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ABSTRACT

In this paper, we systematically study quantum algorithms for finding an ϵ-
approximate second-order stationary point (ϵ-SOSP) of a d-dimensional non-
convex function, a fundamental problem in nonconvex optimization, with noisy
zeroth- or first-order oracles as inputs. We first prove that, up to noise of
O(ϵ10/d5), perturbed accelerated gradient descent equipped with quantum gra-
dient estimation takesO(log d/ϵ1.75) quantum queries to find an ϵ-SOSP. We then
prove that standard perturbed gradient descent is robust to the noise of O(ϵ6/d4)
and O(ϵ/d0.5+ζ) for any ζ > 0 on the zeroth- and first-order oracles, respec-
tively, which provides a quantum algorithm with poly-logarithmic query com-
plexity. Furthermore, we propose a stochastic gradient descent algorithm using
quantum mean estimation on the Gaussian smoothing of noisy oracles, which is
robust to O(ϵ1.5/d) and O(ϵ/

√
d) noise on the zeroth- and first-order oracles, re-

spectively. The quantum algorithm takes O(d2.5/ϵ3.5) and O(d2/ϵ3) queries to
the two oracles, giving a polynomial speedup over the classical counterparts. As
a complement, we characterize the domains where quantum algorithms can find
an ϵ-SOSP with poly-logarithmic, polynomial, or exponential number of queries
in d, or the problem is information-theoretically unsolvable even with an infinite
number of queries. In addition, we prove an Ω(ϵ−12/7) lower bound on ϵ for any
randomized classical and quantum algorithm to find an ϵ-SOSP using either noisy
zeroth- or first-order oracles.

∗Equal contribution.
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1 INTRODUCTION

Optimization theory is a central topic in computer science and applied mathematics, with wide appli-
cations in machine learning, operations research, statistics, and many other areas. Currently, various
quantum algorithms for optimization have been proposed, ranging from linear programs (Casares &
Martin-Delgado, 2020; Rains, 1999) and semidefinite programs (Brandão & Svore, 2017; Brandão
et al., 2019; van Apeldoorn & Gilyén, 2019; van Apeldoorn et al., 2020b) to general convex opti-
mization (Chakrabarti et al., 2020; van Apeldoorn et al., 2020a) and nonconvex optimization (Liu
et al., 2023; Zhang et al., 2021).

A crucial factor of quantum optimization algorithms is their robustness. On the one hand, current
quantum applications suffer from noises generated by near-term quantum devices (Preskill, 2018),
which may create adversarial perturbations in the worst-case that result in disastrous failures. To ad-
dress this issue, certain quantum algorithms or their components—such as some adiabatic quantum
algorithms (Childs et al., 2001), quantum gates (Harrow & Nielsen, 2003), and machine learning
algorithms (Liu et al., 2021; Cross et al., 2015; Lu et al., 2020)—are specifically designed to be
robust against experimental noise or noisy quantum queries (Buhrman et al., 2007). An alternative
solution is to develop error correction (Gottesman, 1997) or error mitigation (Endo et al., 2018;
2021) mechanisms to reduce the influences of experimental noises. In the context of nonconvex op-
timization, developing robust quantum algorithms is essential for future practical implementations
of these algorithms on near-term devices.

On the other hand, robustness is a natural and crucial requirement for solving classical optimization
problems. For instance, in statistical machine learning, we are given data drawn from an underlying
probability distribution D (i.e., the population), and the goal is to optimize an objective function
known as the population risk F , defined as

F (θ) = Ez∼D[L(θ; z)], (1)

where the expectation is taken over all possible continuous loss functions {L(· ; z)} with z ∼ D.
Since direct access to F is unavailable, it is commonly approximated by the empirical risk function
f(θ) = 1

n

∑n
i=1 L(θ; zi), which is computed from a finite set of n samples. The task of optimizing

F using access to its empirical counterpart f is known as empirical risk minimization (Belloni et al.,
2015; Jin et al., 2018a; Vapnik, 1991). In this setting, noisy evaluations of F can give rise to poorly
behaved landscapes, potentially containing an exponential number of shallow local minima—even
when F itself exhibits favorable properties such as smoothness or Lipschitz continuity (Auer et al.,
1995; Brutzkus & Globerson, 2017).

Based on this observation, a line of prior works on classical optimization (see e.g. Bartlett & Mendel-
son (2002); Boucheron et al. (2013)) studies the setting where we have access to a function f that is
pointwise close to the actual objective function F ,

∥F − f∥∞ ≤ ν, (2)

where the error ν usually decays with the number of samples. Under this assumption, f may still
be non-smooth and contain additional shallow local minima independent of F . Nevertheless, the
pointwise closeness between f and F can be leveraged to escape highly suboptimal local minima
that exist only in f and to approximate a local minimum of F .

Another related setting involves finding local minima of F using empirical first-order informa-
tion (Jin et al., 2018a). Similar to equation 2, we assume access to a noisy gradient∇f that remains
uniformly close to the actual gradient ∇F . This model is widely used in stochastic settings, where
gradient estimations are obtained through a sampling procedure using zeroth-order function values.
A well-known example is stochastic gradient descent (Jin et al., 2021; Sun, 2019), in which an ap-
proximate gradient is obtained by sampling mini-batch function values. As the mini-batch size m
increases, the gradient estimate converges to the true gradient with high probability:

∥∇F −∇f∥∞ ≤ ν̃, (3)

where the error ν̃ typically decreases with the mini-batch size m. Here, ∥∇F −∇f∥∞ denotes the
maximum infinity norm taken over both the input x and the d entries of the gradient at x.

Various approaches (Belloni et al., 2015; Zhang et al., 2017; Jin et al., 2018a; Risteski & Li, 2016;
Singer & Vondrák, 2015; Karabag et al., 2021; Roy et al., 2020; Zhang et al., 2022) have been
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developed to analyze the robustness of optimization algorithms from different perspectives. For
example, Belloni et al. (2015) proposed an algorithm for finding an ϵ-approximate minimum of an
approximate convex function, where ϵ is the precision guarantee for the optimization output (see
Assumption 1.1 and Assumption 1.2 for the formal definition). This algorithm requires Õ(d7.5/ϵ2)1

queries to the stochastic noisy function evaluation oracle, which has zero-mean and sub-Gaussian
distributed noise. More recently, Li & Zhang (2022) developed a quantum algorithm with query
complexity Õ(d5/ϵ) for the same task, giving a polynomial quantum speedup. In another direc-
tion, Singer & Vondrák (2015) established an information-theoretic lower bound for any convex
optimization algorithm that seeks minima within an ϵ multiplicative error using noisy function eval-
uation oracles. In the same setting,Risteski & Li (2016) developed an algorithm whose dependence
on d matches this lower bound.

In nonconvex optimization, Chen et al. (2020); Zhang et al. (2017) developed efficient classical al-
gorithms to escape noise-induced ”shallow” local minima using simulated annealing and stochastic
gradient Langevin dynamics (SGLD). These algorithms assume access to an oracle with bounded
noise ν ≤ O(ϵ2/d8), where ϵ is the precision and d is the dimension of F . More recently, Jin et al.
(2018a) proposed algorithms for escaping saddle points using a polynomial number of queries to
zeroth- or first-order noisy oracles, with bounded noise of order O(ϵ1.5/d) and O(ϵ/

√
d), respec-

tively. On the quantum side, Zhang & Li (2021); Childs et al. (2022) developed quantum algorithms
for escaping saddle points via quantum simulation. Their approach leverages a precise quantum
evaluation oracle and applies Jordan’s algorithm to compute the gradient exponentially faster than
classical algorithms using classical evaluation oracles. While quantum evaluation oracles inherently
suffer from both empirical loss and experimental noise in physical implementations, the study of
nonconvex optimization using quantum algorithms with noisy evaluation oracles remains largely
unexplored. This motivates us to systematically investigate the robustness of quantum algorithms in
escaping saddle points under such noise. Moreover, we discuss the noise threshold to guarantee the
existence of polynomial-query classical algorithms for finding an ϵ-approximate local minimum of
F .

1.1 NONCONVEX OPTIMIZATION WITH NOISY ORACLE

In this work, we consider a twice-differentiable target function F : Rd → R satisfying

• F is B-bounded: supx∈Rd |F (x)| ≤ B;
• F is ℓ-smooth (ℓ-gradient Lipschitz): ∥∇F (x1)−∇F (x2)∥ ≤ ℓ∥x1 − x2∥, ∀x1,x2 ∈
Rd;

• F is ρ-Hessian Lipshitz:
∥∥∇2F (x1)−∇2F (x2)

∥∥ ≤ ρ∥x1 − x2∥, ∀x1,x2 ∈ Rd.

The goal is to find an ϵ-approximate second order stationary point (ϵ-SOSP)2 such that
∥∇F (x)∥ ≤ ϵ, λmin(∇2F (x)) ≥ −√ρϵ. (4)

Instead of directly querying F , we assume one can access a noisy function f that is pointwise close
to F .
Assumption 1.1 (Noisy evaluation query). The target function F is B-bounded, ℓ-smooth, and
ρ-Hessian Lipschitz, and we can query a noisy function f that is ν-pointwise close to F :

∥F − f∥∞ ≤ ν. (5)

Moreover, we consider the problem of finding an ϵ-SOSP of F with an alternative assumption, where
the gradient ∇f is pointwise close to∇F .
Assumption 1.2 (Noisy gradient query). The target function F is B-bounded, ℓ-smooth, and ρ-
Hessian Lipschitz, and we can query the gradient g := ∇f of an L-smooth function f . The gradient
of f is pointwise close to gradient of F :

∥∇F −∇f∥∞ ≤ ν̃. (6)
1The Õ notation omits poly-logarithmic terms, i.e., Õ(g) = O(g poly(log g)).
2A more general target is to find an (ϵ, γ)-SOSP x such that ∥F (x)∥ ≤ ϵ and λmin(∇2F (x)) ≥ −γ. The

definition of an ϵ-SOSP in (4) was proposed first by Ref. (Nesterov & Polyak, 2006) and has been taken as a
standard assumption in the subsequent papers (Jin et al., 2017; 2018b; Xu et al., 2017; 2018; Carmon et al.,
2018; Agarwal et al., 2017; Tripuraneni et al., 2018; Fang et al., 2019; Jin et al., 2021; Zhang et al., 2021).
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In quantum computing, the oracles are unitary operators rather than classical procedures. Under
Assumption 1.1, one can query a quantum evaluation oracle (quantum zeroth-order oracle) Uf ,
which can be represented as

Uf (|x⟩ ⊗ |0⟩)→ |x⟩ ⊗ |f(x)⟩ , ∀x ∈ Rd. (7)

Furthermore, quantum oracles allow coherent superpositions of queries. Given m vectors |x1⟩ , . . . ,
|xm⟩ ∈ Rd and a coefficient vector c ∈ Cm such that

∑m
i=1 |ci|

2
= 1, the quantum oracle outputs

Uf (
∑m

i=1 ci |xi⟩ ⊗ |0⟩) →
∑m

i=1 ci |xi⟩ ⊗ |f(xi)⟩. Compared to the classical evaluation oracle,
the ability to query different locations simultaneously in superposition is the essence of quantum
speedup.

Similarly, in the first-order scenario we assume that one can access the quantum gradient oracle Ug

under Assumption 1.2, which can be represented as

Ug(|x⟩ ⊗ |0⟩)→ |x⟩ ⊗ |∇f(x)⟩ , ∀x ∈ Rd. (8)

We remark that quantum oracles are natural extensions of their classical counterparts, in line with
previous works (Chakrabarti et al., 2020; Zhang & Li, 2021; Apeldoorn et al., 2020; Garg et al.,
2021a; Zhang & Li, 2023b). Notably, if a classical oracle is established by a classical arithmetic
circuit (composed of additions, multiplications, divisions, etc.), it is standard to construct a quantum
circuit of the same size for the arithmetic calculations (quantum additions, multiplications, divi-
sions, etc. that enable these calculations in superposition) as the corresponding quantum oracle.
Consequently, we believe our quantum algorithms hold promise to outperform black-box classical
algorithms in low-dimensional settings where the oracle is given as an explicit circuit. In other
words, we are not assuming the oracle for free, but we consider the same black-box optimization
setting as the classical counterpart, with essentially the same cost of constructing the oracle.

1.2 CONTRIBUTIONS

In this paper, we conduct a systematic study of quantum algorithms for nonconvex optimization
using noisy oracles. Using zeroth- or first-order oracles as inputs, we rigorously characterize differ-
ent domains where quantum algorithms can find an ϵ-SOSP using poly-logarithmic, polynomial, or
exponential number of queries, respectively. We also identify the domain where it is information-
theoretically unsolvable to find an ϵ-SOSP even using an infinite number of queries.

In some of the domains, we further develop lower bounds on the query complexity for any classical
algorithms, and thus establish polynomial or exponential quantum speedups compared to either the
classical lower bounds or the complexities of corresponding state-of-the-art classical algorithms.
We summarize our main results under Assumption 1.1 and Assumption 1.2 in Table 1 and Table 2,
respectively.

Noise Strength Classical Bounds Quantum Bounds Speedup in d
ν = Ω(ϵ1.5) Unsolvable (Jin et al., 2018a) Unsolvable (Theorem 1.8) N/A
ν = O(ϵ1.5), ν = Ω̃(ϵ1.5/d) O(exp(d)), Ω(dlog d) (Jin et al., 2018a) Ω(dlog d) (Theorem 1.7) N/A
ν = O(ϵ1.5/d), ν = Ω̃(ϵ6/d4) Õ(d4/ϵ5) (Jin et al., 2018a; Zhang et al., 2017) Õ(d2.5/ϵ3.5) (Theorem 1.5) Polynomial
ν = Õ(ϵ6/d4), ν = Ω̃(ϵ10/d5) Ω(d/ log d) (Theorem 1.9) O(log4 d/ϵ2) (Theorem 1.4) Exponential
ν = Õ(ϵ10/d5) Ω(d/ log d)∗ (Theorem 1.9) O(log d/ϵ1.75) (Theorem 1.3) Exponential∗

Table 1: A summary of our results and comparisons with the state-of-the-art classical upper and
lower bounds under Assumption 1.1. The query complexities are highlighted in terms of the dimen-
sion d and the precision ϵ. (∗) In the last row, we can obtain the desired classical lower bound and
thus an exponential speedup in the query complexity when ν = Ω̃(poly(1/d, ϵ)) as Theorem 1.9
works for ν = Ω̃(poly(1/d, ϵ)).

1.2.1 UPPER BOUNDS

Tiny noise: robustness of perturbed accelerated gradient descent. We start by adding tiny
noise to the oracles in quantum gradient descent algorithms. In particular, we consider the function
pair (F, f) satisfying Assumption 1.1 and assume that one can access the function values of the
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Noise Strength Classical Bounds Quantum Bounds Speedup in d

ν̃ = Ω(ϵ) Unsolvable (Theorem 1.10) Unsolvable (Theorem 1.10) N/A
ν̃ = O(ϵ), ν̃ = Ω̃(ϵ/d0.5) Ω(dlog d) (Theorem 1.10) Ω(dlog d) (Theorem 1.10) N/A
ν̃ = Θ(ϵ/d0.5) O(d3/ϵ4) (Jin et al., 2018a) O(d2/ϵ3) (Theorem 1.6) Polynomial
ν̃ = O(ϵ/d0.5+ζ) O(log4 d/ϵ2) (Corollary 2.12) O(log4 d/ϵ2) (Corollary 2.12) No

Table 2: A summary of our results and comparisons with the state-of-the-art classical upper and
lower bounds under Assumption 1.2. In the last line, ζ > 0 and ζ = Ω(1/ log(d)) (for instance, this
is satisfied for any constant ζ > 0).

noisy evaluation function f . We remark that f may even be non-differentiable or non-smooth. In
addition, the noise between f and the target function F might introduce additional SOSPs. Nev-
ertheless, recent work (Zhang & Gu, 2022) indicates that the performance of accelerated gradient
descent algorithm (PAGD) (Jin et al., 2018b; Zhang & Li, 2021) persists when the gradients are
inexact. We rigorously prove that the perturbed accelerated gradient descent algorithm with acceler-
ated negative curvature (Zhang & Li, 2021) equipped with Jordan’s algorithm for quantum gradient
estimation (Jordan, 2005) is robust to the tiny noise on zeroth-order oracles. We formulate our first
main result as follow:

Theorem 1.3 (Informal). Given a target function F and a noisy function f satisfying Assump-
tion 1.1 with ν = Ω(ϵ10/d5), there exists a quantum algorithm that finds an ϵ-SOSP of F with high
probability using Õ(log d/ϵ1.75) queries to the noisy zeroth-order oracle Uf .

We leave the formal version of Theorem 1.3, the corresponding algorithm, and the proof to Sec-
tion 2.1. Theorem 1.3 demonstrates that if the noise is small enough, the impact on PAGD algorithm
will not lead to an increase on the query complexity. If ν = Ω(poly(ϵ, 1/d)), we further demon-
strate that this robustness only exists for quantum algorithms by proving a polynomial lower bound
in Theorem 1.9 for any classical algorithm.

Small noise: robustness of quantum gradient estimation. When the strength of noise increases,
the negative curvature estimation in standard PAGD will fail. In this case, we show the robustness of
the gradient descent algorithm with quantum gradient estimation against the noise. We consider the
function pair (F, f) satisfying Assumption 1.1 when we can access noisy function f . Refs. (Zhang
et al., 2021; Chakrabarti et al., 2020) conveyed the conceptual message that perturbed gradient de-
scent (PGD) (Jin et al., 2021) algorithm with Jordan’s gradient estimation (Jordan, 2005) possesses
a certain degree of robustness to noise. In this work, we formalize this intuition and obtain the
following result:

Theorem 1.4 (Informal). Given a target function F and a noisy function f satisfying Assump-
tion 1.1 with ν ≤ Õ(ϵ6/d4), there exists a quantum algorithm that finds an ϵ-SOSP of F with high
probability using Õ(log4 d/ϵ2) queries to the noisy zeroth-order oracle Uf .

The formal version of Theorem 1.4, the corresponding algorithms, and the proof are given in
Section 2.2. Theorem 1.4 demonstrates if the noise on the zeroth-order oracle is below a certain
threshold, a quantum algorithm can find an ϵ-SOSP of F within a number of queries that is poly-
logarithmic in terms of the dimension d. Similar to Theorem 1.3, this robustness only exists in quan-
tum algorithms and provides an exponential quantum speedup in the query complexity compared to
the classical counterpart. The key insight for such a speedup is as follows. While a polynomial
number of queries in dimension d is required for classical algorithms to compute the gradient us-
ing zeroth-order oracles, quantum zeroth-order queries enable querying function values at different
positions in parallel due to quantum superposition. As a result, Jordan’s algorithm for quantum
gradient estimation computes the gradient using exponentially fewer queries compared to classical
counterparts, and such speedup is robust to noise up to O(ϵ6/d4).

It seems that Theorem 1.3 and Theorem 1.4 provide exponential speed-ups only when the noise
thresholds that decay as O(ϵ10/d5) or O(ϵ6/d4). However, we will prove later (see Theorem 1.7)
that when the noise rate is larger than Ω(ϵ1.5/d), a superpolynomial query complexity lower bound
of Ω(dlog d) queries for both classical and quantum algorithms is proved in our work. This suggests
that we have to focus on the noise regime below O(ϵ1.5/d) where one can find an algorithm (either
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classical or quantum) that only requires polynomially many queries in d. Compared to this threshold,
the noise threshold of O(ϵ10/d5) or O(ϵ6/d4) where quantum algorithms have exponential speed-
ups compared to classical ones is only polynomially small. We can thus conclude that the noise
regime where an exponential quantum speedup is within a reasonable amplitude compared to the
noise regime where polynomial classical and quantum algorithms for this task exist.

We further extend Theorem 1.4 to function pair (F, f) satisfying Assumption 1.2. We prove in
Corollary 2.12 that the classical PGD iteration is robust against the noise of ν̃ ≤ O(ϵ/d0.5+ζ) on
the first-order gradient information, where ζ = Ω(1/ log(d)).

Intermediate noise: speedup from quantum mean estimation. When the strength of noise
keeps increasing, the robustness of Jordan’s algorithm will also fail to handle the gap between
the noisy function f and the target function F . To address this issue, we develop a quantum al-
gorithm based on the Gaussian smoothing of f inspired by Ref. (Jin et al., 2018a). We consider
function pairs (F, f) satisfying Assumption 1.1. We sample the value z[f(x + z) − f(x)]/σ2,
where z ∼ N (0, σ2I) is chosen from Gaussian distribution with parameter σ2 (Duchi et al., 2015).
We then apply quantum mean estimation to approximate the gradient from the samples of stochastic
gradients. The performance of the algorithm is given by the following theorem:

Theorem 1.5 (informal). Given a target function F and a noisy function f satisfying Assumption 1.1
with ν ≤ O(ϵ1.5/d), there exists a quantum algorithm that finds an ϵ-SOSP of F with high proba-
bility taking Õ(d2.5/ϵ3.5) queries to the noisy zeroth-order oracle Uf .

The formal version of Theorem 1.5, the corresponding algorithms, and the proof are given in Sec-
tion 3.1. Theorem 1.5 indicates that the quantum algorithm can find an ϵ-SOSP of F using poly-
nomial number of queries to f with bounded strength of noise ν ≤ O(ϵ1.5/d). Recall that the
state-of-art classical algorithm (Jin et al., 2018a) solves this problem with the same noise strength
ν ≤ O(ϵ1.5/d) using O(d4/ϵ5) queries, our algorithm provides a polynomial improvement com-
pared to the best known classical result in terms of both the dimension d and the precision ϵ.

