
Appendix

A Extended Related Work

There are two groups of approaches to debias click data for ranking. The first is to model user’s
behavior to infer relevance from biased click signals, known as click models [16, 21, 20, 9, 8]. How-
ever, most click models focus on predicting clicks, rather than optimizing the ranking performance
[29, 4]. They are usually separated from the LTR frameworks, and the relevance inference is an af-
terthought [4]. The second group tries to directly learn unbiased ranking models from biased clicks,
known as unbiased learning to rank (ULTR). Joachims et al. [29] proposed the inverse propensity
scoring (IPS) method to reweigh the click signals based on the reciprocal of observation proba-
bilities (called propensity scores) and provide an unbiased estimate of the ranking objective. The
propensity scores are estimated by randomized experiments [29, 42], which hurt users’ experience,
unfortunately. To address it, Agarwal et al. [3] and Fang et al. [17] proposed to do intervention
harvest by exploiting click logs with multiple ranking models. Nevertheless, they have a relatively
narrow scope of application due to the strict assumption to construct interventional sets. Recently,
some researchers proposed to jointly estimate relevance and bias [43, 4, 23, 25, 14]. Similar to
them, our proposed method could jointly train the ranking model and observation model without
intervention.

On the other side, researchers developed models to deal with all kinds of click bias, based on ULTR
framework. According to types of bias, they can be divided into several categories: (1) position bias,
where the bias only depends on position [43, 4, 23, 11, 14]; (2) selection bias, where some documents
have a zero probability of being observed since it is ranked below a certain cutoff [34, 35, 36];
(3) trust bias, where users are more likely to click incorrectly on higher-ranked items [2, 41]; (4)
contextual bias, where the observation bias varies from query to query [17, 39]; (5) interactional bias,
where the observation is influenced by interactions among clicks in the same ranking list [15, 40].
However, these types of work mainly model the observation bias at a group level and ignore the
characteristics of each document.

B Proofs of the Theorems

B.1 Proof of Theorem 1

Let σp(x) =
ôp(x)
op(x)

, for each p ∈ [n] we have:

β ≥ ||∇x (ôp(x))||
= ||∇x (σp(x)op(x))||
= ||op(x)∇x (σp(x)) + σp(x)∇x (op(x))||
≥ ||op(x)∇x (σp(x))|| − ||σp(x)∇x (op(x))||.

This implies the following bounds:

||∇x (σp(x))|| ≤
β + ||σp(x)∇x (op(x))||

op(x)
≤ β + ασp(x)

op(x)
.

Now by using the condition in Theorem 1, we obtain:

15
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σp(x2)
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σp(x2)
(σp(x1)− σp(x2))

= 1 +
1

σp(x2)

∫ x1

x2

∇(σp(x)) · dx

≤ 1 +
1

σp(x2)

{
inf

γ∈Γ(x1,x2)

∫
γ

||∇(σp(x))||||dx||
}

≤ 1 +
1

σp(x2)

{
inf

γ∈Γ(x1,x2)

∫
γ

β + ασp(x)

op(x)
||dx||

}
≤ 1 +

1

σp(x2)

ôp(x2)

op(x2)

(
r(x1)

r(x2)
− 1

)
= 1 +

(
r(x1)

r(x2)
− 1

)
=

r(x1)

r(x2)
.

In the above deviation, the second inequality uses the upper bound of ||∇x (σp(x))||, and the third
inequality uses the condition in Theorem 1.

Now by using Assumption 1, we have:

r̂(x1) =
r(x1)op(x1)

ôp(x1)
=

r(x1)

σp(x1)
≥ r(x2)

σp(x2)
=

r(x2)op(x2)

ôp(x2)
= r̂(x2),

where the inequality uses the above conclusion, and the first and the last equality uses Assumption
1. This implies the desired bound.

