-square images in the VisA benchmark, we
employ an “image tiling" scheme, as suggested by [8]. The resiz-
ing policy is also adopted for other baseline models to ensure fair
comparisons, while the remaining parts of their original data pre-
processing pipelines are retained.

A.2 Prompt generation via unified templates
Recall that we formulate a unified template to generate contrastive-
state prompts as: “A {domain} image of a {state} {class} [with {specific
details}].", where “class" in the template is replaced by the class
name in MVTec and VisA benchmarks. Along this line, we perform
prompt enhancement by replacing some fixed words in the template
such as “image" with “photo". Additionally, given the potential
ambiguity of certain class names, such as “bottle" in MVTec and
“pcb1" and “pcb2" in VisA, we opted to substitute these class names
in the original dataset with more specific object names or concise
descriptions. We present a sample list of templates utilized in this
study, denoted as: templates = [ “an image of a {Ω}", “a close-up
image of a {Ω}", “an industrial image of a {Ω}", “a manufacturing
image of a {Ω}", “a production image of a {Ω}", “a textural image of
a {Ω}", “a surface image of a {Ω}", “a cross-section image of a {Ω}"
]. Here, “{Ω}" represents a description of the contrastive state of a
specific class.

Specifically, we formulate “{Ω}" as: normal state = [“𝜍", “normal 𝜍",
“undamaged 𝜍", “flawless 𝜍", “perfect 𝜍", “unblemished 𝜍", “𝜍 without
flaw", “𝜍 without defect", “𝜍 without damage", ] and abnormal state
= [“abnormal 𝜍", “damaged 𝜍", “flawed 𝜍", “imperfect 𝜍", “impaired
𝜍 ’, “blemished 𝜍", “𝜍 with flaw", “𝜍 with defect", “𝜍 with damage"],
where 𝜍 represents the class name in the benchmarks.

A.3 Prompt generation via an LLM
The LLM-based prompt generation is constrained to a maximum
of 50 tokens. The temperature is set to 0.9 to generate diverse
and creative prompts while avoiding duplicate prompts. The input
query fed to the LLM typically follows the format: “Describe what
the image will look like if there is an anomaly in the image of 𝜍".
We aim for syntactic alignment between LLM-generated prompts
and template-generated prompts by incorporating the instruction,

such as: "Please state the description beginning with: An abnor-
mal image of 𝜍 ." into the input query for the LLM. By conducting
ablation experiments, we have discovered that maintaining consis-
tent sentence patterns significantly enhances the model’s semantic
comprehension, in particular, aligning with the sentence structure
employed by [10], yields improvements in anomaly detection ac-
curacy. For the class name, we use the same operation as for the
template-generated prompts to replace the ambiguous class name
with a more comprehensible one for the LLM.

A.4 Baseline
In our evaluation, ALFA is compared to various state-of-the-art
methods in zero-shot, few-shot, and full-shot regimes, spanning
image-level and pixel-level anomaly detection, including CLIP-
AC [10], Trans-MM [3], WinCLIP [8], AnoVL [5], PatchCore [11],
PaDiM [4], JNLD [13], UniAD [12], AnomalyGPT [6], Anomaly-
CLIP [14], SAA+ [2], and MuSc [9], underlining its competitiveness
across diverse benchmark scenarios.

Our code is available at https://anonymous.4open.science/r/ALFA-
41D6/. A brief introduction and reproduction details of the baselines
are given as follows.

CLIP-AC [10], WinCLIP [8], AnoVL [5], AnomalyGPT [6], and
AnomalyCLIP [14] are variants built upon the CLIP designed for
the unified training paradigm. CLIP-AC [10] refers to the original
CLIP zero-shot classification extended with prompts of the form
“normal class" and “anomalous class" using a prompt ensemble.
WinCLIP [8] is a window-based CLIP variant featuring a compo-
sitional ensemble of state words and prompt templates and using
sliding windows for dense visual feature extraction. AnoVL [5]
introduces a training-free adaptation through value-to-value at-
tention for local patch features and a test-time adaptation using a
learnable residual-like adapter to enhance anomaly localization per-
formance. AnomalyGPT [6] generates training data by simulating
anomalous images, providing fine-grained semantics through an
image decoder, and fine-tuning the LVLM with prompt embeddings
using a prompt learner. AnomalyCLIP [14] generates learnable
prompt templates for normality and abnormality and then utilizes
image-level and pixel-level loss to capture generic normality and
abnormality in an image regardless of its foreground objects. CLIP-
AC and WinCLIP results are reported from [8], while the results for
AnoVL1, AnomalyGPT2, and AnomalyCLIP3 are executed using
publicly available implementations.

There are five additional unified visual anomaly detection ap-
proaches. Trans-MM [3] is a model interpretation method for Trans-
formers, offering pixel-level masks for anomaly localization. Patch-
Core [11] introduces a maximally representative memory bank
1https://github.com/hq-deng/AnoVL
2https://github.com/CASIA-IVA-Lab/AnomalyGPT
3https://github.com/zqhang/AnomalyCLIP

https://anonymous.4open.science/r/ALFA-41D6/
https://anonymous.4open.science/r/ALFA-41D6/
https://github.com/hq-deng/AnoVL
https://github.com/CASIA-IVA-Lab/AnomalyGPT
https://github.com/zqhang/AnomalyCLIP
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Figure 1: Effect of varying the number of anomaly prompts
generated by templates and LLM on MVTec.

of neighborhood-aware patch features obtained from an encoder
pre-trained on ImageNet. UniAD [12] proposes a feature recon-
struction framework consisting of a neighbor-masked encoder and
a layer-wise query decoder to facilitate the model escape from the
identity shortcut. SAA+ [2] introduces hybrid prompts regulariza-
tion to incorporate domain expert knowledge and integrates models
like GroundingDINO and SAM, leveraging their strong zero-shot
generalization, to harness diverse multi-modal prior knowledge
for anomaly localization. MuSc [9] performs local neighborhood
aggregation with multiple degrees to obtain the patch features
and then designs a mutual score of the unlabeled images as patch-
level anomaly score. In the unified case, Trans-MM4, PatchCore5,
UniAD6, SAA+7, and MuSc8 are executed using publicly available
implementations.