We further consider the problem of finding an ϵ-SOSP of functions F taking queries to the quantum
gradient oracle in (8). Our approach leverages the fact that ∇f(x + z) is a stochastic gradient
function of the Gaussian smoothing of f where z ∼ N (0, σ2I) is chosen from Gaussian distribution
with parameter σ2. In particular, similar to the zeroth-order scenario, we apply quantum mean
estimation to approximate the gradient of the Gaussian smoothing, which leads to the following
algorithmic upper bound.

Theorem 1.6 (Informal). Given a target function F and the gradient information of a noisy function
f satisfying Assumption 1.2 with ν̃ ≤ O(ϵ/d0.5), there exists a quantum algorithm that finds an ϵ-
SOSP of F with high probability using Õ(d2/ϵ3) queries to the noisy first-order gradient oracle
Ug.

The formal version of Theorem 1.6, the corresponding algorithms, and the proof are given in Sec-
tion 3.2. Note that the tolerance on ν̃ and the query complexity is larger compared to Theorem 1.5,
where we access a zeroth-order oracle. The best-known classical algorithm finding an ϵ-SOSP under
Assumption 1.2 requires O(d3/ϵ4) queries. Hence, this quantum algorithm also provides a polyno-
mial reduction on the sample complexity compared to the classical result.

1.2.2 LOWER BOUNDS

Large noise: quantum query complexity lower bound in d. In this work, we also provide lower
bounds concerning d on the query complexity required for any classical and quantum algorithms
under Assumption 1.1 and Assumption 1.2. In particular, we construct a hard instance inspired by
Ref. (Jin et al., 2018a) (as shown in Figure 1 (a)): we define a target function F in a hypercube and
use the hypercube to fill the entire space Rd. By adding noise to the zeroth- or first-order oracle f ,
we can erase the information of F such that a limited number of classical or quantum queries cannot
find any ϵ-SOSPs with high probability.

For a function pair (F, f) satisfying Assumption 1.1, our first result in this part is the following
quasi-polynomial lower bound.
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Theorem 1.7 (Informal). We can find functions F and f satisfying Assumption 1.1 with ν =
Θ̃(ϵ1.5/d) such that any quantum algorithm requires at least Ω(dlog d) queries to Uf to find any
ϵ-SOSP of F with high probability.

The detailed proof for Theorem 1.7 is a bit technically involved and is left to Section 4.1. Here, we
provide the intuition for the proof. To prove this lower bound, we define a function F in a hyperball
B(0, r) and embed the hyperball into a hypercube, with which we can cover the whole space. Next,
we introduce noise to create f with a non-informative area around 0 (in the sense that any query to
this area will obtain no information about any SOSPs of the target function F ). Then, we transfer
this problem into an unstructured search problem. The final lower bound for nonconvex optimization
is obtained by applying the quantum lower bound for unstructured search. We mention that the ϵ and
the d dependence for ν in Theorem 1.7 are tight up to logarithmic factors. The classical version of
Theorem 1.7 is proved in Ref. (Jin et al., 2018a). The parallelism in quantum algorithms possesses
the potential to query different points in superposition. However, Theorem 1.7 demonstrates that the
same query complexity lower bound holds even for quantum algorithms.

If the noise ν keeps increasing, we can further prove the following lower bound in Section 4.2 that
prevents any quantum algorithm from finding any ϵ-SOSPs of target function F :

Theorem 1.8 (Informal). For any quantum algorithm, there exists a pair of functions (F, f) satisfy-
ing Assumption 1.1 with ν = Θ̃(ϵ1.5) such that it will fail, with large probability, to find any ϵ-SOSP
of F given access to f .

Despite the quantum lower bound, we also propose a classical lower bound concerning nonconvex
optimization using zeroth-order oracle with noise strength ν = O(1/ poly(d)).

Theorem 1.9. For any ϵ ≤ ϵ0 < 1, where ϵ0 is some constant, there exists a function pair (F, f)
satisfying Assumption 1.1 with ν = Ω(1/ poly(d)), such that any classical algorithm that outputs
an ϵ-SOSP of F with high probability requires at least Ω(d/ log d) classical queries to the noisy
function f .

We prove Theorem 1.9 using an information-theoretic argument inspired by Ref. (Chakrabarti et al.,
2020). Theorem 1.3, Theorem 1.4, and Theorem 1.9 establish the exponential separation between
classical and quantum query complexities required for nonconvex optimization using oracles with
noise ν = Ω̃(poly(ϵ, 1/d)). This separation originates from the Jordan’s gradient estimation algo-
rithm (Jordan, 2005). Classically, querying the evaluation oracle can only provide information at
one point. Quantumly, however, one can take the superposition on different points and query the
quantum evaluation oracle in parallel (Gilyén et al., 2019; Chakrabarti et al., 2020).

Moreover, we extend the above lower bound to function pairs (F, f) satisfying Assumption 1.2 in
Section 4.4. If the noise increases by even a factor that is logarithmic in d from Θ̃(ϵ/d0.5), we
can prove an exponential lower bound for any classical or quantum algorithm through a similar
construction of hard instance used in Theorem 1.7 (as shown in Figure 1 (b)). Moreover, if the noise
increases to Ω(ϵ), there exists a similar hard instance with Theorem 1.8 that prevents any classical
or quantum algorithm from finding any ϵ-SOSP of F . Formally, we can extend Theorem 1.7 and
Theorem 1.8 in the context of Assumption 1.2:

Theorem 1.10 (Informal). We can find functions F and f satisfying Assumption 1.2 with ν̃ =
Θ̃(ϵ/d0.5) such that any classical or quantum algorithm that finds an ϵ-SOSP of F with high prob-
ability requires at least Ω(dlog d) queries to Ug. Moreover, for any classical or quantum algorithm,
we can find functions F and f satisfying Assumption 1.2 with ν̃ = Θ(ϵ) such that it will fail with
high probability.

Quantum query complexity lower bound in ϵ. Finally, we establish query complexity lower
bounds for classical and quantum nonconvex optimization algorithms under Assumption 1.1 or As-
sumption 1.2, respectively, where our results are summarized in Table 3.

Theorem 1.11 (informal). There exists a function pair F and f satisfying either Assumption 1.1
or Assumption 1.2 with ν = Ω(ϵ−16/7/d) or ν̃ = Ω(ϵ−8/7/

√
d), respectively, and additionally

F (0) − infx F (x) ≤ ∆ for some constant ∆, such that any classical or quantum algorithm with
query complexity Ω

(
ϵ−12/7

)
will fail with high probability to find an ϵ-SOSP of target function F .
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Input Oracle Noise Strength
Deterministic Classical

Lower Bounds
Randomized Classical and
Quantum Lower Bounds

Zeroth-order ν = 0

Ω(ϵ−12/7)

(Carmon et al., 2021)

N/A
Zeroth-order ν = Ω(ϵ−16/7/d) Ω(ϵ−12/7) (Theorem 1.11)
First-order ν̃ = 0 N/A
First-order ν̃ = Ω(ϵ−8/7/

√
d) Ω(ϵ−12/7) (Theorem 1.11)

Table 3: A summary of our results on classical and quantum query complexity lower bounds in ϵ
under Assumption 1.1 or Assumption 1.2, respectively. The query complexities are highlighted in
terms of the dimension d and the precision ϵ.

We provide the detailed proof for Theorem 1.11 in Section 5 using the hard instance inspired by
Refs. (Carmon et al., 2020; 2021). Previously, there have been two lower bounds concerning ϵ de-
pendence that apply to classical algorithms for nonconvex optimization. In Ref. (Carmon et al.,
2020), it is proved that at least Ω(ϵ−3/2) queries are required in finding an ϵ-SOSP of a Hessian
Lipshitz function F even provided both zeroth- and first-order oracles for either random or deter-
ministic classical algorithms. Using similar techniques, Carmon et al. (Carmon et al., 2021) further
proved that deterministic classical algorithms using first-order noiseless oracle require Ω(ϵ−12/7)
queries to find an ϵ-SOSP of a Hessian Lipshitz function F .

On the other hand, despite recent papers (Garg et al., 2021a;b) studying quantum lower bounds on
convex optimization, quantum lower bounds on nonconvex optimization are still widely open. In
this paper, we fill this conceptual gap by extending the classical deterministic lower bound (Carmon
et al., 2021) to all classical randomized algorithms and even quantum algorithms, given that noise
exists in the function evaluation. In particular, noise allows us to construct a hard instance by
creating a non-informative area around 0. According to the concentration of measure phenomenon,
the non-informative area will occupy an overwhelming proportion of the whole space. Although its
intuition and structure are different from the hard instance in Refs. (Garg et al., 2021a;b) constructed
via performing maximization, the hard instance we construct here exhibits a similar property that,
if the number of quantum queries is below a certain threshold, in expectation the output state will
barely change if we replace the quantum oracle by an oracle that only encodes “partial” information
of the objective function, where the missing information is crucial for any (classical or quantum)
algorithm to find an ϵ-SOSP of F .

Moreover, we note that our lower bound result in Theorem 1.11 can be extended to the case where
the goal is merely to find an ϵ-SOSP if we waive the B-bounded requirement on F , which may be
of independent interest.

1.3 DISCUSSION AND OPEN QUESTIONS

In conclusion, we conduct a systematic study of quantum algorithms for nonconvex optimization us-
ing noisy oracles. We would like to provide two meaningful contexts for the noise levels considered
in our work from classical optimization and quantum computing perspectives, respectively.

From the perspective of classical optimization, nonconvex optimization arises naturally when we
study the landscape of the loss functions for training neural networks with a bounded number of
data samples. In practice, loss functions are usually nonconvex and nonsmooth. However, accord-
ing to the PAC learning framework, the loss function is approximately smooth and its distance (i.e.
the empirical noise level) from a smooth function is proportional to the inverse of the number of
data samples. In particular, roughly O(d/ϵ1.5) samples can guarantee empirical risk of amplitude
O(ϵ1.5/d) for dimension d and accuracy parameter ϵ. By varying the dependence of the sample size
on the dimension d and accuracy parameter ϵ, we can generate empirical noise of different levels of
poly(d,1/ϵ). Understanding the complexity of optimizing approximately smooth nonconvex func-
tions of different noise rates of poly(d,1/ϵ) offers insights into the necessary data sample number
for training neural networks.

From the perspective of quantum computing, the realization of future quantum computers heav-
ily depends on achieving fault-tolerant quantum computation. A standard approach involves con-

8
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catenating multiple levels of quantum error-correcting codes. The number of concatenation levels
typically scales poly-logarithmically with the target noise rate, leading to an inverse polynomial
overhead in the noise rate. For a noise rate of order poly(d,1/ϵ), achieving fault tolerance requires
poly(d,1/ϵ) levels of concatenation. This overhead is generally considered practical. However,
it can vary significantly depending on the specific noise level within this regime. Understanding
the effects of different noise levels is crucial for optimizing the number of concatenation levels and
reducing experimental resource requirements.

Our paper leaves several open questions for future investigations:

• Can we give quantum algorithms for the task of nonconvex optimization with better perfor-
mance using noisy oracles? For instance, can we obtain a quantum algorithm with better
dependence on d and ϵ compared to Theorem 1.5?

• Can we establish optimal quantum query complexity bounds for nonconvex optimization?
We would like to point out that for all noise ranges, nonconvex optimization in the classical
setting does not have optimal bounds neither, as shown in Table 1 and Table 2. As a result,
proving optimal quantum query complexity bounds may solicit more techniques and hard
instances. It might be helpful to investigate sublinear or poly-logarithmic quantum lower
bounds in dimension d on general optimization problems using either noiseless or noisy
oracles.

• We employ a simple model on the noise: only the upper bound of noise strength is consid-
ered. In general, can we demonstrate the robustness and speedups for nonconvex optimiza-
tion algorithms analytically under other noise assumptions (say, more practical quantum
noise models or stochastic noise models)?

• A further question one may ask is the quantum version of minimax optimal query com-
plexities. Although this is better understood in classical information theory, in the quantum
setting this is widely open in general. Some existing results can calculate the success prob-
ability of quantum algorithms when we have a fixed number of quantum queries (Zhandry,
2015; 2021), but their minimax properties are still open.

1.4 ORGANIZATION

The rest of the paper is organized as follows:

• In Section 2, we prove the robustness for the standard gradient-based algorithms. In par-
ticular, we consider the tiny noise case and prove the robustness of PAGD equipped with
quantum gradient estimation in Section 2.1. In Section 2.2, we consider the small noise case
and prove the robustness of standard PGD equipped with quantum gradient estimation.

• In Section 3, we consider the intermediate noise case and propose the stochastic gradi-
ent descent algorithm using Gaussian smoothing and quantum mean estimation, which
provides a polynomial speedup compared to classical algorithms under Section 3.1 and
Section 3.2, respectively.

• In Section 4, we prove lower bounds concerning dimension d for classical and quantum
algorithms under different noise strengths. Specifically, in Section 4.1 and Section 4.2,
we prove the existence of hard instances under Assumption 1.1 for any (polynomial)
quantum algorithm when ν = Θ̃(ϵ1.5/d) (ν = Θ̃(ϵ1.5)). In Section 4.3, we prove
the Ω(d/ log d) classical query complexity lower bound using zeroth-order oracles with
ν = Ω(1/ poly(d)). We prove the lower bound under Assumption 1.2 in Section 4.4.

• In Section 5, we prove lower bounds concerning the precision ϵ for both (possibly random-
ized) classical algorithms and quantum algorithms.

• In the appendices, we introduce necessary existing tools for our proofs in Appendix A.
Technical lemmas for the main text are given in Appendix B. Additional information and
extended discussions on PGD equipped with quantum simulation and quantum tunneling
walk are provided in Appendix C and Appendix D, respectively.

9
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2 ROBUSTNESS OF QUANTUM AND CLASSICAL ALGORITHMS WITH SMALL
NOISE

In this section, we propose two quantum nonconvex optimization algorithms that are robust for tiny
noise and small noise, respectively. These algorithms find to an ϵ-SOSP of F using only polyloga-
rithmic queries to noisy empirical function f .

2.1 ROBUSTNESS OF CLASSICAL PERTURBED ACCELERATED GRADIENT DESCENT WITH
TINY NOISE

To begin with, we introduce the quantum perturbed accelerated gradient descent (PAGD) with ac-
celerated negative curvature finding algorithm, which is inspired by the noiseless nonconvex opti-
mization algorithm in Ref. (Zhang & Li, 2021). To find an ϵ-SOSP of F using quantum evaluation
oracle specified in (7), an important step is to approximate the gradient at each iteration. An inge-
nious quantum approach initiated by Ref. (Jordan, 2005) takes a uniform mesh around the point and
queries the quantum evaluation oracle (in uniform superposition) in phase using the standard phase
kickback technique (Chakrabarti et al., 2020; Gilyén et al., 2019). Then by the Taylor expansion,
we have ∑

x

exp(if(x))x ≈
∑
x

d⊗
k=1

exp

(
i
∂f

∂xk
xk

)
xk. (9)

The algorithm finally recovers all the partial derivatives by applying a quantum Fourier transfor-
mation (QFT). We refer to Ref. (Chakrabarti et al., 2020) for a precise version of Jordan’s gradient
estimation algorithm with the following performance guarantee:
Lemma 2.1 (Lemma 2.2, Ref. (Chakrabarti et al., 2020)). Given a target function F and its noisy
evaluation f satisfying Assumption 1.1 with noisy rate ν, there exists a quantum algorithm that uses
one query to the noisy oracle defined in (7) and outputs a vector ∇̃F (x) such that

Pr
[∥∥∥∇̃F (x)−∇F (x)∥∥∥ ≥ 400ωd

√
νℓ
]
≤ min

{
d

ω − 1
, 1

}
, ∀ω > 1. (10)

This lemma indicates that with probability at least 1− δ, one can use one query to the noisy zeroth-
oracle and obtain a vector ∇̃F (x) such that∥∥∥∇̃F (x)−∇F (x)∥∥∥ ≤ O(d2

√
νℓ/δ). (11)

Now, we are ready to introduce our first algorithm as shown in Algorithm 1. This algorithm replaces
the gradient queries in Perturbed Accelerated Gradient Descent (Zhang & Li, 2021; Zhang & Gu,
2022) with Jordan’s gradient estimation in Lemma 2.1. The negative curvature exploitation (NCE)
subroutine as shown in Algorithm 2 is applied if the following condition holds.

f(xt) ≤ f(yt) +
〈
∇̃F (yt),xt − yt

〉
− γ

2
∥xt − yt∥2. (12)

The intuition for NCE (Algorithm 2) will be discussed later.

We prove that Algorithm 1 has the following performance guarantee:
Theorem 2.2 (Formal version of Theorem 1.3). Consider a target function F and its noisy eval-
uation f satisfying Assumption 1.1 with ν ≤ Õ(δ2ϵ10/d5). Algorithm 1 can find an ϵ-SOSP of F
satisfying Eq. (4) with probability at least 1− δ, using

Õ

(
ℓB

ϵ1.75
· log d

)
(13)

queries to Uf defined in (7), under the following parameter choices:

η =
1

4ℓ
, θ =

1

4
√
κ
, γ =

θ2

η
, s =

γ

4ρ
, δ0 =

δϵ1.75

cδℓB
· log d, (14)

r =
δ0ϵ

cr

√
π

ρd
, T = cr

√
κ log

(
ℓ
√
d

δ0
√
ρϵ

)
, F =

√
ϵ3

ρ
c−7, (15)

where c, cr, and cδ are some large enough constants, and κ = ℓ/
√
ρϵ.

10
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Algorithm 1: Perturbed Accelerated Gradient Descent with Accelerated Negative Curvature
Finding and Quantum Gradient Computation
Input: x0, learning rate η, noise ratio r, parameters T , ι, θ, γ, and s to be fixed later.

1: tperturb ← −T − 1, y0 ← x0, x̃← x0, and ι← 0
2: for t = 0, 1, . . . , T do
3: Apply Lemma 2.1 to compute an estimation ∇̃F (x) of∇F (x)
4: if

∥∥∥∇̃F (x)∥∥∥ ≤ 3ϵ/4 and t− tperturb > T then
5: x̃← xt

6: xt = x̃+ ξt
7: yt = xt, ι = ∇̃F (x̃), tperturb ← t
8: end if
9: if tperturb ̸= −T − 1 and t− tperturb = T then

10: ê← (xt − x̃)/∥xt − x̃∥
11: xt ← argminx∈{x̃− 1

4

√
ϵ
ρ ê,x̃+

1
4

√
ϵ
ρ ê}

f(x)

12: yt = xt, ι = 0
13: end if
14: xt+1 = yt = η(∇̃F (yt)− ι)
15: vt+1 = xt+1 − xt

16: yt+1 = xt+1 + (1− θ)vt+1

17: if tperturb ̸= −T − 1 and t− tperturb ≤ T then
18: (yt+1,xt+1) = x̃+ r ·

(
yt+1−x̃

∥yt+1−x̃∥ ·
xt+1−x̃

∥xt+1−x̃∥

)
19: else if f(xt+1) ≤ f(yt+1) +

〈
∇̃F (yt+1),xt+1 − yt+1

〉
− γ

2 ∥xt+1 − yt+1∥2 then
20: (xt+1,vt+1)← NCE(xt+1,vt+1, s)
21: yt+1 ← xt+1 + (1− θ)vt+1

22: end if
23: end for

Algorithm 2: Negative Curvature Exploitation (NCE) (xt,vt, s)

1: if ∥vt∥ ≥ s then
2: xt+1 ← xt

3: else
4: δ = s · vt/∥vt∥
5: xt+1 ← argminx∈{xt+δ,xt−δ} f(x)
6: end if

For simplicity, we denote the error of Jordan’s gradient estimation as ν̂. To solve the problem of
monotonic decrease for function value in momentum-based nonconvex optimization problems, we
consider the Hamiltonian of the function (Jin et al., 2018b) in our proof, which is defined as

Et = F (xt) +
1

2η
∥vt∥2. (16)

The Hamiltonian composes a potential energy term and a kinetic energy term. It monotonically
decreases in the continuous-time scenario. To prove Theorem 2.2, we consider the dynamics of
Algorithm 1 in the two different cases depending on whether (12) holds. If it does not hold, the
following lemma holds by using Lemma 4 of Ref. (Zhang & Gu, 2022) and replacing the zeroth-
order queries to F (xt) and F (yt) with the noisy queries f(xt) and f(yt).

Lemma 2.3 (Adaptive version of Lemma 3, Ref. (Zhang & Gu, 2022)). We consider F (·) is ℓ-
smooth and ρ-Hessian Lipschitz. Assume one can access the zeroth-order oracle with noise ν and
the first-order oracle with noise ν̂. Set the learning rate η ≤ 1/4ℓ, θ ∈ [2ηγ, 1/2]. For each iteration
t where (12) does not hold, running Algorithm 1 will decrease the Hamiltonian defined in (16) by

Et+1 ≤ Et −
θ

2η
∥vt∥2 −

η

4
∥∇f(yt)∥2 +O(ην̂2) +O(ν). (17)

11
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On the other hand, if (12) holds, the function has an approximate large negative curvature between yt

and xt. The accelerated gradient step might not decrease the value for the Hamiltonian. We thus call
the negative curvature exploitation subroutine (Algorithm 2) to further decrease the Hamiltonian.
In particular, when choosing large enough constant cr, the following lemme holds by replacing the
zeroth-order query to F (xt) and F (yt) with the noisy query f(xt) and f(yt) and noise term O(ν),
respectively, in Lemma 4 of Ref. (Zhang & Gu, 2022).
Lemma 2.4 (Adapted version of Lemma 4, Ref. (Zhang & Gu, 2022)). Assume that F (·) is ℓ-
smooth, ρ-Hessian Lipschitz, and we are given the zeroth-order oracle with noise strength ν and the
first-order oracle with noise strength ν̂. Set the learning rate η ≤ 1/4ℓ, θ ∈ [2ηγ, 1/2]. For each
iteration t where (12) holds, running Algorithm 1 wiil decrease the Hamiltonian defined in (16) by

Et+1 ≤ Et −min

{
s2

2η
,
1

2
γs2 − ρs3 −O

(
ν̂2

γ

)}
+O(ν). (18)

We set an additional parameter T ′ = Θ(
√
κ). Based on Lemma 2.3 and Lemma 2.4, and proper

choices of ν̂ and ν, Lemma 5 of Ref. (Zhang & Gu, 2022) carries over as the below lemma when
the norm of the estimated gradient is large enough, i.e.