B.2 Proof of Theorem 2

Given that this model is a β-LOM, by using Assumption 1 we have

β ≥ |ôp(x1)− ôp(x2)|
||x1 − x2||

=

∣∣∣ cp(x1)
r̂(x1)

− cp(x2)
r̂(x2)

∣∣∣
||x1 − x2||

,∀p ∈ [n],

where cp(x) = op(x)r(x). Now by taking the lower bound on the right side over p, we obtain:

∃r̂(x1), r̂(x2) ∈ [0, 1], s.t.,

β ≥ sup
p

∣∣∣ cp(x1)
r̂(x1)

− cp(x2)
r̂(x2)

∣∣∣
||x1 − x2||

=

∣∣∣∣∣∣ c(x1)
r̂(x1)

− c(x2)
r̂(x2)

∣∣∣∣∣∣
∞

||x1 − x2||
.

By taking m = 1
r̂(x1)

and n = 1
r̂(x1)

, we can obtain the desired result.

B.3 Proof of Theorem 3

From the condition, we have:

t ≥ inf
p

r(x1)

r(x2)

(
1 +

α||x1 − x2||
op(x2)

)
≥ inf

p

r(x1)

r(x2)

(
1 +

|op(x2)− op(x1)|
op(x2)

)
≥ inf

p

r(x1)op(x1)

r(x2)op(x2)
(4)

Let ô′p(x; t) denote the estimation of a t-BOM. From the definition, we have:

ô′p(x; t) = E [1 + (ôp(x)− 1) γ] = t+ (1− t)ôp(x),∀p ∈ [n]
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Note that 0 ≤ ôp(x) ≤ 1, we obtain t ≤ ô′p(x; t) ≤ 1. By using Assumption 1, we have

r(x)op(x) ≤ r̂(x) ≤ min

{
1

t
r(x)op(x), 1

}
. (5)

This shows that t can reduce the upper bound of r̂(x). Therefore, we obtain:

∃p ∈ [n], s.t., r̂(x1) ≤
1

t
r(x1)op(x1) ≤ r(x2)op(x2) ≤ r̂(x2),

where the first and the last inequality uses the Eq.(5), and the second inequality uses the Eq.(4).

B.4 Proof of Theorem 4

From Eq.(5), we obtain:

r̂(x) ≥ sup
p∈[n]

{r(x)op(x)} = r(x) sup
p∈[n]

op(x),

r̂(x) ≤ inf
p∈[n]

{1
t
r(x)op(x)} =

1

t
r(x) inf

p∈[n]
op(x).

Therefore we have: r(x) sup
p∈[n]

op(x) ≤ 1
t r(x) inf

p∈[n]
op(x), which implies the desired bound.

C Experiments

C.1 Further details of datasets

Table 2 shows the characteristics of the two datasets we used, Yahoo! and Istella-S.

Table 2: Dataset statistics

Yahoo! Istella-S

queries 28,719 32,968
documents 700,153 3,406,167
features 700 220
relevance levels 5 5

C.2 Training details

Table 3: Final hyper-parameters used for LBD in all ex-
periment settings

Experiment setting Final hyperparameter
Dataset Ranker η λ t

Yahoo! DNN

0 100 0.1
0.1 100 0.1
0.2 100 0.1
0.3 1 0.1
0.4 1 0.3
0.5 1 0.3
0.6 1 0.4

Linear 0.1 10000 0.1

Istella-S DNN 0.1 100 0.1
Linear 0.1 100 0.4

We combined the baselines with the
same ranking models: DNN and Lin-
ear, where the implementation and hy-
perparameters are the same as ULTRA
framework [5, 6]. To make fair com-
parisons, all the baselines and our mod-
els shared the same number of the hid-
den layer. The only difference between
our model and baselines was the out-
put dimensions. We trained these meth-
ods with a batch size of 256. We used
SGD to train the Linear Ranker, and
AdaGrad to train the DNN Ranker. For
LBD, we selected the hyper-parameter
λ from {1, 100, 10000} and t from
{0.1, 0.2, 0.3, 0.4}. For convenience,
we expanded the output dimension of
the ranking model, and separate them into the ranking model (with 2 outputs representing the mean
and the variance) and observation models (with 2n outputs representing each observation distribu-
tion on each positions) as our implementation, since they have the same input data.
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We used nDCG@k (k = 1, 3, 5, 10) and ARP as the performance metrics. Each model was trained
for 10,000 epochs, and we adopted the hyperparameters with the best results based on nDCG@10
tested on the validation set. We run each experiment 5 times and reported the average results testing
on the test set. Final hyper-parameters used in all experiment settings are listed in Table 3, and the
full experimental results are listed in Table 4.