Additionally, PaDiM [4] and JNLD [13] are both “one-class-one-
model” methods, employing a separate training scheme. The former
utilizes a pre-trained convolutional neural network (CNN) for patch
embedding and employs multivariate Gaussian distributions to
model the probabilistic representation of the normal class. The
latter comprises an anomaly reconstruction sub-network and a
segmentation sub-network, both structured as encoder-decoder
architectures, aiming to localize anomalies through the generated
multi-scale anomalies. For fairness, we obtain the results of PaDiM
and JNLD from [6] , following the unified paradigm of one model
across all classes in the benchmark.

A.5 Experimental environment
In this work, all the experiments are conducted in a server with
Xeon(R) Silver 4214R CPU @ 2.40GHz (12 cores), 128G memory,
and GeForce RTX 3090. All the models are implemented in PyTorch
2.0.0 with CUDA 11.8.

B ADDITIONAL RESULTS ON ABLATION
STUDY

B.1 Effect of varying prompt quantities
In Figure 1, we assess the impact of varying the number of prompts
generated by both templates and LLM. First, we evaluate the perfor-
mance solely based on the anomaly prompts generated by templates.
Our findings reveal a notable improvement in performance in both
4https://github.com/hila-chefer/Transformer-Explainability
5https://github.com/amazon-science/patchcore-inspection
6https://github.com/zhiyuanyou/UniAD
7https://github.com/caoyunkang/Segment-Any-Anomaly
8https://github.com/xrli-U/MuSc

Table 1: Scalability analysis of ALFA on MVTec.

Backbone #shot (AUROC)

Model Image Size Layers 0 1 2 4
ViT-B/16 224 × 224 12 89.7 90.8 92.1 93.0
ViT-B/16+ 240 × 240 12 93.2 94.5 95.9 96.5
ViT-L/14 224 × 224 24 92.0 93.2 94.0 94.9

zero-shot and few-shot scenarios with an increasing number of
template-generated anomaly prompts, as illustrated in the right
subfigure of Figure 1.

Building upon this, we introduce the anomaly prompts generated
by an LLM and evaluate their impact with varying quantities. We
observed that the LLM-generated anomaly prompts can further im-
prove the performance, even when it has already reached advanced
stages. Moreover, with an increasing number of LLM-generated
anomaly prompts, performance gradually improves. However, the
rate of improvement progressively slows down and may exhibit
slight oscillations. Therefore, we adopt a combination of 198 template-
generated anomaly prompts and 100 LLM-generated anomaly prompts
as an initial setup in our study.

B.2 Scalability
We evaluate the effect of various LAION-400M-based CLIP pre-
trained models available at OpenCLIP9, as detailed in Table 1. Given
that different backbones are associated with distinct input image
sizes, we implement a unified data pre-processing procedure, em-
ploying bicubic resizing based on PIL, as described in Section A.
We note that larger models or resolutions contribute to improved
performance, thus we choose ViT-B/16+ with increased resolution
as our default backbone.

C ADDITIONAL QUALITATIVE RESULTS
In Figure 2-5, we present further qualitative results obtained from
ALFA in the zero-shot and few-shot regime, showcasing diverse
anomalies such as broken, cracked, structural changes, and bent
instances of varying sizes and quantities. These results span various
image classes from the MVTec and VisA benchmarks. In Figure 3
and 5, we provide normal images for each class in benchmarks
as reference points in order to facilitate a clearer identification of
anomalies, which were not included as inputs in the model during
the zero-shot experiments.

In the zero-shot regime, relying solely on language-driven ALFA
demonstrates strong capabilities in generalizing to new and unseen
anomalies, excelling in detecting common anomalies. However, in
certain cases, assessing anomalies without a normal image refer-
ence proves challenging, such as anomalies that are very similar to
normal samples. ALFA exhibits improved detection of finer, more
domain-specific anomalies in the few-shot regime. The combina-
tion of zero-shot capabilities for broad applicability and few-shot
capabilities for domain-specific adaptation highlights the impor-
tance of striking a balance between generalization and specificity
for effective anomaly detection.

9https://github.com/mlfoundations/open_clip
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https://github.com/mlfoundations/open_clip
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Figure 2: Detailed qualitative results of 0-shot visual anomaly detection on MVTec. The anomaly mask represents the binarized
pixel-level anomaly map, where the annotated orange regions indicate detected anomalies.
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Figure 3: Detailed qualitative results of 4-shot visual anomaly detection on MVTec. The anomaly mask represents the binarized
pixel-level anomaly map, where the annotated orange regions indicate detected anomalies.
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Figure 4: Detailed qualitative results of 0-shot visual anomaly detection on VisA. The anomaly mask represents the binarized
pixel-level anomaly map, where the annotated orange regions indicate detected anomalies.
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Figure 5: Detailed qualitative results of 4-shot visual anomaly detection on VisA. The anomaly mask represents the binarized
pixel-level anomaly map, where the annotated orange regions indicate detected anomalies.
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