∥∥∇̃F (xt)
∥∥ ≥ 3ϵ/4.

Lemma 2.5 (Adaptive version of Lemma 5, Ref. (Zhang & Gu, 2022)). If
∥∥∇̃F (xt)

∥∥ ≥ 3ϵ/4 and
the noise strengths are bounded by ν, ν̂ ≤ O(ϵ1.25) for all τ ∈ [0,T ′], Algorithm 1 can decrease
the Hamiltonian by ET ′ − E0 ≤ −F using

T ′ =
√
κχc (19)

iterations in Algorithm 1, where χ = max{1, log(dℓB/ρϵδ0)}, and c is a large enough constant
given in Theorem 2.2

On the other hand, when the estimated gradient is small, we obtain the following adaptive version
of Lemma 7 of Ref. (Zhang & Gu, 2022).

Lemma 2.6 (Adaptive version of Lemma 7, Ref. (Zhang & Gu, 2022)). Suppose
∥∥∇̃F (xt)

∥∥ ≤ 3ϵ/4

and the noise strengths are bounded by ν, ν̂ ≤ O(ϵ3.25/d0.5), λmin(∇F (xt)) ≤ −
√
ρϵ. For any

0 ≤ δ0 ≤ 1, we set the parameters as Theorem 1.3. Suppose no perturbation is added in the
iterations [t−T , t]. By running Algorithm 1 for T iterations, we have

ê⊤∇2F (xt)ê ≤ −
√
ρϵ

4
, (20)

with probability at least 1− δ0.

Furthermore, the following lemma from Ref. (Zhang & Li, 2021) indicates that the function value
of F will decrease fast along the direction of ê.
Lemma 2.7 (Lemma 6, Ref. (Zhang & Li, 2021)). Suppose the function F is ℓ-smooth and ρ-
Hessian Lipschitz. For any point xt, if there exists a unit vector ê satisfying ê⊤F (xt)ê ≤ −

√
ρϵ/4,

we have

F

(
xt −

F ′
ê(xt)

4
∣∣F ′

ê(xt)
∣∣ ·√ ϵ

ρ

)
≤ F (xt)−

1

384

√
ϵ3

ρ
, (21)

where F ′
ê(xt) is the entry of the derivative along ê.

Now, we are ready to prove Theorem 2.2.

Proof. We first set ν ≤ C0

ℓ ·
ϵ10

d5 for some small enough constant C0. According to Lemma 2.1, we
bound ν̂ ≤ O(ϵ3.25/d0.5) with probability at least 1 − δ0. Assume Algorithm 1 starts at point x0

and the local minimum of F has value F ∗. Since F is B-bounded, F (x0)−F ∗ ≤ 2B. Set the total
number of iterations T to be:

T = 3max

{
2BT ′

F
, 768BT ·

√
ρ

ϵ3

}
. (22)
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Suppose for some iterations xt, we have ∇̃F (xt) ≤ 3ϵ/4 and λmin(∇2F (xt)) ≤ −
√
ρϵ. The error

probability of this assumption is given later. Under this assumption, the function value decreases

for 1
384 ·

√
ϵ3

ρ after each T ′ iterations. The number of such iterations when Lemma 2.7 can be
called is bounded by T/3 times, for otherwise the function value will decrease greater than 2B ≥
F (x0) − F ∗, which is impossible. The failure probability is composed of two parts: the failure
probability of estimating the gradients in Lemma 2.1 and the failure probability of Lemma 2.7. In
each iteration, the probability of failure is bounded by 2δ0 according to the union bound. When
we choose a large enough constant cδ , the overall probability that Algorithm 1 fails to indicate a
negative curvature is upper bounded by

T

3
· 2δ0 ≤

δ

2
. (23)

Excluding the iterations that Lemma 2.7 is applied, there are 2T/3 iterations left. We consider the
iterations xt with large gradients, ∇̃F (xt) ≥ 3ϵ/4. According to Lemma 2.5, the function value
decreases by at least F with probability at least 1 − δ0 in T ′ iterations. Thus there can be at
most T/3 steps with large gradients, for otherwise, the function value will decrease greater than
2B ≥ F (x0)− F ∗, which is impossible. The fail probability is bounded by

T

3
· δ0 ≤

δ

2
. (24)

In summary, we can deduce that with probability at least 1 − δ, there are at most T/3 iterations
within which the neighboring T iterations have small gradients but large negative curvatures, and
at most T/3 iterations with large gradients. Therefore, the rest T/3 iterations must be ϵ-SOSPs of
target function F . The number of queries is thus bounded by

T ≤ Õ
(
Bℓ

ϵ1.75
· log d

)
. (25)

2.2 ROBUSTNESS OF QUANTUM PERTURBED GRADIENT DESCENT

When the noise rate increases but is still bounded by ν ≤ Õ(ϵ6/d4), some quantum algorithms using
perturbed gradient descent (PGD) for noiseless cases are robust against such noise. We introduce
the quantum PGD algorithm, which is the one of the standard methods used for noiseless nonconvex
optimization (Zhang et al., 2021).

Algorithm 3 replaces the gradient queries in PGD (Jin et al., 2021) by Jordan’s gradient estimations
in Lemma 2.1.

Algorithm 3: Perturbed Gradient Descent with Quantum Gradient Computation
Input: x0, learning rate η, noise ratio r

1: for t = 0, 1, . . . , T do
2: Apply Lemma 2.1 to compute an estimation ∇̃F (x) of∇F (x)
3: xt+1 ← xt − η(∇̃F (x) + ξt), ξt uniformly ∼ B0(r)
4: end for

We prove that Algorithm 3 has the following performance guarantee:

Theorem 2.8 (Formal version of Theorem 1.4). Suppose we have a target function F and its noisy
evaluation f satisfying Assumption 1.1 with ν ≤ Õ(δ2ϵ6/d4). Algorithm 3 can find an ϵ-SOSP of F
satisfying Eq. (4) with probability at least 1− δ, using

Õ

(
ℓB

ϵ2
· log4 d

)
(26)
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queries to Uf defined in (7), under the following parameter choices:

η =
1

ℓ
, δ0 =

δϵ2

32ℓB
χ−4, r = ϵχ−3c−6, T =

χc

η
√
ρϵ
, F =

√
ϵ3

ρ
χ−3c−5, (27)

where c is some large enough constant and χ = max{1, log(dℓB/ρϵδ0)}.

To prove Theorem 2.8, we consider two cases where the current iteration xt is not an ϵ-SOSP of
F . In the first case, the gradient ∥∇F (xt)∥ ≥ ϵ is larger than ϵ. In the second case, the gradient
∥∇F (xt)∥ ≤ ϵ but the minimal eigenvalue of the Hessian matrix satisfies λmin(∇2F (xt)) ≤ −

√
ρϵ.

Intuitively, the proof of Theorem 2.8 is composed of the performance guarantees regarding both
cases. For Algorithm 3, it takes T = O(log d) queries to Uf to decrease the function value by
F = O(1/ log3 d) (Jin et al., 2018a).

We first set ν ≤ C0

ℓ · (
δϵ3

Bd2χ4ℓ )
2 for some small enough constant C0. Formally, we introduce the

following lemma characterizing the performance of Algorithm 3 when the gradient is large:

Lemma 2.9. Under the setting of Theorem 2.8, for any iteration t of Algorithm 3 with ∥∇F (xt)∥ ≥
ϵ, we have F (xt+1) − F (xt) ≤ −ηϵ2/4 with probability at least 1 − δ0, where δ0 is defined in
Eq. (27).

Proof. We set ω = 2d/δ0 and choose C0 small enough such that∥∥∥∇̃F (x)−∇F (x)∥∥∥ ≤ ϵ

20
(28)

with probability at least 1− δ0 according to Lemma 2.1.

Next, we choose c such that
∥∥∥∇̃F (x)−∇F (x)∥∥∥ ≤ ϵ/20. Recall that the perturbation ξt is chosen

from B0(r), the stochastic part in each iteration κt = ∇̃F (x)−∇F (x) + ξt is bounded by ∥κt∥ =
ϵ/10. According to the update rule xt+1 = xt − η(∇F (xt) + κt) of Algorithm 3, we have

F (xt+1) ≤ F (xt) + ⟨∇F (xt),xt+1 − xt⟩+
ℓ

2
∥xt+1 − xt∥2

≤ F (xt)− η
[
∥∇F (xt)∥2 − ∥∇F (xt)∥∥κt∥

]
+
η2ℓ

2

[
∥∇F (xt)∥2 + 2∥∇F (xt)∥∥κt∥+ ∥κt∥2

]
≤ F (xt)− η∥∇F (xt)∥

[
1

2
∥∇F (xt)∥ − 2∥κt∥

]
+
η

2

∥∥κ2t∥∥
≤ F (xt)−

ηϵ2

4
. (29)

In addition, we can generalize the following lemma in Ref. (Jin et al., 2018a).

Lemma 2.10 (Lemma 67, Ref. (Jin et al., 2018a)). Suppose we are given a oracle that outputs an
gradient estimation ∇̃F (xt) such that

∥∥∥∇̃F (xt)−∇F (xt)
∥∥∥ ≤ ϵ/20. Consider a iteration t of

Algorithm 3 with ∥∇F (xt)∥ ≥ ϵ. By using the PGD update rule xt+1 = xt − η(∇̃F (xt) + ξt), we
have F (xt+1)− F (xt) ≤ −ηϵ2/4 with probability at least 1− δ0, where δ0 is defined in Eq. (27).

When the gradient is small but the minimal eigenvalue of the Hessian matrix is large, i.e., the
function has a large negative curvature at the current iteration, we have the following lemma from
Ref. (Jin et al., 2018a).

Lemma 2.11 (Lemma 68, Ref. (Jin et al., 2018a)). Suppose we are given a oracle that out-
puts an gradient estimation ∇̃F (xt) such that

∥∥∥∇̃F (xt)−∇F (xt)
∥∥∥ ≤ ϵ/20 and the norm of

the perturbation in PGD is bounded by ∥ξt∥ ≤ r with r > ϵ/20. If ∥∇F (xt)∥ ≤ ϵ and
λmin(∇2F (xt)) ≤ −

√
ρϵ. By using the PGD update rule xt+1 = xt − η(∇̃F (xt) + ξt), we

have F (xt+T )− F (xt) ≤ −F with probability at least 1− δ0 when running Algorithm 3.
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Now, we are ready to prove Theorem 2.8.

Proof of Theorem 2.8. Assume our Algorithm 3 starts at point x0 and the local minimum of F has
value F ∗. Since F is B-bounded, we have F (x0)− F ∗ ≤ 2B. Set the total number of iterations T
to be:

T = 3max

{
8B

ηϵ2
,
2BT

F

}
. (30)

Assume for some iterations xt, we have ∇F (xt) ≤ ϵ and λmin(∇2F (xt)) ≤ −
√
ρϵ. The error

probability of this assumption is given later. Under this assumption, the function value decreases
for F after each T iterations. The number of such iterations when Lemma 2.11 can be called is
bounded by T/3 times, for otherwise the function value will decrease greater than 2B ≥ F (x0) −
F ∗, which is impossible. The failure probability is composed of two parts: the failure probability of
estimating the gradients in Lemma 2.1 and the failure probability of Lemma 2.11. In each iteration,
the probability of failure is bounded by 2δ0 according to the union bound. The overall probability
that Algorithm 3 fails to indicate a negative curvature is upper bounded by

T

3
· 2δ0 ≤

δ

2
(31)

for any χ.

Excluding the iterations in which Lemma 2.11 is applied, we still have 2T/3 iterations left. We now
consider the iterations xt with large gradients ∇F (xt) ≥ ϵ. According to Lemma 2.9, the function
value decreases by at least ηϵ2/4 with probability at least 1− δ0 in each iteration. Thus there can be
at most T/3 steps with large gradients, for otherwise, the function value will decrease greater than
2B ≥ F (x0)− F ∗, which is impossible. The fail probability is bounded by

T

3
· δ0 ≤

δ

2
. (32)

In summary, we can deduce that with probability at least 1 − δ, there are at most T/3 iterations
within which the neighboring T iterations have small gradients but large negative curvatures, and
at most T/3 iterations with large gradients. Therefore, the rest T/3 iterations must be ϵ-SOSPs of
target function F . The number of queries is thus bounded by

T ≤ Õ
(
Bℓ

ϵ2
· log4 d

)
. (33)

The above Theorem 2.8 indicates that our PGD method with quantum gradient computation still con-
verges and finds an ϵ-SOSP using the same number of iterations (i.e., the same number of queries),
even if there exists small noise on the quantum evaluation oracles. We remark that compared to
Algorithm 4 in Ref. (Zhang et al., 2021), Algorithm 3 employs a classical perturbation uniformly
chosen from the ball B(0, r). Therefore, Algorithm 3 requires no access to the quantum evaluation
oracle without noise.

It is natural to ask if we can improve the dependence on log d in the query complexity. We
answer this question with an affirmative answer in Appendix C under some additional assump-
tions. Consider if we have functions F and f that satisfy Assumption 1.1 with ν ≤ O(ϵ6/d4)
and we further assume that f is twice differentiable with supx ∥∇f −∇F∥ ≤ O(ℓ/d2+ζ) and
supx

∥∥∇2f −∇2F
∥∥ ≤ O(ρ/d1.5+ζ) for arbitrary ζ > 0. We propose a quantum algorithm that can

find an ϵ-SOSP for F using Õ(ℓB/ϵ2 · log2 d) queries to the quantum evaluation oracle in Eq. (7).

In addition, we can use the techniques above to prove the algorithmic upper bound for function pair
(F, f) satisfying Assumption 1.2 with ν̃ ≤ O(ϵ/d0.5+ζ) for ζ > 0 and ζ = Ω(1/ log(d)). We
provide the following corollary corresponding to the last line in Table 2.

Corollary 2.12. Suppose we have a target function F and a noisy function f satisfying Assump-
tion 1.2 with ν̃ ≤ O(ϵ/d0.5+ζ) for ζ > 0 and ζ = Ω(1/ log(d)). Consider the gradient descent
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xt+1 = η(∇f + ξt) with ξt uniformly chosen from ball B(0, r). This rule can output an ϵ-SOSP of
F satisfying Eq. (4), using

Õ

(
ℓB

ϵ2
· log4 d

)
(34)

queries to Ug in (8) with probability 1− δ, under the following parameter choices

η =
1

ℓ
, δ0 =

δϵ2

4ℓB
χ−4, r = ϵχ−3c−6, T =

χc

η
√
ρϵ
, F =

√
ϵ3

ρ
χ−3c−5, (35)

where c is some large enough constant and χ = max{1, log(dℓB/ρϵδ0)}.

Proof. Without loss of generality, we set ν̃ ≤ O(ϵ/d0.5+ζ) and ζ ≥ log 20/ log(d) such that ν̃ ≥
ϵ/20. We then choose c large enough such that

∥∥∥∇̃F (x)−∇F (x)∥∥∥ ≤ ϵ/20. As the perturbation ξt

is chosen from B0(r), the stochastic part in each iteration κt = ∇̃F (x) −∇F (x) + ξt is bounded
by ∥κt∥ = ϵ/10. Similar to the proof of Theorem 2.8, we set

T = 3max

{
8B

ηϵ2
,
2BT

F

}
. (36)

Suppose for some iterations, the function have small gradients ∇F (xt) ≤ ϵ and large negative
curvatures λmin(∇2F (xt)) ≤ −

√
ρϵ. Under this assumption, the function value decreases for F

after each T iterations according to Lemma 2.11. The number of such iterations when Lemma 2.11
can be called is bounded by T/3 times, for otherwise, the function value will decrease greater than
2B ≥ F (x0)− F ∗, which is impossible. The failure probability is bounded above by

T

3
· δ0 ≤ δ/2. (37)

Except for the iterations that Lemma 2.11 is applied, we still have 2T/3 iterations left. We now
consider the iterations xt with large gradients,∇F (xt) ≥ ϵ. According to Lemma 2.10, the function
value decreases by at least ηϵ2/4 with the probability at least 1 − δ0 in each iteration. Thus there
can be at most T/3 steps with large gradients, for otherwise, the function value will decrease greater
than 2B ≥ F (x0)− F ∗, which is impossible. The failure probability is again bounded above by

T

3
· δ0 ≤ δ/2. (38)

Therefore, we can deduce that with probability at least 1 − δ, there are at most T/3 iterations
resulting in points having small gradients but large negative curvature, and at most T/3 iterations
with large gradients. Therefore, the rest T/3 iterations must be ϵ-SOSPs. The number of the queries
is bounded by

T ≤ Õ
(
Bℓ

ϵ2
· log4 d

)
. (39)

Corollary 2.12 indicates that when the gradient g = ∇f of the noisy function is close enough to
the gradient ∇F of the target function, the PGD algorithm can converge even if the gradient g
is noisy. As we can directly query the noisy gradient, the quantum algorithms such as quantum
mean estimation (Hamoudi, 2021; Cornelissen et al., 2022) or quantum gradient estimation (Jordan,
2005; Gilyén et al., 2019) cannot provide speedup in this case. Moreover, quantum approaches to
add perturbation such as quantum simulation (Zhang et al., 2021) require zeroth-order information,
which is unavailable under Assumption 1.2. Therefore, there is no quantum speedup compared to
the classical gradient descent in the setting of Corollary 2.12.
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3 QUANTUM SPEEDUP USING MEAN ESTIMATION

When the noise strength further increases, it exceeds the robustness of quantum PGD. To handle this
issue, we apply a Gaussian smoothing to the noisy function f inspired by Ref. (Jin et al., 2018a),
which can turn a possibly nonsmooth or even non-continuous f into a function fσ with “good”
properties such as smoothness and Hessian-Lipschitzness.

3.1 ZEROTH-ORDER ALGORITHM AND PERFORMANCE GUARANTEE

In this section, we introduce a quantum algorithm based on Gaussian smoothing for function pairs
(F, f) satisfying Assumption 1.1 with ν ≤ O(ϵ1.5/d). We formally define the Gaussian smoothing
for a function f as follows.

Definition 3.1. Given a function f : Rd → R, we define its Gaussian smoothing fσ : Rd → R as

fσ := Ez∼N (0,σ2I)[f(x+ z)], (40)

where the parameter σ is the smoothing radius.

Given a noisy function f and a target function F satisfying Assumption 1.1, Gaussian smoothing
transfers the (probably even non-smooth or not differentiable) noisy f into a smooth function fσ
that has close gradient and Hessian with F . Formally, fσ has the following properties according to
Ref. (Jin et al., 2018a):

Lemma 3.2 (Lemma 13, Ref. (Jin et al., 2018a)). Assume the function pair (F, f) satisfies Assump-
tion 1.1, the Gaussian smoothing fσ of f satisfies the following properties.

• fσ(x) is O(ℓ+ ν/σ2)-smooth and O(ρ+ ν/σ3)-Hessian Lipshitz.

• The distance between the gradient and the Hessian of fσ and F at any x is bounded by
∥∇fσ(x)−∇F (x)∥ ≤ O(ρdσ2+ν/σ) and

∥∥∇2fσ(x)−∇2F (x)
∥∥ ≤ O(ρ

√
dσ+ν/σ2).

The first part of Lemma 3.2 demonstrates that the Gaussian smoothing fσ is a smooth and Hessian
Lipschitz function. Thus we can perform standard gradient descent on fσ with a polynomial con-
vergence rate. The second part of Lemma 3.2 indicates that the gradients and Hessians of fσ are
similar to those of the target function F up to a term related to the noise rate ν and the smoothing
radius σ. As the noise rate ν increases and the noisy function f deviates further from the target
function F , we have to choose a larger parameter σ to bound the terms ν/σ, ν/σ2, and ν/σ3. How-
ever, choosing a larger smoothing radius σ will increase the term ρdσ2 and ρ

√
dσ, which erases the

information about local geometry of F . Hence, the choice of σ must balance between the two terms
in the bounds in Lemma 3.2.

Suppose we have an ϵ̃-SOSP xSOSP of the Gaussian smoothing fσ . One have to guarantee that an
ϵ̃-SOSP of the Gaussian smoothing fσ is also an ϵ-SOSP of F . We now search for the value of σ and
ϵ̃ such that ν is maximized. According to Lemma 3.2, we can bound the gradient and the minimal
eigenvalue of Hessian for F (xSOSP) by the following inequalities.

∥∇F (xSOSP)∥ ≤ ρdσ2 +
ν

σ
+ ϵ̃, (41)

whereas

λmin(∇2F (xSOSP)) ≥ λmin(∇2fσ(xSOSP)) + λmin(∇2F (xSOSP)−∇2fσ(xSOSP))

≥ −
√(

ρ+
ν

σ3

)
ϵ̃−

∥∥∇2fσ(xSOSP)−∇2F (xSOSP)
∥∥

≥ −
√(

ρ+
ν

σ3

)
ϵ̃−

(
ρ
√
dσ +

ν

σ2

)
. (42)
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Hence, to guarantee that an ϵ̃-SOSP of fσ is an ϵ-SOSP of F , we only need the following set of
inequalities to be satisfied(up to constant factors).