Table 4: Comparison of different methods on two datasets (η = 0.1). Significant performance
improvement/degradation compared to the best baseline (marked in bold) by t-test is denoted as +/-
(p-value < 0.05) or ++/-- (p-value < 0.005).

Yahoo!

Ranker Method ARP nDCG@k
k = 1 k = 3 k = 5 k = 10

DNN

Labeled Data 3.536 0.692 0.696 0.716 0.764
DLA 3.579 0.679 0.686 0.708 0.755

Vectorization 3.593 0.674 0.681 0.704 0.751
PairDebias 3.620 0.654 0.663 0.688 0.739

RegressionEM 3.627 0.669 0.676 0.697 0.746
Click Data 3.616 0.657 0.665 0.690 0.741
Unlimited 3.585 0.671− 0.680− 0.703− 0.752−

LBDLips 3.572 0.680 0.689+ 0.710+ 0.757++

LBDBer 3.576 0.676 0.684 0.706− 0.754
LBD 3.563+ 0.683+ 0.690++ 0.712++ 0.758++

Linear

Labeled Data 3.603 0.671 0.676 0.698 0.747
DLA 3.623 0.660 0.666 0.690 0.741

Vectorization 3.633 0.663 0.667 0.690 0.741
PairDebias 3.631 0.653 0.662 0.686 0.738

RegressionEM 3.695 0.627 0.639 0.666 0.720
Click Data 3.629 0.650 0.661 0.686 0.737
Unlimited 3.710−− 0.630−− 0.640−− 0.665−− 0.719−−

LBDLips 3.623+ 0.669+ 0.672++ 0.695++ 0.744++

LBDBer 3.623+ 0.662 0.668 0.691 0.742
LBD 3.616++ 0.671+ 0.674++ 0.696++ 0.746++

Istella-S

Ranker Method ARP nDCG@k
k = 1 k = 3 k = 5 k = 10

DNN

Labeled Data 1.386 0.671 0.689 0.666 0.729
DLA 1.551 0.642 0.613 0.637 0.696

Vectorization 1.573 0.637 0.609 0.632 0.691
PairDebias 1.496 0.618 0.596 0.624 0.691

RegressionEM 2.064 0.592 0.556 0.573 0.623
Click Data 1.475 0.636 0.610 0.636 0.701
Unlimited 1.611−− 0.635 0.606 0.630 0.687−−

LBDLips 1.631−− 0.640− 0.610 0.631− 0.686−−

LBDBer 1.464+ 0.645++ 0.618++ 0.643++ 0.707++

LBD 1.469 0.651++ 0.623++ 0.648++ 0.709++

Linear

Labeled Data 1.560 0.629 0.602 0.627 0.689
DLA 1.687 0.612 0.584 0.609 0.667

Vectorization 1.637 0.611 0.587 0.612 0.672
PairDebias 1.554 0.604 0.582 0.613 0.678

RegressionEM 2.214 0.552 0.522 0.542 0.594
Click Data 1.564 0.610 0.588 0.616 0.680
Unlimited 2.121− 0.542 0.514− 0.536− 0.592−

LBDLips 1.761−− 0.619+ 0.583− 0.605−− 0.659−−

LBDBer 1.586−− 0.613+ 0.590 0.617 0.679
LBD 1.581−− 0.616++ 0.591++ 0.618++ 0.680
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