ρ
√
dσ +

ν

σ2
≤ O(

√
ρϵ), (43)

ρdσ2 +
ν

σ
≤ O(ϵ), (44)(

ρ+
ν

σ3

)
ϵ̃ ≤ O(ρϵ). (45)

From (43) and (44), we have

σ ≤ O
(√

ϵ

ρd

)
, (46)

ν ≤ √ρϵσ2 = O

(√
ϵ3

ρ
· 1
d

)
, (47)

ϵ̃ ≤ ρϵ(
ρ+ ν

σ3

) = O

(
ϵ√
d

)
. (48)

The above results indicate that we can guarantee that an O(ϵ/
√
d)-SOSP for fσ is an ϵ-SOSP of the

target function F .

The next step is to find an O(ϵ/
√
d)-SOSP of fσ using queries to the noisy oracle in (7). Through

Gaussian smoothing, we convert the function evaluations of f into stochastic gradients of fσ . Ac-
cording to Ref. (Duchi et al., 2015) the gradients of fσ can be calculated as

∇fσ =
1

σ2
Ez∼N (0,σ2I)[z(f(x+ z)− (x))]. (49)

One can thus compute the gradient for fσ by querying the function value of f . However, the gra-
dient is unbiasedly computed through averaging over the continuous Gaussian distribution. To ap-
proximate the gradient, we employ the zeroth-order quantum oracle in (7) to sample the stochastic
gradient estimation z[f(x+ z)− f(x)]/σ2, where z ∼ N (0, σ2I). The stochastic gradient has the
following properties.
Lemma 3.3 (Lemma 14, Ref. (Jin et al., 2018a)). We denote g(x; z) = z[f(x + z) − f(x)]/σ2,
where z ∼ N (0, σ2I). The following inequalities hold:

Ezg(x; z) = ∇fσ(x), (50)

Pr [∥g(x; z)−∇fσ(x)∥ ≥ t] ≤ exp
(
−Bt2/σ

)
, ∀t > 0. (51)

The second inequality demonstrates that g(x; z) is a sub-Gaussian random variable with a tailB/σ.

Lemma 3.3 guarantees that by sampling a large mini-batch and evaluating the mean of the stochastic
gradients, the value converges to the gradient∇fσ(x) of the Gaussian smoothing fσ(x). Classically,
the batch size required for the sampling can be obtained by the Chernoff bound (say, e.g. Ref. (Lu-
gosi & Mendelson, 2019)).
Lemma 3.4. Given a fixed point x and the mini-batch size m, for any δ > 0, we have:∥∥∥∥∥∇f(x)− 1

m

m∑
i=1

g(x; z(i))

∥∥∥∥∥ ≤
√

2σ2
0d

m
log

(
d

δ

)
(52)

with probability at least 1− δ, where σ0 = B/σ is the standard deviation of the stochastic gradient.

Lemma 3.4 indicates that it is sufficient to choose a mini-batch of size

m ≥ 2σ2
0d

ϵ2
log

(
d

δ

)
, (53)

where σ0 = B/σ, to estimate the gradient ∇fσ(x) within ϵ under Euclidean norm with probability
at least 1 − δ. In addition, this bound is optimal in any classical algorithms (Hopkins, 2020), or
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equivalently, any classical multivariate mean estimator with batch size less than this quantity will
fail on a certain stochastic gradient function g(x; z).

Quantumly, the well-known amplitude estimation algorithm (Brassard et al., 2002) provides a
smaller error rate when estimating the mean of Bernoulli random variables. For the multivariate
mean estimation problem of a random vector, quantum algorithms can also provide a speedup under
certain circumstances. In particular, we consider the mean estimation task of estimating g(x; z) in
Lemma 3.3 given a binary oracle defined as follows.
Definition 3.5. Consider the random variable g(x; z) ∈ Rd with z ∼ N (0, σ2I). Let Hz and
Hg,x be two Hilbert spaces with basis states {|z⟩}z and {g(x; z)}z, which contains quantum state
encoding vectors z and g(x; z), respectively. The binary oracle Bz : Hz ⊗ Hg,x → Hz ⊗ Hg,x is
defined as

Bz : |z⟩ |0⟩ → |z⟩ |g(x; z)⟩ , ∀z ∼ N (0, σ2I), (54)

where we assume 0 ∈ {g(x; z)}z.

In practice, the above binary oracle can be constructed by employing two quantum evaluation oracles
in (7). Using such binary oracle, Ref. (Cornelissen et al., 2022) provides the following performance
guarantee.
Lemma 3.6 (Theorem 3.5, Ref. (Cornelissen et al., 2022)). Suppose g is a d-dimensional random
vector with mean µ and covariance matrix Σ such that Tr(Σ) = σ2

0 . Given two real values δ ∈ (0, 1)
and m ≥ log(d/δ), there exists a quantum algorithm that outputs a mean estimation µ̃ such that

∥µ̃− µ∥ ≤


O

(√
σ2
0

m

)
, n ≤ d,

O

(√
dσ2

0 log( d
δ )

m

)
, n > d,

(55)

with probability at least 1− δ. Such an algorithm requires Õ(m) queries to the binary oracle.

Lemma 3.6 indicates that it only requires

m ≥ O

(√
dσ0
ϵ

log

(
d

δ

))
(56)

samples to estimate the gradient ∇fσ(x) within error ϵ with high probability. Compared with the
classical mini-batch size in Lemma 3.4, quantum mean estimation provides a quadratic reduction
when the classical mini-batch size is Ω(d). It is worthwhile to mention that the error scaling in
Lemma 3.6 is near-optimal up to logarithmic factors (Cornelissen et al., 2022).

We consider using the PGD with stochastic gradient estimation to find an ϵ-SOSP of the target
function F (also an O(ϵ/

√
d)-SOSP of fσ) using noisy function f in (7). The detailed algorithm is

given in Algorithm 4.

Algorithm 4: Perturbed Stochastic Gradient Descent with Quantum Mean Estimation
Input: x0, learning rate η, noise ratio r, mini-batch size m

1: for t = 0, 1, ..., T do
2: Estimate the gradient ∇̃fσ(xt) of fσ(xt) using quantum mean estimation and m binary

queries to (54)
3: xt+1 ← xt − η(∇̃fσ(xt) + ξt), ξt uniformly ∼ B0(r)
4: end for

We now prove the performance guarantee for Algorithm 4, which is the formal version of Theo-
rem 1.5.
Theorem 3.7 (Formal version of Theorem 1.5). Suppose we have a target function F and its noisy
evaluation f satisfying Assumption 1.1 with ν ≤ O(

√
ϵ3/ρ · (1/d)). With probability at least 1− δ,

Algorithm 4 finds an ϵ-SOSP of F satisfying (4), using

Õ

(
d2.5

ϵ3.5
· poly(∆f , ℓ, ρ)

)
(57)
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queries to Uf in (7), under the following parameter choices:

η =
1

ℓ′
, δ0 =

δϵ′2

16ℓ′∆f
χ−4, r = ϵ′χ−3c−6, T =

χc

η
√
ρ′ϵ′

, F =

√
ϵ′3

ρ′
χ−3c−5, (58)

where c is some large enough constant, ∆f = fσ(x0) − fσ(x
∗) is the value between the initial

point x0 and the global minima point x∗, χ = max{1, log(dℓ′∆f/ρ
′ϵ′δ0)}, ℓ′ = O(ℓ+

√
ϵ/ρ), and

ρ′ = O(ρ) are the smoothness and Hessian-Lipschitz parameters for fσ , and ϵ′ = O(ϵ/
√
d) such

that an ϵ′-SOSP of fσ is an ϵ-SOSP of F .

Proof. Notice that an ϵ-SOSP of target function F is an O(ϵ/
√
d)-SOSP of function fσ , we only

need to prove that Algorithm 4 converges to a O(ϵ/
√
d)-SOSP of fσ using Õ(ℓBd2.5/ϵ3.5) queries.

In each iteration, Algorithm 4 estimates the gradient∇fσ(xt) using quantum mean estimation with
O(m) queries to the quantum evaluation oracle. According to Lemma 3.3, the stochastic gradient
g(xt; z

(i)) for z ∼ N (0, σ2I) is a random vector with mean ∇fσ(xt) and variance σ2
0 = B2/σ2.

As we choose σ =
√
ϵ/ρd, we require

m ≥ O

(√
d(B/σ)

ϵ/
√
d

log

(
d

δ0

))
(59)

= Õ(B
√
ρ ·
√
d3

ϵ3
) (60)

queries to bound the error
∥∥∥∇̃fσ(xt)−∇fσ(xt)

∥∥∥ ≤ ϵ′/20 ≤ O(ϵ/
√
d · (1/20)) with probability at

least 1− δ0 according to Lemma 3.6.

Next, Algorithm 4 employs the estimations of the gradient and the PGD to find an ϵ′-SOSP of fσ .
Recall that we choose σ = O(

√
ϵ/ρd) and ν = O(

√
ϵ3/ρ · (1/d)), fσ is thus ℓ′-smooth and

ρ′-Hessian Lipschitz, where

ℓ′ = O
(
ℓ+

ν

σ2

)
= O

(
ℓ+

√
ϵ

ρ

)
, (61)

ρ′ = O
(
ρ+

ν

σ3

)
= O(ρ). (62)

We consider the number of queries required to find an ϵ′-SOSP of fσ . We set the total iteration
number to be:

T = 3max

{
4∆f

ηϵ′2
,
∆fT

F

}
. (63)

Similar to the proof in the previous section, we consider the two cases when a xt is not local minima.
Suppose for some iterations xt, we have ∇fσ(xt) ≤ ϵ′ and λmin(∇2f(xt)) ≤ −

√
ρ′ϵ′. The error

probability of this assumption is given later. Under this assumption, the function value decreases
for F after each T iterations according to Lemma 2.11. Therefore, the number of such iterations
when Lemma 2.11 can be called is bounded by T/3 times, for otherwise the function value will
decrease greater than ∆f = fσ(x0) − fσ(x

∗), which is impossible. The failure probability is
composed of two parts: the failure probability for estimating the gradient in Lemma 2.1 and the
failure probability for Lemma 2.11. In each iteration, the probability of failure is bounded by 2δ0
according to the union bound. The overall probability that Algorithm 3 fails to indicate a negative
curvature is upper bounded by

T

3
· 2δ0 ≤

δ

2
(64)

for any χ.

Excluding the iterations that Lemma 2.11 is applied, we still have 2T/3 iterations left. We now con-
sider the iterations xt with large gradients ∇fσ(xt) ≥ ϵ′. According to Lemma 2.10, the function
value decreases by at least ηϵ′2/4 with a probability of at least 1 − δ0 in each iteration. Thus there
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can be at most T/3 steps with large gradients, for otherwise, the function value will decrease greater
than ∆f , which is impossible. The failure probability is bounded again by

T

3
· δ0 ≤

δ

2
. (65)

In summary, with probability at least 1− δ, there are at most T/3 iterations within which the neigh-
boring T iterations have small gradients but large negative curvatures, and at most T/3 iterations
with large gradients. Therefore, the rest T/3 iterations must be ϵ-SOSPs. The number of the queries
is thus bounded by

T ≤ Õ
(
∆f ℓ

′

ϵ′2
· χ4 ·m

)
= Õ

(
d2.5

ϵ3.5
· poly(∆f , ℓ, ρ)

)
. (66)

Theorem 3.7 provides a quantum upper bound O(d2.5/ϵ3.5) in finding ϵ-SOSPs of F using noisy
oracle f at ν ≤ O(

√
ϵ3/ρ · 1/d) while the classical upper bound requires O(d4/ϵ5) queries (Jin

et al., 2018a). The essence of the speedup lies in the quadratic reduction provided by the quantum
mean estimation in the mini-batch size m.

3.2 FIRST-ORDER ALGORITHM AND PERFORMANCE GUARANTEE

Consider a pair of functions (F, f) satisfying Assumption 1.2 with a relatively large noise strength
such that Corollary 2.12 fails to apply. Recall that in the previous subsection we have implemented
a Gaussian smoothing for the noisy zeroth-oracle defined in Definition 3.1. Now, we introduce the
Gaussian smoothing of the noisy gradient, which is defined as:

∇fσ(x) := Ez

[
∇f(x+ z)

]
, z ∼ N (0, σ2I). (67)

After permutating the expectation operator and the gradient operator, we obtain

∇fσ(x) = ∇ ·
(
Ez[f(x+ z)]

)
, (68)

which indicates that fσ(x) is a Gaussian smoothing of f . Similar to Lemma 3.2, we deduce the
following property of∇fσ(x), which originally appeared in Ref. (Jin et al., 2018a).
Lemma 3.8 (Lemma 48, Ref. (Jin et al., 2018a)). Assume the function pair (F, f) satisfies Assump-
tion 1.2. The Gaussian smoothing∇fσ of the noisy gradient g = ∇f satisfies:

• fσ(x) is O(ℓ+ ν̃/σ)-smooth and O(ρ+ ν̃/σ2)-Hessian Lipschitz.

• The distances between the gradients and the Hessians of fσ and F are bounded. In par-
ticular, we have ∥∇fσ(x)−∇F (x)∥ ≤ O(ρdσ2 + ν̃) and

∥∥∇2fσ(x)−∇2F (x)
∥∥ ≤

O(ρ
√
dσ + ν̃/σ), respectively.

We can bound the deviation of ∇fσ from ∇F and maintain the information about the local ge-
ometry of F , as well as guaranteeing that any ϵ̃-SOSP xSOSP of fσ is also an ϵ-SOSP of F , by
choosing a suitable Gaussian smoothing parameter σ. We optimize F through the Gaussian smooth
fσ . According to Lemma 3.8, the gradients and the eigenvalues of Hessians of F are bounded by:

∥∇F (xSOSP)∥ ≤ ρdσ2 + ν̃ + ϵ̃, (69)

whereas

λmin(∇2F (xSOSP)) ≥ λmin(∇2fσ(xSOSP)) + λmin(∇2F (xSOSP)−∇2fσ(xSOSP))

≥ −

√(
ρ+

ν̃

σ2

)
ϵ̃−

∥∥∇2fσ(xSOSP)−∇2F (xSOSP)
∥∥

≥ −

√(
ρ+

ν̃

σ2

)
ϵ̃−

(
ρ
√
dσ +

ν̃

σ

)
. (70)
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To guarantee that any ϵ̃-SOSP of fσ is an ϵ-SOSP of F , we only need the following set of inequalities
to be satisfied (up to constant factors).

ρ
√
dσ +

ν̃

σ
≤ O(

√
ρϵ), (71)

ρdσ2 + ν̃ ≤ O(ϵ), (72)(
ρ+

ν̃

σ2

)
ϵ̃ ≤ O(ρϵ). (73)

From (71) and (72), we can deduce that

σ ≤ O
(√

ϵ

ρd

)
, (74)

ν̃ ≤ √ρϵσ = O

(
ϵ√
d

)
, (75)

ϵ̃ ≤ ρϵ(
ρ+ ν̃

σ2

) = O

(
ϵ√
d

)
. (76)

Hence, an O(ϵ/
√
d)-SOSP of the Gaussian smoothing fσ is an ϵ-SOSP of the target function F .

Similar to Assumption 1.1, we now have to find an O(ϵ/
√
d)-SOSP for the Gaussian smoothing fσ

through queries to first-order noisy oracle ∇f(x). To approximate the gradient ∇fσ , we sample
from the stochastic gradient estimation gσ(x; z) = ∇f(x + z), where z ∼ N (0, σ2I). As shown
in Ref. (Jin et al., 2018a), the stochastic gradient has the following properties, which is similar to
Lemma 3.3.
Lemma 3.9 (Lemma 53, Ref. (Jin et al., 2018a)). We denote gσ(x; z) = ∇f(x + z) for a sample
from the noisy oracle, where z ∼ N (0, σ2I). The following inequalities hold:

Ez[gσ(x; z)] = ∇fσ(x), (77)

Pr [∥gσ(x; z)−∇fσ(x)∥ ≥ t] ≤ exp
(
−Lt2

)
, ∀t > 0. (78)

The second inequality indicates that gσ(x; z) is a sub-Gaussian random variable with a tail L
(Recall that L is the smoothness parameter of f in Assumption 1.2).

By a similar reduction to Lemma 3.4, we can deduce that the optimal sampling strategy requires

m ≥ O
(
σ2
0d

ϵ2
log

(
d

δ

))
(79)

queries to approximate ∇fσ(x) with accuracy ϵ, where σ0 = L according to Lemma 3.9. Quan-
tumly, we can employ Lemma 3.6 and use only

m ≥ O

(√
dσ0
ϵ

log

(
d

δ

))
(80)

queries if given access to a quantum binary oracle defined in Eq. (54), which can be constructed
by one query to the first-order oracle defined in Eq. (8). We propose a first-order version of PGD
with stochastic gradient queries to the smoothed function fσ and quantum mean estimation in Algo-
rithm 5.

Algorithm 5: First-order Perturbed Stochastic Gradient Descent with Quantum Mean Estima-
tion.
Input: x0, learning rate η, noise ratio r, mini-batch size m

1: for t = 0, 1, ..., T do
2: Estimating the gradient ∇̃fσ(xt) of fσ(xt) using quantum mean estimation and m queries

to gσ(x; z) = ∇f(x+ z) in the binary oracle
3: xt+1 ← xt − η(∇̃fσ(xt) + ξt), ξt uniformly ∼ B0(r)
4: end for

Output: xT
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The goal of Algorithm 5 is to find an O(ϵ/
√
d)-SOSP of the Gaussian smoothing fσ . The num-

ber of queries required can be bounded by the following theorem, which is the formal version of
Theorem 1.6.
Theorem 3.10 (Formal version of Theorem 1.6). Suppose we have a target function F and its
noisy evaluation f satisfying Assumption 1.2 with ν̃ ≤ O(ϵ/

√
d). With probability at least 1 − δ,

Algorithm 5 finds an ϵ-SOSP of F satisfying (4), using

Õ

(
d2

ϵ3
· poly(∆f , ℓ, ρ)

)
(81)

queries to Ug defined in Eq. (8), under the following choices of parameters:

η =
1

ℓ′
, δ0 =

δϵ′2

4ℓ′∆f
χ−4, r = ϵ′χ−3c−6, T =

χc

η
√
ρ′ϵ′

, F =

√
ϵ′3

ρ′
χ−3c−5, (82)

where c is some large enough constant, ∆f = fσ(x0)− fσ(x∗) is the gap between the initial point
x0 and the global minimum x∗, and χ = max{1, log(dℓ′∆f/ρ

′ϵ′δ0)}. Here, ℓ′, ρ′, and ϵ′ have the
same definition as in Theorem 3.7.

Similar to Theorem 3.7, Theorem 3.10 presents a polynomial reduction in the query complexity of
oracles using quantum mean estimation. In particular, Algorithm 5 requires only Õ(d2/ϵ3) queries
to the first-order gradient oracles while its classical counterpart (Jin et al., 2018a) requires Õ(d3/ϵ4).

Proof of Theorem 3.10. Since an ϵ-SOSP of the target function F is an O(ϵ/
√
d)-SOSP of function

fσ , we only need to prove that Algorithm 5 converges to an O(ϵ/
√
d)-SOSP of fσ using Õ(d2/ϵ3)

queries.

In each iteration, Algorithm 5 estimates the gradient ∇fσ(xt) via quantum mean estimation while
using O(m) queries to the quantum evaluation oracle in each mini-batch. According to Eq. (80), we
require the mini-batch size

m ≥ O

(√
dL

ϵ/
√
d
log

(
d

δ0

))
= Õ

(
d

ϵ

)
(83)

to bound the error
∥∥∥∇̃fσ(xt)−∇fσ(xt)

∥∥∥ ≤ ϵ′/20 ≤ O(ϵ/
√
d · (1/20)) with probability at least

1− δ0.

Next, we consider the number of queries required to find an ϵ′-SOSP of fσ . We set the total iteration
number to be

T = 3max

{
4∆f

ηϵ′2
,
∆fT

F

}
. (84)

We repeat the procedure in the proof of Theorem 3.7. Suppose for some iterations, the function
has small gradients ∇fσ(xt) ≤ ϵ′ and large negative curvatures λmin(∇2fσ(xt)) ≤ −

√
ρ′ϵ′. Un-

der this assumption, the function value will decrease for F after each T iterations according to
Lemma 2.11. Therefore, the number of such iterations is bounded by T/3, for otherwise the func-
tion value will decrease greater than ∆f = fσ(x0) − fσ(x

∗), which is impossible. The failure
probability of the above argument is bounded by

T

3
· δ0 ≤ δ/2. (85)

Except for the iterations where Lemma 2.11 is applied, we still have 2T/3 iterations left. We now
consider the iterations xt with large gradients, i.e., ∇fσ(xt) ≥ ϵ′. According to Lemma 2.10, the
function value decreases by at least ηϵ2/4 with a probability of at least 1− δ0. Therefore, there can
be at most T/3 steps with large gradients, for otherwise, the function value will decrease greater
than ∆f , which is impossible. The failure probability of the above argument is again bounded by

T

3
· δ0 ≤ δ/2. (86)
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(a) (b)

Figure 1: (a) The Sketch of the hard instance function for Theorem 1.7. The left figure illustrates
the construction in the domain and the right figure shows a two-dimensional example. (b) The
construction of the hard instance function for Theorem 1.10.

Therefore, we can deduce that with probability at least 1− δ, there are at most T/3 iterations within
which the neighboring T iterations have small gradients but large negative curvatures, and at most
T/3 iterations with large gradients. Hence, the rest T/3 iterations must be ϵ-SOSPs. The number of
queries can be bounded by

T ≤ Õ
(
∆f ℓ

ϵ′2
· χ4 ·m

)
= Õ

(
d2

ϵ3
· poly(∆f , ℓ, ρ)

)
. (87)

4 CLASSICAL AND QUANTUM LOWER BOUNDS IN d

In this section, we prove the query complexity lower bounds in the dimension d of the input. Intu-
itively, the lower bound is obtained by constructing a hard instance and calculating its worst-case
query complexity.

4.1 QUASI-POLYNOMIAL LOWER BOUND FOR QUANTUM ZEROTH-ORDER METHODS

The constructions of our hard instances (as shown in Figure 1 (a)) are inspired by the idea that
originally appeared in Ref. (Jin et al., 2018a). We first consider a “scale free” version of function
pair (F, f), where we assume ρ = 1 and ϵ = 1. Denote sinx := (sin(x1), ..., sin(xd)) and I(A) as
the indicator function that has value 1 when A is true and 0 otherwise. We set the constant µ = 300
and define the target function as

F (x) := h(sinx) + ∥sinx∥2, (88)

where h(x) := h1(v
⊤x) · h2

(√
∥x∥2 − (v⊤x)2

)
, and

h1(x) = g1(µx), g1(x) = (−16|x|5 + 48x4 − 48|x|3 + 16x2) · I{|x| < 1}, (89)

h2(x) = g2(µx), g2(x) = (3x4 + 8|x|3 + 6x2 − 1) · I{|x| < 1}. (90)

Here, the vector v is uniformly chosen from the d-dimensional unit sphere. In addition, we can split
the domain into different regions upon which analysis and constructions are made separately:

• “ball” B(0, 3/µ) = {x ∈ Rd : ∥x∥ ≤ 3/µ} is the d-dimensional hyperball with radius
3/µ.

• “band” Sv = {x ∈ B(0, 3/µ) : ⟨sinx,v⟩ ≤ log d/
√
d}.

We provide the landscape of F and the region division in Figure 1 (a). The above construction
happens within a hyperball and we cannot fill the entire space Rd with hyperballs. Therefore, we
embed this hyperball into a hypercube and add two regions.
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• “hypercube” H = [−π/2, π/2]d is the d-dimensional hypercube with length π.
• “padding” S2 = H − B(0, 3/µ).

With the above construction, we can fill the space Rd using these hypercubes. Meanwhile, the noisy
function f is defined as

f(x) =

{
∥ sinx∥2, x ∈ Sv,

F (x), x /∈ Sv.
(91)

The “band” region Sv is known as the non-informative region as any query to f in this area will
obtain no information regarding v. Intuitively, the metric of the non-informative area approaches 1
as d increases according to the measure of concentration. It is hard for any algorithm (both classical
and quantum) to find a point out of this region. In particular, the probability of classically querying
a point on Sv is bounded below by

Area(Sv)

Area(B(0, 3/µ))
≥ 1−O(d− log d) (92)

according to Lemma A.4 in Appendix A.The following properties hold for function pair according
to Ref. (Jin et al., 2018a).
Lemma 4.1 (Lemma 33, Ref. (Jin et al., 2018a)). The function pair (F, f) defined in (88) and (91)
above satisfies:

• The value of f in the non-informative region Sv is independent of v.

• supx∈Sv
∥f − F∥∞ ≤ Õ(1/d).

• F has no ϵ-SOSP in the non-informative region Sv.

• F is O(d)-bounded, O(1)-Hessian Lipschitz, and O(1)-gradient Lipschitz.

The hard instance in the above Lemma 4.1 has realized the Õ(1/d) factor for the noise bound in
Theorem 1.7 and introduced the non-informative area. The next step is to scale the hard instance to
reach the lower bound with correct dependencies on ρ and ϵ. Given ϵ > 0 and ρ > 0, we define the
scaling functions

F̃ (x) := ϵrF
(x
r

)
, (93)

f̃(x) := ϵrf
(x
r

)
, (94)

where r =
√
ϵ/ρ, and the functions F, f are defined in (88) and (91), respectively. The scaled

regions corresponding to F̃ and f̃ are:

• “ball” B(0, 3r/µ) = {x ∈ Rd : ∥x∥ ≤ 3/µ} is the d-dimensional hyperball with radius
3r/µ.

• “band” S̃v = {x ∈ B(0, 3r/µ) : ⟨sin(x/r),v⟩ ≤ log d/
√
d}.

According to Lemma 4.1, the function pair (F̃ , f̃) satisfies Assumption 1.1 with ν = Θ̃(
√
ϵ3/ρ ·

1/d), upon which we prove our quantum lower bound for finding an ϵ-SOSP of the target function F̃
in (93) taking queries to the noisy function f̃ in (94). Formally, we provide the following theorem.
Theorem 4.2 (Formal version of Theorem 1.7). For any B > 0, ℓ > 0, ρ > 0, there exists an
ϵ0 = Θ(min{ℓ2/ρ, (B2ρ/d2)1/3}) such that for any ϵ ∈ (0, ϵ0], the function pair (F̃ , f̃) defined in
(93) and (94) satisfies Assumption 1.1 with ν = Θ̃(

√
ϵ3/ρ · 1/d), and any quantum algorithm that

only queries a quasi-polynomial O(dlog(d)) times to the zeroth-order quantum oracle Uf̃ will fail
with high probability to find an ϵ-SOSP of F̃ .

To prove Theorem 4.2, we introduce some lemmas to construct a reduction of the problem. In partic-
ular, our goal is to transform the quantum lower bound on the unstructured search problem (Bennett
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et al., 1997; Nayak & Wu, 1999) into a lower bound for the problem of finding an ϵ-SOSP of F̃
considered in Theorem 4.2. We discretize the problem via the following results on distributing ex-
ponentially many points on Sd−1 in a uniform way such that the distances between each pair of
points are at least δ.

Lemma 4.3 (Lemma D.1, Ref. (Liu et al., 2023)). For any constant δ ∈
(
0, log d

2
√
d

)
, there exists a set

Γ = {y1,y2, . . . ,yN} of N unit vectors in Rd such that

• ∀yi ̸= yj ∈ Γ, ∥yi − yj∥ ≥ δ;

• ∀z ∈ Sd−1, there exists an yi ∈ Γ such that ∥z− yi∥ ≤ δ;

• N ≥
(

1
2δ + 1

2

)d − ( 1
2δ −

1
2

)d
.

Inspired by Ref. (Liu et al., 2023), we consider the following unstructured search problem which
can be reduced to finding an ϵ-SOSP of F̃ with polynomial overhead.
Problem 1. Consider a set Γ of N unit vectors in Rd satisfying Lemma 4.3, for an unknown unit
vector v ∈ Γ, we define q : Γ→ Rd as follows:

q(x) :=

{
v, ⟨sinx,v⟩ > log d

2
√
d
,

0, otherwise.
(95)

The goal is to find v only with access to values of q.

We now present the reduction from Problem 1 to the problem of finding an ϵ-SOSP of F̃ under the
setting of Theorem 4.2. To make the reduction more straightforward, we additionally introduce an
intermediate function q̂(x) : B(0, 3/µ)→ R between q and f . In particular, for any x ∈ B(0, 3/µ),
we use ŷ(x) to denote the vector yi in Γ such that the distance ∥x/∥x∥−yi∥ is minimized. If more
than one of such vectors exists, we choose the one with the smallest lower index. We define q̂(x) as

q̂(x) :=

{
∥ sinx∥2, q(ŷ(x)) = 0,

F (x), otherwise.
(96)

Similar to f , q̂ also has a large “non-informative” region Ŝv where the function value equals ∥sinx∥2

and reveals no information about v. Quantitatively, we can observe that Ŝv = {y ∈ B(0, 3/µ) :
g(ŷ(x)) = 0}, and q̂ has the following properties.
Lemma 4.4. The function q̂(x) defined in (96) has the following properties:

• One query to q̂ can be implemented using one query to q.

• Its non-informative region Ŝv = {y ∈ B(0, 3/µ) : q(ŷ(x)) = 0} is a subset of Sv, which
is the non-informative region of f defined in (91).

• For any x ∈ B(0, 3/µ)− Sv, we have q̂(x) = f(x).

Proof. For the first property, one can observe that for any x ∈ B(0, 3/µ), q̂(x) can be expressed as

q̂(x) = ∥sinx∥2 + h(sinx) (97)

= ∥sinx∥2 + h1(⟨q(ŷ(x)),x⟩) · h2
(√
∥x∥2 − ⟨q(ŷ(x)),x⟩2

)
, (98)

which can be implemented using one query to q(x).

For the second property, ∀x ∈ Ŝv, the corresponding ŷ(x) satisfies ⟨ŷ(x),v⟩ ≤ log d

2
√
d

. Since

∥x/∥x∥ − ŷ(x)∥ ≤ δ = log d

2
√
d

by Lemma 4.3, we deduce that ⟨x,v⟩ ≤ ⟨x/∥x∥,v⟩ ≤ log d/
√
d,

indicating x ∈ Sv.

The third property can be directly obtained from the second property.

Next, we present the reduction from Problem 1 to the problem of finding an ϵ-SOSP of F under the
setting of Theorem 4.2 through the following lemma.
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Lemma 4.5. Under the setting of Theorem 4.2, with polynomial overhead Problem 1 can be reduced
to the problem of finding an ϵ-SOSP of F defined in (88) for any ϵ ∈ (0, ϵ0], using access to values
of f defined in (91).

Proof. Since one query to q̂ can be implemented using one query to q by Lemma 4.4, Problem 1 can
be reduced to the problem of finding an x ∈ B(0, 3/µ) satisfying q̂(x) ̸= ∥sinx∥2, or equivalently,
x ∈ B(0, 3/µ)− Ŝv, with only access to values of q̂.

By Lemma 4.4, any ϵ-SOSP of F , denoted xF
SOSP, satisfies

xF
SOSP ∈ B(0, 3/µ)− Sv ⊆ B(0, 3/µ)− Ŝv. (99)

Therefore, we have reduced Problem 1 to the nonconvex optimization task.

We can scale the “scale-free” hard instance (F, f) to the hard instance (F̃ , f̃) satisfying Assump-
tion 1.1 using (93) and (94). In particular, we introduce the following lemma, which originally
appeared in Ref. (Jin et al., 2018a).

Lemma 4.6 (Appendix C.2, Ref. (Jin et al., 2018a)). For any B > 0, ℓ > 0, ρ > 0, there exists an
ϵ0 = Θ(min{ℓ2/ρ, (B2ρ/d2)1/3}) such that for any ϵ ∈ (0, ϵ0], there exists a function pair (F̃ , f̃)
satisfying the assumptions in Assumption 1.1 with ν = Θ̃(

√
ϵ3/ρ · (1/d)), so that with constant

overhead the problem of finding an ϵ-SOSP of F defined in (88) using only access to values of f
defined in (91) can be reduced to the problem of finding an ϵ-SOSP of F̃ using only access to values
of f̃ .

Equipped with Lemma 4.6,, we prove Theorem 4.2

Proof. According to Lemma 4.5 and Lemma 4.6, there exists a function pair (F̃ , f̃) satisfying As-
sumption 1.1 with ν = Θ̃(

√
ϵ3/ρ · (1/d)), such that with polynomial overhead Problem 1 can be

reduced to the problem of finding an ϵ-SOSP of F̃ using only access to values of f̃ .

We divide the N unit vectors in Γ into two parts.

Γ1 = {x ∈ Γ: q(x) = v} (100)
Γ0 = {x ∈ Γ: q(x) = 0}. (101)

We denote the size of the two parts as N1 = |Γ1| and N0 = |Γ2|. Our goal is to find any x in the set
Γ1. Intuitively, under limitation δ → 0 and δ < log d

2
√
d

, we can deduce that

N1

N
∼ 2Area(B(0, 3/µ)− Sv)

Area(B(0, 3/µ))
= O(d− log d). (102)

We bound the deviation of N1/N from 2Area(B(0, 3/µ)− Sv)/Area(B(0, 3/µ)) when δ ̸= 0. For
Sv, we consider S′

v the area that is the ”band” area along v within log d/2
√
d−δ from 0. The border

area of Sv out of S′
v contains ignorable O(exp(−d)) directions compared to Sv when δ ≪ 1/

√
d.

Even if we consider the boundary above, we can still derive the upper bound for N1/N

N1

N
≤ 2Area(B(0, 3/µ)− S′

v)

Area(B(0, 3/µ))
= O(d− log d). (103)

The inequality comes from the fact that δ ≪ poly(1/d) and the boundary area can only bring
exponential deviation from the expectation value 2Area(B(0, 3/µ)− Sv)/Area(B(0, 3/µ)).

With the fact that N1/N ≤ O(d− log d) is quasi-polynomially small, any quantum algorithm
that solves Problem 1 with high probability requires query complexity at least Ω(

√
N/N1) =

Ω(dlog d) (Nayak & Wu, 1999; Nielsen & Chuang, 2010).
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4.2 INFORMATION-THEORETIC LIMITATION OF QUANTUM ZEROTH-ORDER METHODS

When the noise between F and f keeps increasing under Assumption 1.1, it can erase the landscape
of target function F in the worst case. As a result, when the noise rate is larger than a certain
threshold, for any quantum algorithm we can find a hard instance on which it will fail with a large
probability. We consider the same target function defined in Eq. (88) with a different noisy function
f . We apply the scaling in (93) and (94) as

F (x) = h(sinx) + ∥sinx∥2, (104)

f(x) = ∥sinx∥2, (105)

F̃ (x) = ϵrF
(x
r

)
, f̃(x) = ϵrf

(x
r

)
. (106)

Similar to Lemma 4.1, the following properties hold for the above hard instance (F̃ , f̃).
Lemma 4.7 (Appendix D.2, Ref. (Jin et al., 2018a)). The function pair (F, f) defined in (106) above
satisfies:

• The values of f̃ in B(0, 3/µ) are independent of v.

• supx∈B(0,3/µ)

∥∥∥f̃ − F̃∥∥∥
∞
≤ Õ(ϵ1.5/

√
ρ).

• F is B-bounded, O(ρ)-Hessian Lipschitz, and O(ℓ)-gradient Lipschitz.

We derive the following result concerning the hard instance (F̃ , f̃) in Eq. (106), which is the formal
version of Theorem 1.8.
Theorem 4.8 (Formal version of Theorem 1.8). For any B > 0, ℓ > 0, ρ > 0, any ϵ ∈ (0, ϵ0] for
some ϵ0 = Θ(min{ℓ2/ρ, (B2ρ/d2)1/3}), and any possible quantum algorithm, we can choose a
function pair (F̃ , f̃) with v defined in (106) satisfying Assumption 1.1 with ν = Θ̃(

√
ϵ3/ρ) such

that the quantum algorithm will fail with high probability to find an ϵ-SOSP of F̃ given only access
to Uf̃ .

Proof. As f̃ is independent of v, neither quantum nor classical query can reveal any information
on v and the ϵ-SOSP of F̃ . Any solutions output by any algorithm will be independent of v with
probability 1. Therefore, the probability of success must be independent of the number of iterations,
which indicates that any algorithm cannot output an ϵ-SOSP with probability more than a constant.
Specifically, no algorithm can do better than random guessing in B(0, 3/µ) within this construction.

We remark that the noise bound and its underlying intuition in the quantum case is the same as the
classical case (Jin et al., 2018a). However, Theorem 4.8 only indicates the classical and quantum
algorithms have the same worst-case lower bound for some level of noise strength, and there is
still a possible quantum speedup for solving specific instances (F, f). In Appendix D, we show
a concrete example in which quantum tunneling walk (Liu et al., 2023) can find an ϵ-SOSP of F
using polynomial queries and proper initial states containing information of the landscape, while
any classical algorithm requires exponential queries even given access to such information.

4.3 INFORMATION-THEORETIC LIMITATION OF CLASSICAL ZEROTH-ORDER METHODS

Here, we use an information-theoretic approach to prove Theorem 1.9, which indicates that if a
classical algorithm can find an ϵ-SOSP of F for any function pair (F, f) satisfying Assumption 1.1
with ν = Ω(1/ poly(d)), the query complexity is bounded by Ω(d/ log d).

In particular, we consider the target function F̃ defined by (88) and (93). As F̃ is ρ-Hessian Lipschitz
and ℓ-smooth, we can estimate the vector v within poly(ϵ) distance under infinity norm3, which
requires d log(1/ϵ) bits of information. Furthermore, as the noisy zeroth-order oracle f̃ contains

3Here, we have ignored the dependence on ℓ and ρ and regarded them as constants
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noise of strength ν = Ω(1/ poly(d)), each classical query reveals at most O(log(1/δ)) bits of
information (Chakrabarti et al., 2020). Therefore, any classical algorithm has to take at least

Ω

(
d log(1/ϵ)

log(1/δ)

)
= Ω

(
d

log d

)
(107)

queries to the noisy oracle.

Moreover, Ref. (Chakrabarti et al., 2020) shows even estimating a sub-gradient for a Lipschitz con-
vex function within infinity norm ϵ = O(1/ poly(d)) using zeroth-order oracle f with noise rate
ν = Ω(1/poly(d)) requires Ω(d/ log d) classical queries. However, Jordan’s algorithm enables si-
multaneous queries to different points using a single oracle query. Thus, onlyO(1) query to quantum
oracle is required to estimate the sub-gradient, which provides the exponential speedup for quantum
algorithms.

4.4 LOWER BOUND FOR FIRST-ORDER METHODS

We now derive the lower bound for classical and quantum algorithms in finding ϵ-SOSPs of tar-
get function F through noisy function satisfying Assumption 1.2. We propose the following two
theorems as two parts for the formal version of Theorem 1.10. In the first part, we consider the
case of adding noise such that for any quantum or classical algorithm we can find a hard instance
that will make the algorithm fail with high probability, which is an analog of Theorem 4.8 under
Assumption 1.2. Formally, we have the following theorem
Theorem 4.9 (Formal version of Theorem 1.10, Part I). For anyB > 0, ℓ > 0, ρ > 0, any ϵ ∈ (0, ϵ0]
for some ϵ0 = Θ(min{ℓ2/ρ, (B2ρ/d2)1/3}), and any quantum or classical algorithm, we choose
function pair (F̃ , f̃) with v defined in (106) satisfies Assumption 1.2 with ν̃ = Θ̃(ϵ/

√
d) such that it

will fail with high probability to find any ϵ-SOSP of F̃ given only access to Ug.

Proof. We consider the same target function F̃ and noisy function f̃ in (106). Except from the prop-
erties in Lemma 4.7, the noisy function f̃ is also smooth and

∥∥∥∇f̃ −∇F̃∥∥∥ ≤ Θ̃(ϵ/
√
d). Therefore,

the hard instance in (106) also satisfies Assumption 1.2 with ν̃ = Θ̃(ϵ/
√
d). According to Theo-

rem 4.8, for any quantum and classical algorithm, we choose function pair (F̃ , f̃) with v such that
it will success with probability no more than a constant to find any ϵ-SOSP of F̃ given only access
to Ug̃.

Next, we consider the quasi-polynomial lower bound under Assumption 1.2. Unlike Theorem 4.2,
we cannot directly apply the hard instance (F, f) defined in (93) and (94) because f is not differ-
entiable (or more strictly, not continuous). To address this problem, we construct a different noisy
function f (as shown in Figure 1 (b)). We start with the “scale free” version. We still set the
µ = 300 and define the target function F (x) = h(sinx) + ∥sinx∥2, which is the same with (88).
We uniformly choose v and divide the “hypercube” into different regions as

• “hypercube” H = [−π/2, π/2]d is the d-dimensional hypercube with length π.
• “ball” B(0, 3/µ) = {x ∈ Rd : ∥x∥ ≤ 3/µ} is the d-dimensional ball with radius 3/µ.

• “band” S = {x ∈ B(0, 3/µ) : ⟨sinx,v⟩ ≤ w} with w = O(log d/
√
d).

• “non-informative band” Sv = {x ∈ B(0, 3/µ) : ⟨sinx,v⟩ ≤ 0.9w}.
• “padding” S2 = H − B(0, 3/µ).

Meanwhile, the noisy function f is defined as

f(x) =


∥ sinx∥2, x ∈ Sv,

∥ sinx∥2 + h3(x) · h2(
√
∥sinx∥2 − (v⊤ sinx)2), x ∈ S − Sv

F (x), x /∈ S,
(108)

where
h3(x) = h1(v

⊤ sin(10x− 9wv/2)). (109)
By the chain rule of gradients we deduce the following lemma:
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Lemma 4.10. The function pair (F, f) defined in (88) and (108) satisfies:

• The value of f in the non-informative region Sv is independent of v. f is differentiable and
satisfies the Lipshitz condition.

• supx∈S ∥∇f −∇F∥∞ ≤ Õ(1/
√
d).

• F has no ϵ-SOSP in the non-informative region Sv.

• F is O(d)-bounded, O(1)-Hessian Lipschitz, and O(1)-gradient Lipschitz.

We apply the scaled version of f as

f̃ = ϵrf
(x
r

)
. (110)

Based on the hard instance (F̃ , f̃) defined in (93), (108) and (110). We propose the following
theorem.
Theorem 4.11 (Formal version of Theorem 1.10, Part II). For any B > 0, ℓ > 0, ρ > 0, there exists
ϵ0 = Θ(min{ℓ2/ρ, (B2ρ/d2)1/3}) such that for any ϵ ∈ (0, ϵ0], the function pair (F̃ , f̃) defined in
(93), (108) and (110) satisfies Assumption 1.2 with ν̃ = Θ̃(ϵ/

√
d), and any quantum or classical

algorithm that only requires a quasi-polynomial number Ω(dlog(d)) queries to function values of f̃
will fail with high probability, to find an ϵ-SOSP of F̃ .

Proof. According to Lemma 4.10 and Lemma 4.6, the width of non-informative band is 0.9w =
Θ̃(ϵ/

√
d). Then we can directly apply the similar procedure when we prove Theorem 1.7 as the

non-informative band has the same width scaling.

5 CLASSICAL AND QUANTUM LOWER BOUNDS IN ϵ

In this section, we prove classical randomized lower bounds and quantum lower bounds in ϵ for
finding an ϵ-SOSP of an objective function F given access to noisy classical or quantum zeroth- or
first-order oracles, where F : Rd → R is ℓ-smooth and ρ-Hessian Lipschitz, and satisfies

F (0)− inf
x
F (x) ≤ ∆, (111)

for some constant ∆.

5.1 HARD INSTANCE FOR DETERMINISTIC CLASSICAL ALGORITHMS

We first discuss the construction and intuition of hard instances upon which we can obtain lower
bound results for deterministic classical algorithms. Consider the toy example proposed by Nes-
terov (Nesterov, 2003),

F (x) :=
1

2
(x1 − 1)2 +

1

2

T−1∑
i=1

(xi − xi+1)
2, (112)

whose gradient satisfies that

∀1 < i < T, ∇iF (x) = 0⇔ xi−1 = xi = xi+1. (113)

Then, if we query the gradient of F at a point with only its first t entries being nonzero, the derivative
can only reveal information about the (t+ 1)th direction, if one does not have knowledge about the
directions of the coordinate axes. Formally, such properties can be summarized to consist of the
concept of zero-chain, which is defined as follows.
Definition 5.1 (Definition 3, Ref. (Carmon et al., 2020)). A function F : Rd → R is called a zero-
chain if for every x ∈ Rd,

supp{x} ⊆ {1, . . . , i− 1} ⇒ supp{∇f(x)} ⊆ {1, . . . , i}, (114)

where the support of a vector y ∈ Rd is defined as

supp{y} := {i ∈ [d] | yi ̸= 0}. (115)
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From an algorithmic perspective, if we encode F (x) or any other T -dimensional zero chain into
a d-dimensional space with d ≫ T and apply a random rotation U , any deterministic algorithm
making fewer than T queries will fail on certain instances to find the directions of all the T axes.
Hence, from an algorithmic perspective, if we can construct a T -dimensional zero chain with all
SOSPs or even FOSPs overlapped with all the T axes, we can establish an Ω(T ) lower bound for all
deterministic classical algorithms.

Following this intuition, Ref. (Carmon et al., 2021) provided a concrete hard instance construction
to obtain an Ω(1/ϵ2) lower bound for deterministic classical algorithms. In particular, Ref. (Carmon
et al., 2021) first defined the following zero-chain F̄T ;µ(x) : RT+1 → R:

F̄T ;µ(x) =

√
µ

2
(x1 − 1)2 +

1

2

T∑
i=1

(xi+1 − xi)2 + µ

T∑
i=1

Γ(xi), (116)

where the non-convex function Γ: R→ R is defined as

Γ(x) = 120

∫ x

1

t2(t− 1)

1 + t2
dt. (117)

According to Lemma A.1 in Appendix A, finding an FOSP requires knowledge about the directions
of all the T axes. We further apply a unitary rotation U ∈ R(T+1)×d and certain appropriate scaling
to obtain the formal hard instance

F̃T ;U (x) := λσ2F̄T

(
⟨x/σ,u(1)⟩, ⟨x/σ,u(2)⟩, . . . , ⟨x/σ,u(T+1)⟩

)
, (118)

where u(i) stands for the i-th column of the rotation matrix U , and all its columns
{u(1), . . . ,u(T+1)} forms a set of orthonormal vectors. We use F̃ to denote the set of functions
that can be presented in the form of (118) for some suitable parameters T,U, λ, and σ whose func-
tion value at point 0 is not far from its minimum value, i.e.,

F (0)− inf
x
F (x) ≤ ∆, ∀F ∈ F̃ . (119)

Based on F̃ , we have the following classical lower bound result.
Lemma 5.2 (Theorem 2, Ref. (Carmon et al., 2021)). There exist numerical constants c, C ∈ R+

and ℓq ≤ e
3q
2 log q+Cq for every q ∈ N such that, for any deterministic classical algorithm making

at most

c ·∆
(L1

ℓ1

) 3
7
(L2

ℓ2

) 2
7

ϵ−12/7 (120)

gradient queries, there exists a function F̃ ∈ F̃ such that the output of this algorithm on F̃ is not an
ϵ-FOSP of F̃ .

This lower bound regarding deterministic classical algorithms is, however, hard to be extended to
randomized classical algorithms straightforwardly. Intuitively, the concept of zero-chain in Defi-
nition 5.1 can be extended to higher-order derivatives, and the hard instance F̃T ;U in (118) is no
longer a zero chain for derivatives of second- or higher-orders. Hence, the algorithm may ben-
efit from adding random perturbations and may not need to discover all the T + 1 components
{u(1), . . . ,u(T+1)} one by one. To the best of our knowledge, it remains unclear whether the same
lower bound result holds for randomized classical algorithms.

In the remaining part of this section, we will demonstrate that the presence of noise can drastically
increase the hardness of finding an ϵ-FOSP in the worst case. Specifically, we first derive the lower
bound result for general noise models parameterized by the concept of noise radius r0. Then, we
discuss the values of r0 in different settings with noisy zeroth-order oracle (Assumption 1.1) or noisy
first-order oracle (Assumption 1.2), respectively.

5.2 NOISY QUANTUM LOWER BOUND WITH BOUNDED INPUT DOMAIN

In this subsection, we first introduce the quantum lower bound on functions with bounded input
domains. The intuition is that the noise can create a non-informative region around 0, which is
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a hyperball B(0, r0) whose certain radius r0 depends on the noise rate. Then, if the dimension
of F̃T ;U defined in Eq. (118) is large enough, any random perturbation with bounded norm will
fall in B(0, r0) with an overwhelming probability, which leads to the fact that the lower bound
in Lemma 5.2 additionally holds for not only randomized classical algorithms but also quantum
algorithms.

We adopt the quantum query model introduced in (Garg et al., 2021a). For a d-dimensional objective
function F , assume we have access to its noisy evaluation f : Rd → R via the following quantum
oracle Of ,

Of |x⟩ |y⟩ → |x⟩
∣∣y ⊕ (f(x),∇f(x))〉 . (121)

We remark that the oracle Of here is even stronger than the zeroth- or the first-order oracles in (7)
and (8). Then, any quantum algorithm Aquantum making q queries to Of can be described by the
following sequence of unitaries

VqOfVq−1Of · · ·V1OfV0 (122)
applied to some initial state, say |0⟩without loss of generality. In the special case where the objective
function F̃T ;U ∈ F̃ , for the convenience of notation we denote Of ;T ;U to be the quantum oracle
encoding its noisy evaluation fr0;T ;U in the form of (121). To obtain our quantum lower bound, we
set the noisy function to be in the form

fr0;T ;U (x) := λσ2F̄T

(
⟨x/σ,u(1)⟩, . . . , ⟨x/σ,u(progσr0

(x)+1⟩, 0, . . . , 0
)
, (123)

where progσr0(x) is defined as the largest index j between 1 and T satisfying |⟨x,u(j)⟩| ≥ σr0.
Moreover, we define the following indicator function

δr0(y) := 1{|y| ≥ r0} · y. (124)
Intuitively, in the noisy function fr0;T ;U we eliminate the influence of the ith component on the
function when the overlap between x and u(i) is smaller than certain threshold r0. The detailed
values of r0 under different noise assumptions will be specified later. Hence, when the dimension d
is large enough, any random perturbation with a bounded norm will make no observable difference
with an overwhelming probability. Moreover, we can note that ϵ-FOSPs of fr0;T ;U (x) and F̃T ;U (x)

are the same. Hence, one needs to identify all the T components {u(1), . . . ,u(T )} to find an ϵ-FOSP,
which we demonstrate later that can only be done sequentially even by a quantum algorithm.

For any possible quantum algorithm Aquantum making k < T queries in total, adopting a similar
technique introduced in (Garg et al., 2021a;b), we define a sequence of unitaries starting with A0 =
Aquantum as follows:

A0 : = VkOf ;T ;UVk−1Of ;T ;U · · ·Of ;T ;UV1Of ;T ;UV0 (125)
A1 : = VkOf ;T ;UVk−1Of ;T ;U · · ·Of ;T ;UV1Of ;1;U1V0
A2 : = VkOf ;T ;UVk−1Of ;T ;U · · ·Of ;2;U2

V1Of ;1;U1
V0

...
Ak : = VkOf ;k;Uk

Vk−1Of ;k−1;Uk−1
· · ·Of ;2;U2V1Of ;1;U1V0,

where Ut ∈ Rd×t is defined as the orthogonal matrix with columns u(1), . . . ,u(t), and the function
fr0;t;Ut

(x) encoded in Of ;t;Ut
is defined as

fr0;t;Ut
:= λσ2F̄T

(
⟨x/σ,u(1)⟩, . . . , ⟨x/σ,u(progt

σr0
(x)+1⟩, 0, . . . , 0

)
, (126)

where progtσr0(x) is defined as the largest index j between 1 and t− 1 satisfying |⟨x,u(j)⟩| ≥ σr0.
Our goal is to demonstrate that A0 will fail to find an ϵ-FOSP with high probability. To do so, we
employ a hybrid argument showing that the outputs ofAi andAi+1 defined in the sequence (125) are
close for every i < k, so does the outputs of A0 and Ak, which cannot solve the problem with high
probability since it contains no information of the T -th component, which is necessary for finding
an ϵ-FOSP with high success probability.

Lemma 5.3 (At and At−1 have similar outputs). Consider the hard instance F̃T ;U (x) : Rd → R
defined in (116) with domain B(0, 2σ

√
T ) and its noisy evaluation fr0;T ;U defined in (123) with

d ≥ 4T , let At for t ∈ [k − 1] be the unitaries defined in Eq. (125). Then

EU

(
∥At |0⟩ −At−1 |0⟩ ∥2

)
≤ 8Te−dr20/(4T ). (127)

32



Published as a conference paper at ICLR 2025

Proof. From the definition of the unitaries in Eq. (125) and the unitary invariance of the spectral
norm, we have

∥At |0⟩ −At−1 |0⟩ ∥ =
∥∥(Of ;t;Ut −Of ;T ;U )Vt−1Of ;t−1;Ut−1 · · ·Of ;1;U1V0 |0⟩

∥∥. (128)

We will prove the claim for any fixed choice of vectors {u(1), . . . ,u(t−1)}, which will imply the
claim for any distribution over those vectors. Let us prove the claim for any fixed choice of vectors
{u(1), . . . ,u(t−1)}, which will imply the claim for any distribution over those vectors. Once we
have fixed these vectors, the state Vt−1Of ;t−1;Ut−1

· · ·Of ;1;U1
V0 |0⟩ is a fixed state, which can be

referred to as |ψ⟩. Thus our problem reduces to showing for all quantum states |ψ⟩,

E{u(t),...,u(T )}
(
∥(Of ;t;Ut −Of ;T ;U ) |ψ⟩ ∥2

)
≤ 8Te−dr20/(4T ). (129)

We write the state |ψ⟩ as |ψ⟩ =
∑

x αx |x⟩ |ϕx⟩, where x is the query made to the oracle, and∑
x |αx|2 = 1. Hence, the left-hand side of Eq. (129) equals

E{u(t),...,u(T )}

(∥∥∥∑
x

αx(Of ;t;Ut
−Of ;T ;U ) |x⟩ |ϕx⟩

∥∥∥2) (130)

≤
∑
x

|αx|2 · E{u(t),...,u(T )}
(∥∥(Of ;t;Ut

−Of ;T ;U ) |x⟩
∥∥2). (131)

Since |αx|2 defines a probability distribution over x, we can again upper bound the right-hand side
for any x instead. Note that Of ;t;Ut

and Of ;T ;U behave identically for some inputs x, the only
nonzero terms are those where the oracles respond differently, which can only happen if(

fr0;t;Ut
(x),∇fr0;t;Ut

(x)
)
̸=
(
fr0;T ;U (x),∇fr0;T ;U (x)

)
. (132)

When the response is different, we can upper bound
∥∥(Of ;t;Ut

− Of ;T ;U ) |x⟩ ∥2 by 4 using the
triangle inequality. Thus for any x ∈ B(0, 2σ

√
T ), we have

E{u(t),...,u(T )}
[∥∥(Of ;t;Ut −Of ;T ;U ) |x⟩

∥∥2] (133)

≤ 4 Pr
{u(t),...,u(T )}

[(
fr0;t;Ut(x),∇fr0;t;Ut(x)

)
̸=
(
fr0;T ;U (x),∇fr0;T ;U (x)

)]
. (134)

We use x⊥ to denote the projection of x to the span {u(t), . . . ,u(T )}. Intuitively, as long as each
component of x⊥ has absolute value smaller than σr0, the components {u(t), . . . ,u(T )} will have
no observable impact. Quantitatively,

Pr
[(
fr0;t;Ut(x),∇fr0;t;Ut(x)

)
̸=
(
fr0;T ;U (x),∇fr0;T ;U (x)

)]
(135)

≤ 1− Pr
[
|⟨u(t),x⟩|, . . . , |⟨u(T ),x⟩| ≤ δr0

]
. (136)

Since {u(t), . . . ,u(T )} are chosen uniformly at random in the (d − t + 1)-dimensional orthogonal
complement of span {u(1), . . . ,u(t−1)}, for any t ≤ i ≤ T , by Lemma A.4 we can further derive
that

Pr
[
|⟨u(i),x⟩| > r0

]
≤ 2e−dr20/(4T ), (137)

which leads to

Pr
[
|⟨u(t),x⟩|, . . . , |⟨u(T ),x⟩| ≤ r0

]
≥
(
1− 2e−dr20/(4T )

)T ≥ 1− 2Te−dr20/(4T ), (138)

indicating

E{u(t),...,u(T )}
[∥∥(Of ;t;Ut −Of ;T ;U ) |x⟩

∥∥2] ≤ 8Te−dr20/(4T ), (139)

and

EU

(
∥At |0⟩ −At−1 |0⟩ ∥2

)
≤ 8Te−dr20/(4T ). (140)

Proposition 5.4. Consider the d-dimensional function f̃T ;U (x) : B(0, 2σ
√
T )→ R defined in (118)

with the rotation matrix U being chosen arbitrarily. Consider any quantum algorithm Aquantum

containing t < T queries to the noisy oracle Of defined in Eq. (121), let pU be the probability
distribution over x ∈ B(0, 2σ

√
T ) obtained by measuring the state Aquantum |0⟩, which is related

to the rotation matrix U . Then,

Pr
U,xout∼pU

[
∥∇F̃T ;U (xout)∥ ≤ λσµ3/4/8

]
≤ 16Te−dr20/(8T ). (141)
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Proof. Consider the sequence of unitaries {A0, . . . , At} associated with Aquantum defined in (125),
we first demonstrate that At cannot find a point with small gradient with high probability. In partic-
ular, let p(t)U be the probability distribution over x ∈ B(0, 2σ

√
T ) obtained by measuring the output

state At |0⟩. Then we have

Pr
Ut,xout∼p

(t)
Ut

[
∥∇F̃T ;U (xout)∥ ≤ λσµ3/4/8

]
(142)

≤ max
x∈B(0,2σ

√
T )

Pr
{u(t+1),...,u(T+1)}

[
∥∇F̃T ;U (x)∥ ≤ λσµ3/4/8

]
, (143)

whereby Lemma B.1 we have

Pr
{u(t+1),...,u(T+1)}

[
∥∇F̃T ;U (x)∥ ≤ λσµ3/4/8

]
≤ 8Te−dr20/(8T ) (144)

for any x ∈ B(0, 2σ
√
T ), which leads to

Pr
Ut,xout∼p

(t)
Ut

[
∥∇F̃T ;U (xout)∥ ≤ λσµ3/4/8

]
≤ 8T 2e−dr20/(4T ). (145)

Moreover, by Lemma 5.3 and Cauchy-Schwartz inequality, we have

EU

[
∥At |0⟩ −A0 |0⟩ ∥2

]
≤ t · EU

[ t−1∑
k=1

∥Ak+1 |0⟩ −Ak |0⟩ ∥2
]
≤ 8T 2e−dr20/(4T ). (146)

Then by Markov’s inequality,

Pr
U

[
∥At−1 |0⟩ −A0 |0⟩ ∥2 ≥ 4Te−dr20/(8T )

]
≤ 4Te−dr20/(8T ), (147)

since both norms are at most 1. Hence, we can deduce that the total variance distance between pUn
and p(t)U can be bounded by

4Te−dr20/(8T ) + 4Te−dr20/(8T ) ≤ 8Te−dr20/(8T ), (148)

which further leads to

Pr
U,xout∼pU

[
∥∇F̃T ;U (xout)∥ ≤ λσµ3/4/8

]
(149)

≤ Pr
Ut,xout∼p

(t)
Ut

[
∥∇F̃T ;U (xout)∥ ≤ λσµ3/4/8

]
+ 8Te−dr20/(8T ) ≤ 16Te−dr20/(8T ). (150)

Proposition 5.5. Let r0,∆, L1, L2, ϵ be positive and ϵ ≤ L2
1/L2. Then there exist positive numer-

ical constants c, C ∈ R and ℓq ≤ e
3q
2 log q+Cq for every q ∈ N, and a set Ω consisting of function

pairs (F̃T ;U , fr0;T ;U ) with F̃T ;U and fr0;T ;U defined in (118) and (123) respectively upon the input
domain B(0,R) with

T =
∆

20

(L2

ℓ2

) 5
4
( L1

2ℓ1

) 3
7

(8ϵ)−12/7, R = 2
√
T ·
(L2

ℓ2

)−3/4(L1

ℓ1

)−1/7

(8ϵ)4/7, (151)

such that, for any quantum algorithm Aquantum making fewer than T queries to the oracle Of in
the form of (121) encoding the function values and gradients of fr0;T ;U in (123), there exists an
orthogonal matrix U such that, Aquantum cannot find an ϵ-FOSP of the corresponding F̃T ;U with
probability larger than, where F̃T ;U is L1-smooth and L2-Hessian Lipschitz and satisfies

F̃T ;U (0)− inf
x
F̃T ;U (x) ≤ ∆. (152)

Proof. We set the scaling parameters λ, σ in F̃T ;U and fr0;T ;U to be

λ =
L1

2ℓ1
, µ =

L2σ

λℓ2
, σ =

(L2

ℓ2

)−3/4

λ−1/7(8ϵ)4/7, (153)
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which satisfy µ ≤ 1 since ϵ ≤ L2
1/L2. By Proposition 5.4, for any possible quantum algorithm

Aquantum making t < T queries to the oracle Of defined in (121) encoding (fr0;U ;T ,∇fr0;U ;T ),
we have

Pr
U,xout∼pU

[
∥∇f̃T ;U (xout)∥ ≤ λσµ3/4/8

]
= Pr

U,xout∼pU

[
∥∇f̃T ;U (xout)∥ ≤ ϵ

]
≤ 16Te−dr20/(8T ),

(154)

where pU is the probability distribution over x ∈ B(0, 2σ
√
T ) obtained by measuring the state

Aquantum |0⟩, indicating that the success probability of Aquantum finding an ϵ-FOSP of F̃T ;U is at
most 16Te−dr20/(8T ). Moreover, by Lemma A.2 we can derive that, for any T ×d orthogonal matrix
U , the function F̃T ;U is (1 + µ)ℓ1 = L1-smooth and λµℓ2/σ = L2-Hessian Lipschitz, with

F̃T ;U (0)− inf
x
F̃T ;U (x) ≤ λσ2

(√µ
2

+ 10µT
)
≤ ∆. (155)

Proposition 5.5 shows that, if we restrict the input domain of the function pair (F, f) to a hyperball
with radius R, in the worst case every quantum algorithm has to make at least Ω

(
ϵ−12/7

)
queries

to the noisy evaluation f to find an ϵ-FOSP of F with high probability. Moreover, the dimension d
of the hard instance achieving this lower bound is of order Ω

(
ϵ−12/7 log(1/ϵ)/r20

)
, where the noise

radius r0 is determined by the noise rate with different relations under different noise assumptions,
on which a detailed discussion is given in Section 5.4 after we extend this lower bound to unbounded
input domain in Section 5.3.

5.3 NOISY QUANTUM LOWER BOUND WITH UNBOUNDED INPUT DOMAIN

In this subsection, we extend the quantum lower bound proved in Proposition 5.5 to functions with
an unbounded input domains. In particular, Ref. (Carmon et al., 2020) introduced a method for
extending lower bound to unbounded input domain by adding a scaling term on the input vector and
additionally introducing a quadratic term. The intuition is that, if the input vector has a large norm,
the corresponding function value is almost solely determined by the quadratic term and it cannot be
an approximate stationary point. Hence, it is not beneficial for any classical algorithm to explore
any point outside a certain bounded region, indicating that the lower bound with an unbounded
input domain is the same as the one with a bounded input domain. The same argument also holds
for quantum algorithms, as shown in Ref. (Zhang & Li, 2023a).

Quantitatively, we consider the following T + 1 dimensional kernel function defined on RT+1,

F̄T ;µ(x) := F̄T ;µ(γα(x)) + β∥ sinx∥2, (156)

where γα(x) is defined as

γα(x) :=

{(
1− ∥x∥

α
√
T

)3
· x, ∥x∥ ≤ α

√
T ,

0, ∥x∥ > α
√
T .

(157)

By Lemma A.3, finding an ϵ-SOSP or even an ϵ-FOSP of F̄T ;µ requires knowledge of all the T + 1
coordinate directions, if it is projected to a d-dimensional space via an arbitrary orthogonal matrix
U ∈ Rd×(T+1). Moreover, to guarantee that the hard instance satisfies theB-boundedness condition
required in the empirical risk setting considered in this paper, we additionally add a sine function to
the quadratic term and obtain the following hard instance defined on the hypercube [−πL/2, πL/2]d
with L = ζα

√
T for some constant ζ ≥ 2,

F̂T ;U (x) := F̄T ;µ

(
γα(U

Tx)
)
+ βL2∥ sin(x/L)∥2, (158)

where the constants α, β are chosen according to Lemma A.3, and for any y ∈ Rd, siny is defined
as

siny := (sin y1, . . . , sin yd)
T . (159)

Lemma 5.6. Consider the function F̂T ;U : [−πL/2, πL/2]d → R defined in Eq. (158), suppose that
the parameter µ satisfies µ ≤ 1. Then, there exist positive constants α, β, ζ such that
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1. For any x ∈ [−2ζα
√
T , 2ζα

√
T ]d such that

|⟨x,uT ⟩|, |⟨x,uT+1⟩| ≤ 0.05

T + 1/
√
µ
, (160)

its gradient satisfies

∥∇F̄T ;U (x)∥ ≥ µ3/4/32; (161)

2. F̄T ;U (0)− infx F̄T ;U (x) ≤
√
µ

2 + 10µT ;

3. For p = 1, 2, the p-th order derivatives of F̄T ;U are (2I{p = 1}+µ)ℓp-Lipschitz continuous
in the hyperball B(0, α

√
T ), where ℓp ≤ exp

(
3p
2 log p + cp

)
for a numerical constant

c <∞.

Proof. We set the constants α, β according to Lemma A.3. Note that for any vector y with ∥y∥ ≤
1/(2ζ), the values as well as first- and second-order derivatives of ∥y∥2 and ∥ siny∥2 are close to
each other given that ζ reaches a large enough value that is independent from d. Quantitatively, we
have

∥y∥2 − ∥ siny∥2 ≤
d∑

i=1

y2i −
(
yi − y3i /6

)2 ≤ d∑
i=1

y4i
3
≤ 1

48ζ4
, (162)

and ∥∥∇ · (∥y∥2 − ∥ siny∥2)∥∥ = ∥2y − sin(2y)∥ ≤ 1

6
· 1
ζ3

=
1

6ζ3
. (163)

Moreover, we notice that

∇2(∥y∥2 − ∥ siny∥2) = I −


cos 2y1, · · · , 0

...,
. . . ,

...
0, · · · , cos 2yd

 , (164)

which leads to ∥∥∇2(∥y∥2 − ∥ siny∥2)
∥∥ ≤ 1

2
· (2/ζ)2 =

2

ζ2
. (165)

Hence, there exists a large enough ζ = O(1/µ) independent from d such that, F̂T ;U is close enough
to the pure rotation of F̄T ;µ in the hyperball B(0, α

√
T ) up to the second-order derivatives, and the

above three conditions can be satisfied.

Note that if we replicate the hypercube [−πL/2, πL/2]d in Rd consecutively and have the func-
tion value in each hypercube being F̂T ;U respectively, the new function defined on Rd is still in-
finitely differentiable. Moreover, we can notice that finding an ϵ-SOSP in Rd is equivalent to find-
ing an ϵ-SOSP in one specific hypercube [−πL/2, πL/2]d, since for any x on the boundary of
[−πL/2, πL/2]d, the Hessian matrix

∇2F̂T ;U (x) = 2β ·


cos(2x1/L) . . . 0

...
. . .

...
0 · · · cos(2xd/L)

 , (166)

is positive definite with the matrix norm being 2β, indicating that x cannot be an ϵ-SOSP. Similar to
Section 5.2, we add scaling parameters λ and σ to F̂T ;U and obtain the formal hard function

F̃T ;U (x) := λσ2F̂T ;U (x/σ). (167)

Moreover, we assume access to the following noisy evaluation fr0;T ;U of F̂T ;U ,

fr0;T ;U := λσ2
[
F̄T ;µ

(
γα(⟨x/σ,u(1)⟩), . . . , γα(⟨x/σ,u(progr0

(γα(x/µ))+1)⟩), 0, . . . , 0
)

(168)

+ βL∥ sin
(
x/(σL2)

)
∥2
]
, (169)

which is encoded in the quantum oracle Of with form (121). Then, we can prove the following
quantum lower bound via the function pair (F̃T ;U , fr0;T ;U ).
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Theorem 5.7. Let ∆, ϵ, r0 be positive and ϵ ≤ 1/2, where the noise radius r0 is a parameter related
to the noise rate. Then there exist positive numerical constants c, C, α, β ∈ R and ℓq ≤ e

3q
2 log q+Cq

for every q ∈ N, and a set Ω consisting of function pairs (F̃T ;U , fr0;T ;U ) with F̃T ;U and fr0;T ;U

defined in (167) and (168) respectively with

T =
∆

20

( 1

ℓ2

) 5
4
( 1

2ℓ1

) 3
7

(16ϵ)−12/7, (170)

such that, for any quantum algorithm Aquantum making fewer than T queries to the oracle Of in the
form of (121) encoding the function value and gradient of fr0;T ;U in (168), there exists an orthogonal
matrix U such that, Aquantum cannot find an ϵ-SOSP of the corresponding F̃T ;U with probability
larger than e−dr20/(2α

2T ), where F̃T ;U is B bounded, L1-smooth, and L2-Hessian Lipschitz with

B = O
(
∆+ ϵ−12/7

)
, L1 = O(1), L2 = O(1), (171)

and satisfies

F̃T ;U (0)− inf
x

F̃T ;U (x) ≤ ∆. (172)

Proof. Since the functions and noisy evaluations in each hypercube are the same, without loss of
generality we assume all queries happen in the hypercube [−πσL/2, πσL/2]d centered at 0. Similar
to the setting of Proposition 5.5, we set the scaling parameters λ, µ and µ in F̃T ;U and fr0;T ;U to be

λ =
1

2ℓ1
, µ =

σ

λℓ2
, σ = ℓ

3/4
2 λ−2/7(16ϵ)4/7, (173)

which satisfies µ ≤ 1 since ϵ ≤ 1. By Lemma 5.6, finding an λσµ3/4/32 = ϵ-SOSP of F̃ with high
probability requires complete knowledge of all the T + 1 columns of the matrix U . Equivalently,
we can find an 2ϵ-SOSP of the function F̃T ;U by finding an ϵ

2 -SOSP of F̃T ;U with the same U and
same settings of parameters, which by Proposition 5.5 requires at least T queries to the quantum
oracle Of encoding the noisy evaluation fr0;T ;U of F̃T ;U to guarantee a success probability at least
e−dr20/(2α

2T ).

In addition, we notice that one query to the quantum oracle Of can be implemented via one query
to the quantum oracle Of encoding the noisy evaluation fr0;U ;T . Hence, by Proposition 5.5 we can
claim that to find an ϵ-SOSP of F̃T ;U with success probability at least e−dr20/(2α

2T ), it takes at least

T =
∆

20

( 1

ℓ2

) 5
4
( 1

2ℓ1

) 3
7

(16ϵ)−12/7 (174)

queries to the oracle Of.

Moreover, by the second entry of Lemma 5.6, we know that

F̃T ;U (0)− inf
x

F̃T ;U (x) ≤ λσ2
(µ
2
+ 10µT

)
≤ ∆. (175)

Further, we can observe that

sup
x

F̃T ;U (x)− F̃T ;U (0) ≤ λσ2 sup
∥x∥≤α

√
T

F̄T ;µ(x) + λσ2βL2 sup
x
∥ sin(x/(σL))∥2 (176)

≤ λσ2
(
2α2T + 60α2T + βζ2α2T

)
(177)

= O(λσ2ζ2T ) = O(λσ2µ−2T ) (178)

= O
(
ϵ−12/7

)
, (179)

indicating that F̃T ;U (x) is B-bounded for B = O(∆ + ϵ−12/7).

By the third entry of Lemma 5.6, F̃T ;U is λ(2 + µ)ℓ1 = O(1)-smooth and µℓ2/σ = O(1)-Hessian
Lipschitz in the region B(0, ασ

√
T ). For any point x ∈ [−πLσ/2, πLσ/2]d − B(0, ασ

√
T ), we

have

∥∇2F̃T ;U (x)∥ = βL2σ2
∥∥∥∇2 sin2

( x

σL

)∥∥∥ ≤ 4β = O(1), (180)
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and

∥∇3F̃T ;U (x)∥ = βL2σ2
∥∥∥∇3 sin2

( x

σL

)∥∥∥ ≤ 8β

σL
= O(1). (181)

Hence, we can conclude that F̃T ;U is O(1)-smooth and O(1)-Hessian Lipschitz in the entire space
Rd.

5.4 LOWER BOUND FOR QUANTUM ALGORITHMS WITH NOISY ZEROTH- AND
FIRST-ORDER ORACLES

In this subsections, we specify the value of noise radius r0 appearing in Theorem 5.7 when we are
given noisy zeroth-order oracle or noisy first-order oracle satisfying Assumption 1.1 or Assump-
tion 1.2, respectively, and further discuss the requirement on dimension d to obtain our lower bound
in ϵ.

We first discuss the setting with zeroth-order oracle access.
Corollary 5.8 (Formal version of Theorem 1.11, Part 1). Let ∆, ϵ > 0 and ϵ ≤ 1/2. Then there
exist positive numerical constants c, C, α, β ∈ R and ℓq ≤ e

3q
2 log q+Cq for every q ∈ N, and a set

Ω consisting of function pairs (F, f) satisfying Assumption 1.1 with some ν satisfying

ν = Ω
(
ϵ−16/7/d

)
, (182)

such that, for any quantum algorithm Aquantum making fewer than Θ(ϵ−12/7) queries to the oracle
Of defined in (121) encoding the function value and gradient of f , there exists a function pair
(F, f) such that Aquantum cannot find an ϵ-SOSP of F with probability larger than 1/3, where F is
B bounded, L1-smooth, and L2-Hessian Lipschitz with

B = O
(
∆+ ϵ−12/7

)
, L1 = O(1), L2 = O(1), (183)

and satisfies

F (0)− inf
x
FT ;U (x) ≤ ∆. (184)

Proof. We adopt the settings of functions and parameters in Theorem 5.7 and set Ω to be

Ω = {(F̃T ;U , fr0;T ;U ) |U ∈ Rd×(T+1) s.t. U⊤U = I}, (185)
where

T =
∆

20

( 1

2ℓ1

) 3
7
( 1

ℓ2

) 5
4

(16ϵ)−12/7. (186)

By Lemma B.2, the parameter r0 satisfies

λσ2(50r20T + 2αr0
√
T ) ≤ ν. (187)

Moreover, by Theorem 5.7, if the dimension d satisfies

d ≥ 4α2T

r20
, (188)

then for any quantum algorithm Aquantum making T queries to Of , there exists a function pair
(F, f) = (F̃T ;U , fr0,T ;U ) ∈ Ω such that the success probability of Aquantum finding an ϵ-SOSP of
F̃T ;U is at most

exp
(
− dr20/(2α2T )

)
≤ 1

3
. (189)

In order to guarantee inequality (188), we can require ν to satisfy

ν ≥ 4α2(50 + 2α)λσ2T 2

d
≥ Ω(ϵ−16/7/d). (190)

Moreover, by Theorem 5.7 we can conclude that F = F̃T ;U is O(∆ + ϵ−12/7)-bounded, O(1)-
smooth and O(1) Hessian Lipschitz with

F (0)− inf
x
FT ;U (x) ≤ ∆. (191)
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A similar conclusion can be obtained concerning the setting with first-order oracle access.
Corollary 5.9 (Formal version of Theorem 1.11, Part 2 ). Let ∆, ϵ > 0 and ϵ ≤ 1/2. Then there
exist positive numerical constants c, C, α, β ∈ R and ℓq ≤ e

3q
2 log q+Cq for every q ∈ N, and a set

Ω consisting of function pairs (F, f) satisfying Assumption 1.2 except the smoothness condition of
f with some ν̃ satisfying

ν̃ = Ω(ϵ−8/7/
√
d) (192)

such that, for any quantum algorithm Aquantum making fewer than Θ(ϵ−12/7) queries to the oracle
Of defined in (121) encoding the function value and gradient of f , there exists a function pair
(F, f) such that Aquantum cannot find an ϵ-SOSP of F with probability larger than 1/3, where F is
B bounded, L1-smooth, and L2-Hessian Lipschitz with

B = O
(
∆+ ϵ−12/7

)
, L1 = O(1), L2 = O(1), (193)

and satisfies

F (0)− inf
x
FT ;U (x) ≤ ∆. (194)

Remark 5.10. One may notice that in the statement of Corollary 5.9, the hard instance (F, f) we
consider only satisfies part of Assumption 1.2 except the smoothness condition of f . Nevertheless,
adopting a similar smoothing technique presented in Section 4.4, we can modify the hard instance
to further satisfy the smoothness condition of f without affecting the asymptotic lower bound.

Proof. We adopt the settings of functions and parameters in Theorem 5.7 and set Ω to be

Ω =
{
(F̃T ;U , fr0;T ;U ) |U ∈ Rd×(T+1) s.t. U⊤U = I

}
, (195)

where

T =
∆

20

( 1

2ℓ1

) 3
7
( 1

ℓ2

) 5
4

(16ϵ)−12/7. (196)

By , the parameter r0 satisfies

6λσr0
√
T ≤ ν̃. (197)

Moreover, by Theorem 5.7, if the dimension d satisfies

d ≥ 4α2T

r20
, (198)

then for any quantum algorithm Aquantum making T queries to Of , there exists a function pair
(F, f) = (F̃T ;U , fr0,T ;U ) ∈ Ω such that the success probability of Aquantum finding an ϵ-SOSP of
F̃T ;U is at most

exp
(
− dr20/(2α2T )

)
≤ 1

3
. (199)

In order to guarantee inequality (199), we can require ñu to satisfy

ν̃ ≥ 6λσ ·
√
4α2T 2/d = Ω(ϵ−8/7/

√
d). (200)

Moreover, by Theorem 5.7 we can conclude that F = F̃T ;U is O(∆ + ϵ−12/7)-bounded, O(1)-
smooth and O(1) Hessian Lipschitz with

F (0)− inf
x
FT ;U (x) ≤ ∆. (201)
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A AUXILIARY LEMMAS

Lemma A.1 (Lemma 3, Ref. (Carmon et al., 2021)). Consider the function F̄T ;µ : RT+1 → R
defined in Eq. (116), suppose the parameter µ satisfies µ ≤ 1. Then for any x ∈ RT+1 such that 4

|xT |, |xT+1| ≤
0.1

T + 1/
√
µ
, (202)

we have ∥∥∇F̄T ;µ(x)
∥∥ ≥ µ3/4/8. (203)

Lemma A.2 (Lemma 4, Ref. (Carmon et al., 2021)). The function F̄T ;µ(x) defined in Eq. (116)
satisfies the following.

1. F̄T ;µ(0)− infx F̄T ;µ(x) ≤
√
µ

2 + 10µT ;

2. For µ ≤ 1 and every p ≥ 1, the p-th order derivatives of F̄T ;µ are (I{p = 1} + µ)ℓp-
Lipschitz continuous, where ℓp ≤ exp

(
3p
2 log p+ cp

)
for a numerical constant c <∞.

Lemma A.3 (Lemma 3 and Lemma 4, Ref. (Carmon et al., 2021)). Consider the function
F̄T ;µ : RT+1 → R defined in Eq. (156), suppose the parameter µ satisfies µ ≤ 1. Then, there
exist positive constants α, β such that5

1. For any x ∈ RT+1 satisfying

|xT |, |xT+1| ≤
0.05

T + 1/
√
µ
, (204)

its gradient satisfies

∥∇F̄T ;µ(x)∥ ≥ µ3/4/16; (205)

2. F̄T ;µ(0)− infx F̄T ;µ(x) ≤
√
µ

2 + 10µT ;

3. For every p > 1, the p-th order derivatives of F̄T ;µ are (2I{p = 1} + µ)ℓp-Lipschitz
continuous, where ℓp ≤ exp

(
3p
2 log p+ cp

)
for a numerical constant c <∞.

Lemma A.4 (Proposition 14, Ref. (Garg et al., 2021a)). Let x ∈ B(0, 1). Then for a d-dimensional
random unit vector u and all c > 0,

Pr
u
(|⟨x,u⟩| ≥ c) ≤ 2e−dc2/2. (206)

Lemma A.5 (Lemma 9, Ref. (Zhang et al., 2021)). Let H1 and H2 be two Hermitian operators and
H be the sum of two operators. For any t > 0 and state vector |φ⟩, we have∥∥e−iH1te−iH2t |φ⟩ − e−iHt |φ⟩

∥∥ ≤ t2

2
sup

τ1,τ2∈[0,t]

∥∥[H1, H2]e
−iH2τ2e−iH1τ1 |φ⟩

∥∥. (207)

4The condition below is a bit different from the original condition in Lemma 3 of (Carmon et al., 2021),
which is xT = xT+1 = 0. Nevertheless, the following stricter conditions can be achieved with only minor
modifications to the original proof.

5The formula of the function F̄T ;µ is a bit different from the original function considered in Lemma 3 and
Lemma 4 of Ref. (Carmon et al., 2021). Nevertheless, this lemma can be proved via only minor modifications
to the original proof.
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Lemma A.6 (Corollary 1, Ref. (Zhang et al., 2021)). Consider a quadratic function of form Fq =
(x− xs)H(x− xs) + f0 for Hermitian function H and constant f0, and the Shroödinger equation

i
∂

∂t
Φ =

[
−r

2
0

2
∆ +

1

r20
Fq

]
Φ, (208)

with periodic boundary conditions and initial state in (238). We have

∥∇Φ(t)∥ ≤ C
√

d

r0
(log t)α (209)

for some constant α and C.

B TECHNICAL LEMMAS

Lemma B.1 (Cannot guess stationary point). Let k < T be a positive in
{
u(1), . . . ,u(k)

}
be a set of orthonormal vectors. Let {uk+1, . . . ,uT } be chosen uniformly at random from
span

(
u(1), . . . ,u(k)

)⊥
such that all columns of the matrix U =

[
u(1), . . . ,u(T+1)

]
forms a set

of orthonormal vectors. Then,

∀x ∈ B
(
0, 2σ

√
T
)
, Pr

{uk+1,...,uT+1}

[
∥∇F̃T ;U (x)∥ ≤ λσµ3/4/8

]
≤ 8Te−dr20/(8T ), (210)

for the function F̃T ;U : Rd → R defined in Eq. (118), given that the parameters r > 1 and

r0 ≤
0.2
√
T

T + 1/
√
µ
. (211)

Proof. By Lemma A.4, with probability at least 1− 8Te−dr20/(8T ), we have

|⟨x,u(T )/σ⟩|, |⟨x,u(T+1)/σ⟩| ≤ r0

2
√
T
≤ 0.1

T + 1/
√
µ

(212)

at the same time. Then by Lemma A.1, we have

∥∇F̃T ;U (x)∥ ≤ λσ∥∇F̄T ;µ;r(U
⊤x/σ)∥ ≤ λσµ3/4/8. (213)

Lemma B.2. Consider the functions F̃T ;U : Rd → R and fr0;T ;U : Rd → R defined in Eq. (167)
and Eq. (168), respectively. We have

max
x
|F̃T ;U (x)− fr0;T ;U (x)| ≤ λσ2(50r20T + 2αr0

√
T ), (214)

and

max
x

∥∥∇F̃T ;U −∇fr0;T ;U (x)
∥∥ ≤ 6λσr0

√
T . (215)

where we regard ∇fr0;T ;U to be 0 on the sphere S(0, ασ
√
T ) of each hypercube in Rd, given that

µ, ϵ ≤ 1 and r0 < σ.

Proof. Without loss of generality, we prove this lemma with the input domain being the hypercube
[−πσL/2, πσL/2]d centered at 0. Denote the vector y ∈ RT+1 to be

y :=
(
γα(⟨u(1),x/σ⟩), . . . , γα(⟨u(T+1),x/σ⟩)

)⊤
, (216)

which satisfies ∥y∥ ≤ α
√
T . For the convenience of notations, we denote y0 := 0. Then,

max
x

∣∣F̃T ;U (x)− fr0;T ;U (x)
∣∣ = λσ2 max

y∈B(0,α
√
T )

∣∣F̄T ;µ(y
prog)− F̄T ;µ(y)

∣∣, (217)

where

yprog :=
(
γα(⟨x/σ,u(1)⟩), . . . , γα(⟨x/σ,u(progr0

(γα(x/µ))+1)⟩), 0, . . . , 0
)⊤
. (218)
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Note that

max
y∈B(0,α

√
T )

∣∣F̄T ;µ(y
prog)− F̄T ;µ(y)

∣∣ (219)

≤ 1

2
max

y∈B(0,α
√
T )

∣∣∣ T∑
i=0

(yi − yi+1)
2 − (yprogi − yprogi+1 )2

∣∣∣ (220)

+ µ max
y∈B(0,2α

√
T )

∣∣∣ T+1∑
i=1

(
Γ(yi)− Γ(yprogi )

)∣∣∣, (221)

where

max
y∈B(0,α

√
T )

∣∣∣ T+1∑
i=1

(
Γ(yi)− Γ(yprogi )

)∣∣∣ ≤ (T + 1)(Γ(0)− Γ(r0)) ≤ 40Tr30, (222)

and

(y1 − 1)2 − (yprog1 − 1)2 = 0, ∀y ∈ B(0, α
√
T ), (223)

since progr0(γα(x/µ)) + 1 ≥ 1 for all possible x and corresponding y. As for the term in (220),
we note that

max
y∈B(0,α

√
T )

∣∣∣ T∑
i=1

(yi − yi+1)
2 − (yprogi − yprogi+1 )2

∣∣∣ (224)

≤ 4Tr20 + 2αr0
√
T . (225)

Thus we can conclude that

max
y∈B(0,ασ

√
T )

∣∣F̄T ;µ(δr0(y))− F̄T ;µ(y)
∣∣ ≤ 50r20T + 2αr0

√
T , (226)

and

max
x

∣∣F̃T ;U (x)− fr0;T ;U

∣∣ ≤ λσ2(50r20T + 2αr0
√
T ). (227)

Similarly, we can observe that

max
x

∥∥∇F̃T ;U (x)−∇fr0;T ;U (x)
∥∥ ≤ λσ max

y∈B(0,α
√
T )

∥∥∇F̄T ;µ(δr0(y))−∇F̄T ;µ(y)
∥∥, (228)

where

max
y∈B(0,α

√
T )

∥∥∇F̄T ;µ(δr0(y))−∇F̄T ;µ(y)
∥∥ (229)

≤ 1

2
max

y∈B(0,α
√
T )

∥∥∇ · T∑
i=0

[
(yi − yi+1)

2 − (yprogi − yprogi+1 )2
]∥∥ (230)

+ µ max
y∈B(0,α

√
T )

∥∥∇ · T+1∑
i=1

[
Γ(yi)− Γ(yprogi )

]∥∥, (231)

where the term in (231) satisfies

max
y∈B(0,α

√
T )

∥∥∇ · T+1∑
i=1

[
Γ(yi)− Γ(yprogi )

]∥∥ ≤ 2
√
T · |Γ′(r0)− Γ′(0)| ≤ 2r0

√
T (232)

As for the term in (230), we first note that for any 0 ≤ i ≤ T and any y ∈ B(0, α
√
T ), we have

1

2

∥∥∇ · [(yi − yi+1)
2 − (yprogi − yprogi+1 )2]

∥∥ ≤ 2
√
2r0, (233)

which leads to

max
y∈B(0,α

√
T )

∥∥∇ · T∑
i=1

[
(yi − yi+1)

2 − (yprogi − yprogi+1 )2
]∥∥ ≤ 4r0

√
T . (234)
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Hence,

max
y∈B(0,α

√
T )

∥∥∇F̄T ;µ(δr0(y))−∇F̄T ;µ(y)
∥∥ ≤ 6r0

√
T , (235)

by which we can conclude that

max
x

∥∥∇F̃T ;U (x)−∇fr0;T ;U (x)
∥∥ ≤ 6λσr0

√
T . (236)

C PERTURBED GRADIENT DESCENT WITH QUANTUM SIMULATION AND
GRADIENT ESTIMATION

In this section, we consider an alternative version of Algorithm 3 that has a faster convergence
rate in some cases. Inspired by Ref. (Zhang et al., 2021), we replace the uniform perturbation in
Algorithm 3 with quantum simulation. We consider the scaled evolution under Schrödinger equation

i
∂

∂t
Φ =

[
−r

2
0

2
∆ +

1

r20
f

]
Φ, (237)

where Φ is a wave function in Rd, ∆ is the Laplacian operator, r0 is the scaling parameter, and f
is the potential of the evolution. To construct a quantum algorithm using this evolution, quantum
simulations are required. There is rich literature on the cost of quantum simulations (Berry et al.,
2007; 2015; Childs, 2017; Lloyd, 1996; Low & Chuang, 2017; 2019). Here, we introduce the
following theorem concerning the cost of simulating (237) using zeroth-order oracle F , which was
originally proposed in Ref. (Zhang et al., 2021).

Lemma C.1 (Lemma 2, Ref. (Zhang et al., 2021)). Let F (x) : Rd → R be a real-valued function
that has a saddle point at x = 0 such that f(0) = 0. Consider the (scaled) Schrödinger equation in
(237) defined on the domain Ω = {x ∈ Rd : ∥x∥ ≤ M} with periodic boundary condition, where
M > 0 is the diameter specified later. Given the noiseless zeroth-order oracle Uf (|x⟩ ⊗ |0⟩) =
|x⟩ ⊗ |f(x)⟩ and an arbitrary initial state. The evolution for time t > 0 can be simulated using
Õ(t log d log2(t/ϵ)) queries to Uf , where ϵ is the simulation precision.

Notice that F is assumed to be Hessian Lipschitz in both Assumption 1.1 and Assumption 1.2, we
can approximate the function value near a saddle point. The approximation is more accurate on a
ball with radius r0 centered at this saddle point. We scale the initial distribution and the Schrödinger
equation to be localized in term of r0 and results in Algorithm 6, which is originally proposed in
Ref. (Zhang et al., 2021).

Algorithm 6: QuantumSimulation(x̃, r0, te, f(·)).
1 Evolve a Gaussian wave packet in the potential field f , with its initial state being:

Φ0(x) =
( 1

2π

)n/4 1

r
n/2
0

exp
(
−(x− x̃)2/4r20

)
; (238)

Simulate such evolution in potential field f under the Schrödinger equation for time te;
2 Measure the position of the wave packet and output the outcome.

Algorithm 6 is the main building block of the quantum implementation of perturbation in PGD.
It can effectively reduce the iteration number compared to the classical perturbations in Algo-
rithm 3 (Zhang et al., 2021) for some functions. To achieve a better performance than Theorem 2.8,
we have to add some constraints on the target and the noisy function (F, f). Specifically, we con-
sider the following setting.
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Assumption C.2. The underlying target function F is B-bounded, ℓ-smooth, and ρ-Hessian Lips-
chitz. We can query a noisy function f that is twice differentiable. We assume

ν = sup
x
∥F (x)− f(x)∥∞ = Õ

(
ϵ6

d4

)
, (239)

ν̃ = sup
x
∥∇F (x)−∇f(x)∥∞ = ℓfM = O

(
d−3

)
, (240)

ν̂ = sup
x

∥∥∇2F (x)−∇2f(x)
∥∥
∞ = ρfM = O

(
d−3

)
, (241)

where ℓf and ρf are arbitrary constants, and M = O(d−3) is some value to be fixed later.

By using quantum simulations to implement perturbations, we propose the following Algorithm 7
that can effectively find an ϵ-SOSP of F using queries to noisy f for function pair (F, f) in As-
sumption C.2 with high probability.

Algorithm 7: Perturbed Gradient Descent with Quantum Gradient Computation.
Input: x0, learning rate η, noise ratio r

1: for t = 0, 1, . . . , T do
2: Apply Lemma 2.1 to compute an estimate ∇̃F (x) of∇F (x)
3: if

∥∥∥∇̃F (xt)
∥∥∥ ≤ ϵ then

4: ξ ∼QuantumSimulation
(
xt, r0,T , f(x)− ⟨∇̃F (xt),x− xt⟩

)
5: ∆t ← 2ξ

3∥ξ∥

√
ρ∗

ϵ

6: xt ← argminζ∈{xt+∆t,xt−∆t} f(ζ)
7: end if
8: xt+1 ← xt − η∇̃F (x)
9: end for

Algorithm 7 has the following performance guarantee:
Theorem C.3. Suppose we have a target function F and its noisy evaluation f satisfying Assump-
tion C.2 with ν ≤ Õ(δ2ϵ6/d4). Then with probability at least 1−δ, Algorithm 7 can find an ϵ-SOSP
of F satisfying (4), using

Õ

(
ℓB

ϵ2
· log2 d

)
(242)

queries to Uf , under the following parameter choices:

ℓ′ = ℓ+
1

2
ℓf , ρ′ = ρ+ ρf , η =

1

ℓ′
, δ0 = min

{
δ

162B

ϵ3

ρ′
,
ηϵ2δ

16B

}
, F =

2

81

√
ϵ3

ρ′
,

(243)

T =
8

(ρ′ϵ)1/4
log

(
ℓ′

δ0
√
ρ′ϵ

(d+ 2 log

(
3

δ0

)
)

)
, r0 =

4c3r
9T 4

(
δ0
3
· 1

d3/2 + 2c0dℓ′(logT )α

)2

,

(244)

where c0, α, and cr are absolute constants specified in the proof.

Before proving Theorem C.3, we first consider the effectiveness of quantum simulations for adding
perturbations. We focus on the scenarios with ϵ ≤ ℓ2/ρ, which is the standard assumption adopted
in Ref. (Jin et al., 2018b). The local landscape in this case “flat” and the Hessian has only a small
spectral radius. The classical gradient descent will move slowly while the variance of the probability
distribution corresponding to the Gaussian wavepacket still has a large increasing rate. If we evolve
the Gaussian wavepacket for a long enough time period and measure its position, we will obtain a
vector that indicates a negative curvature direction with high probability.

However, Algorithm 6 using quantum simulation and noisy oracle in Assumption C.2 suffers two
deviation terms from the ideal Gaussian evolution: the deviation of F from quadratic potential and
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the noise of f from F . We have to bound the resulting deviation on the distribution from the perfect
Gaussian wavepacket. We specify the constant cr as the ratio between the wavepacket variance and
the radius of the simulation region. By choosing a small enough cr, the simulation region is much
larger than the range of the wavepacket. As the function F is ℓ-smooth, the spectral norm of the
Hessian matrix is upper bounded by constant ℓ. The radius M of the simulation region is chosen as

M =
r0
Cr

=
4c2r
9T 4

(
δ0
3
· 1

d3/2 + 2c0dℓ(logT )α

)2

≤ 1. (245)

By choosing the above M , we can reach the following lemma.
Lemma C.4. Under the setting of Assumption C.2 and Theorem 1.4, let H be the Hessian matrix
of F at the saddle point xs, and define Fq(x) = f(xs) + (x− xs)

⊤H(x− xs) to be the quadratic
approximation of F near xs. We denote the measurement outcome from Algorithm 6 with noisy
function f and evolution te as a random variable ξ, and the measurement outcome from the ideal
potential Fq and the same evolution time te as another random variable ξ′. We define Pξ and Pξ′ to
be the distribution of ξ and ξ′. If the quantum wavepacket is confined to a hypercube with regions
length M , then

TV (Pξ,Pξ′) ≤

(√
dρ′

2
+

2cf ℓ
′

√
r0

(log te)
α

)
dMt2e
2

, (246)

where TV (·, ·) denotes the total variation distance, α is an absolute constant, and cf is an F -related
constant.

Proof. We first define the following notations:

A = −r
2
0

2
∆, B =

1

r20
f, B′ =

1

r20
Fq, (247)

H = A+B, H ′ = A+B′, E = H −H ′ =
1

r20
(f − Fq). (248)

We denote |Φ(t)⟩ = e−iHt |Φ0⟩ and |Φ′(t)⟩ = e−iH′t |Φ0⟩ be the wave functions at time t for two
different Hamiltonians H and H ′. By Lemma A.5, we have∥∥eiEte |Φ′(te)⟩ − |Φ(te)⟩

∥∥ ≤ t2e
2

sup
τ1,τ2∈[0,te]

∥∥∥[H ′, E]e−iEτ2e−iH′τ1 |Φ0⟩
∥∥∥ (249)

=
t2e
2

sup
τ1∈[0,te]

∥∥∥[H ′, E]e−iH′τ1 |Φ0⟩
∥∥∥. (250)

Denoting |Ψ(τ1)⟩ = e−iH′τ1 |Φ0⟩, we have

sup
τ1∈[0,te]

∥[H ′, E]Ψ(τ1)∥ =
1

2
sup

τ1∈[0,t]

∥[−∆, f − Fq]Ψ(τ1)∥ (251)

=
1

2
sup

τ1∈[0,te]

∥−∆(f − Fq)Ψ(τ1)− 2∇(f − Fq) · ∇Ψ(τ1)∥ (252)

≤ 1

2
∥∆(f − Fq)∥∞ + ∥∇(f − Fq)∥∞∥∇Ψ(τ1)∥. (253)

The first equality follows from [H ′, E] = [A + B′, E] and B′ commutes with E. The second
equality follows from [−∆, g]φ = −(∆g)φ − 2∇g · ∇φ for any smooth function φ and g. As we
assume F is ρ-Hessian Lipschitz, we can deduce that

|∆(f(x)− Fq(x))| =
∣∣tr(∇2f(x)−∇2F (x)

)∣∣+ ∣∣tr(∇2F (x)−∇2Fq(x)
)∣∣ (254)

=
∣∣tr(∇2f(x)−∇2F (x)

)∣∣+ ∣∣tr(∇2F (x)−∇2F (xs)
)∣∣ (255)

≤ d
∥∥∇2f(x)−∇2F (x)

∥∥+ d
∥∥∇2F (x)−∇2F (xs)

∥∥ (256)

≤ d3/2(ρ+ ρf )M (257)

= d3/2ρ′M. (258)
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Next, we bound the term on the gradient of f − Fq:

∥∇(f − Fq)∥∞ ≤ sup
x
∥∇f(x)−∇Fq(x)∥ (259)

= sup
x
∥∇f(x)−∇F (x)∥+ sup

x
∥∇F (x)−H(x− xs)∥ (260)

≤ sup
x
∥∇f(x)−∇F (x)∥+ sup

x
∥∇F (x)∥+ sup

x
∥H(x− xs)∥ (261)

≤ (2ℓ+ ℓf )Md−1/2 (262)

= 2ℓ′Md−1/2 (263)

The upper bound for supτ1∈[0,te] ∥∇Ψ(τ1)∥ is given by Lemma A.6. Combining the above bounds,
we obtain ∥∥eiEte |Φ′(te)⟩ − |Φ(te)⟩

∥∥ ≤ (√dρ′
2

+
2cf ℓ

′
√
r0

(log te)
α

)
dMt2e
2

. (264)

In the following part, we denote Ψ′ for Ψ′(te) and |Ψ′′⟩ = e−iEte |Ψ′⟩. We observe that |Ψ′|2 =

|Ψ′′|2 as e−iEte is a scalar function with modulus 1. Thus

TV (Pξ,Pξ′) = TV (|Ψ|2, |Ψ′′|2) (265)

=
1

2

∫
x

∣∣∣ΨΨ† −Ψ′′Ψ
′′†
∣∣∣dx (266)

≤ 1

2

∫
x

∣∣(Ψ−Ψ′′)Ψ†∣∣dx+
1

2

∫
x

∣∣Ψ′′(Ψ−Ψ′′)†
∣∣dx (267)

≤ (
1

2

∫
x

|Ψ−Ψ′′|2dx)1/2 (268)

≤

(√
dρ′

2
+

2cf ℓ
′

√
r0

(log te)
α

)
dMt2e
2

. (269)

Lemma C.4 indicates that the actual perturbation given by quantum simulation ξ ∼ Pξ deviates from
the ideal Gaussian case ξ′ ∼ Pξ′ for at most Õ(Md3/2t2e). In Algorithm 7 with te = T = O(log d),
such deviation can be bounded for the choice of M in (245). Based on Lemma C.4, we reach the
following lemma.

Lemma C.5 (Adaptive version of Proposition 1, Ref. (Zhang et al., 2021)). Suppose (F, f) satisfies
Assumption C.2. For arbitrary δ0, we choose the following parameters:

η =
1

ℓ′
,T =

8

(ρ′ϵ)1/4
log

(
ℓ′

δ0
√
ρ′ϵ

(d+ 2 log

(
3

δ0

)
)

)
, (270)

F =
2

81

√
ϵ3

ρ′
, r0 =

4c3r
9T 4

(
δ0
3
· 1

d3/2 + 2c0dℓ′(logT )α

)2

, (271)

where ρ′, ℓ′, cr, c0, and α are the same with Theorem C.3. Then, for an saddle point xs with
∥F (xs)∥ ≤ ϵ and λmin(∇2F (xs)) ≤ −

√
ρϵ, Algorithm 7 provides a perturbation that decreases

the function value for at least F with probability at least 1− δ0.

We now prove Theorem C.3.

Proof. We set the zeroth-order noise bound ν ≤ cνδ
2ϵ6/d4 for small enough cν and let the total

total iteration number to be

T = 4max

{
2B

F
,
4B

ηϵ2

}
= Õ

(
B

ϵ2
· log d

)
. (272)

50



Published as a conference paper at ICLR 2025

We first consider the iteration number at saddle points xt with ∥F (xt)∥ ≤ ϵ and λmin(∇2F (xt)) ≤
−√ρϵ. According to Lemma C.5, each iteration of Algorithm 7 in this case will decrease the func-
tion value for at least T . Under this assumption, Algorithm 6 can be called for at most T/2 times,
for otherwise the function value decreases greater than 2B ≥ F (x∗) − F (x0). The failure proba-
bility is bounded by

81

√
ρ

ϵ3
· δ0 =

δ

2
. (273)

Except for these iterations that quantum simulation is implemented to add perturbations, we still
have T/2 iterations. We consider the iterations with large gradients ∥F (xt)∥ ≥ ϵ. In each iteration,
the function value will decrease at least ηϵ2/4. There can be at most T/4 iterations, for otherwise
the function value decreases greater than 2B ≥ F (x∗)− F (x0). The failure probability is bounded
by

4B

ηϵ2
· δ0 = δ/2. (274)

In summary, with probability at least 1 − δ, there are at most T/2 iterations when the quantum
simulation is called and at most T/4 iterations when the gradient is large. There are thus at least
T/4 iterations resulting in ϵ-SOSP of F .

The number of queries can be decomposed into two parts, the number of queries required for gradient
estimations, denoted by T1, and the number of queries required for quantum simulations, denoted
by T2. For the first part, we have

T1 = O(T ) = Õ

(
B

ϵ2
· log d

)
. (275)

For T2, the number of queries is given by Lemma C.1 as

T2 = Õ

(
B

ϵ2
· log2 d

)
. (276)

The total query complexity T1 + T2 is bounded by

Õ

(
B

ϵ2
· log2 d

)
. (277)

D EXISTENCE OF EXAMPLE WITH QUANTUM ADVANTAGE USING
QUANTUM TUNNELLING WALK

In Theorem 1.8, we have proved that when the noise under Assumption 1.1 increases to ν ≥ Θ(ϵ1.5),
we can find a hard instance for any classical or quantum algorithm even using exponentially many
queries. Although the noise bound for the quantum algorithms is the same, there might be quantum
speedup for a specific instance. In this section, we provide a candidate for this argument under some
proper additional assumptions.

We set the constant µ = 300. For the target function F , we still consider the following function
defined in (88):

F (x) := h(sinx) + ∥sinx∥2, (278)

where h(x) := h1(v
⊤x) · h2

(√
∥x∥2 − (v⊤x)2

)
, and

h1(x) = g1(µx), g1(x) = (−16|x|5 + 48x4 − 48|x|3 + 16x2) · I{|x| < 1}, (279)

h2(x) = g2(µx), g2(x) = (3x4 + 8|x|3 + 6x2 − 1) · I{|x| < 1}. (280)
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We adopt the construction in Ref. (Liu et al., 2023) for the construction of noisy function f . In the
following, we denote R to be the radius of the hyperball where the main construction is. We also
choose v uniformly in the unit sphere. We define two regions W− = B(0, a) and W+ = ⊭v,⅁
with b ≥ a. We choose a and b such that W− and W+ are in B(0, R). We denote the region
Sv := {x|x ∈ B(0, R), |x · v| ≤ w}, where w is chosen in [0,

√
3w/2). We define

Bv := {x|w < x · v < 2b− w,
√
∥x∥2 − (x · v)2 <

√
a2 − w2,x /∈W− ∪W+}. (281)

The construction of f is given by

f =


1
2ω

2∥x∥2, x ∈W−,
1
2ω

2∥x− 2bv∥2, x ∈W+,

H1, x ∈ Bv,

H2, otherwise.

(282)

We choose 0 < ω2a2/2 ∼ H1 ≪ H2. There are two local minima for f in (282), 0 and 2bv. We
can verify that the function pair (F, f) satisfies the following properties.

• supx ∥f − F∥∞ ≤ Õ(1).
• F is O(d)-bounded, O(1)-Hessian Lipschitz, and O(1)-gradient Lipschitz.

We apply the same scaling in the main text as

F̃ (x) := ϵrF
(x
r

)
, (283)

f̃(x) := ϵrf
(x
r

)
, (284)

where r =
√
ϵ/ρ. According to Ref. (Liu et al., 2023), quantum tunneling walk can provide a

speedup for finding SOSP of f using ground states containing information of v and W+.
Lemma D.1 (Proposition 4.2 and Theorem 4.1, Ref. (Liu et al., 2023)). Assume we start from point
0 and we are provided with knowledge that 0 is a local minimum. We know local ground states
associated with W− and W+. By properly choosing the parameter a, b, H1, and H2, quantum
tunneling walk can find the another local minima with high probability using O(poly(d)) queries
while any classical algorithm requires Ω(edB) queries to zeroth-order oracle f .

Under the setting of this paper, we consider choosing R such that 2bv is also a local minimum of F .
Notice that 0 is not a local minimum of F , our goal is to find the ϵ-SOSP near the local minima 2bv
of F taking queries to noisy oracle f in (7). We can reach the following corollary using Lemma D.1.

Corollary D.2. Consider the hard instance (F̃ , f̃) defined by (283), (284), and a proper chosen R
such that 2bv is also a local minimum of F̃ . There exists a choice of parameters a, b, H1, and H2

such that a quantum algorithm starting at 0 can find an ϵ-SOSP of F̃ with high probability using
O(poly(d)) queries to the noisy f̃ and proper initial ground state. However, any classical algorithm
with proper initial ground states requires Ω(edB) queries.

The above corollary demonstrates that if we assume that we have some ground states revealing
information above v, the quantum algorithm can provide an exponential speedup in solving a special
hard instance (F, f) that satisfies Assumption 1.1. It is worthwhile to mention that the additional
assumption on the local ground state is essential for this speedup and the quantum algorithm also
requires query complexity that is exponential in d without such assumption (Liu et al., 2023).
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