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ABSTRACT

The widespread enthusiasm for deep learning has recently expanded into the do-
main of tabular data. Recognizing that the advancement in deep tabular methods
is often inspired by classical methods, e.g., integration of nearest neighbors into
neural networks, we investigate whether these classical methods can be revitalized
with modern techniques. We revisit a differentiable version of K-nearest neighbors
(KNN) — Neighbourhood Components Analysis (NCA) — originally designed
to learn a linear projection to capture semantic similarities between instances, and
seek to gradually add modern deep learning techniques on top. Surprisingly, our
implementation of NCA using SGD and without dimensionality reduction already
achieves decent performance on tabular data, in contrast to the results of using ex-
isting toolboxes like scikit-learn. Further equipping NCA with deep representations
and additional training stochasticity significantly enhances its capability, being
on par with the leading tree-based method CatBoost and outperforming existing
deep tabular models in both classification and regression tasks on 300 datasets. We
conclude our paper by analyzing the factors behind these improvements, including
loss functions, prediction strategies, and deep architectures. The code is available
at https://github.com/LAMDA-Tabular/TALENT.

1 INTRODUCTION

Tabular data, characterized by its structured format of rows and columns representing individual
examples and features, is prevalent in domains like healthcare (Hassan et al., 2020) and e-commerce
(Nederstigt et al., 2014). Motivated by the success of deep neural networks in fields like computer
vision and natural language processing (Simonyan & Zisserman, 2015; Vaswani et al., 2017; Devlin
et al., 2019), numerous deep models have been developed for tabular data to capture complex feature
interactions (Cheng et al., 2016; Guo et al., 2017; Popov et al., 2020; Arik & Pfister, 2021; Gorishniy
et al., 2021; Katzir et al., 2021; Chang et al., 2022; Chen et al., 2022; Hollmann et al., 2023).

Despite all these attempts, deep tabular models still struggle to match the accuracy of traditional
machine learning methods like Gradient Boosting Decision Trees (GBDT) (Prokhorenkova et al.,
2018; Chen & Guestrin, 2016) on tabular tasks. Such a fact raises our interest: to excel in tabular
tasks, perhaps deep methods could draw inspiration from traditional methods. Indeed, several deep
tabular methods have demonstrated promising results along this route. Gorishniy et al. (2021);
Kadra et al. (2021) consulted classical tabular techniques to design specific MLP architectures and
weight regularization strategies, significantly boosting MLPs’ accuracy on tabular datasets. Recently,
inspired by non-parametric methods (Mohri et al., 2012), TabR (Gorishniy et al., 2024) retrieves
neighbors from the entire training set and constructs instance-specific scores with a Transformer-like
architecture, leveraging relationships between instances for tabular predictions.

We follow this route but from a different direction. Instead of incorporating classic techniques into the
already complex deep models, we perform an Occam’s-razor-style exploration — starting from the
classic method and gradually increasing its complexity by adding modern deep techniques. We hope
such an exploration could reveal the key components from both worlds to excel in tabular tasks.

To this end, we build upon TabR (Gorishniy et al., 2024) and choose to start from a classical,
differentiable version of K-nearest neighbors (KNN) named Neighbourhood Component Analysis
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Figure 1: Performance-Efficiency-Memory comparison between MODERNNCA and existing methods on
classification (a) and regression (b) datasets. Representative tabular prediction methods, including the classical
methods (in green), the parametric deep methods (in blue), and the non-parametric/neighborhood-based deep
methods (in red), are investigated, based on their records over 300 datasets in Table 1 and Figure 2. The average
rank among these eight methods is used as the performance measure. We calculate the average training time (in
seconds) and the memory usage of the model (denoted by the radius of the circles, where the larger the circle,
the bigger the model). MODERNNCA achieves high training speed compared to other deep tabular models and
has a relatively lower memory usage. L-NCA is our improved linear version of NCA.

(NCA) (Goldberger et al., 2004). NCA optimizes the KNN prediction accuracy of a target instance
by learning a linear projection, ensuring that semantically similar instances are closer than dissimilar
ones. Its differentiable nature makes it a suitable backbone for adding deep learning modules.

Our first attempt is to re-implement NCA, using deep learning libraries like PyTorch (Paszke et al.,
2019). Interestingly, by replacing the default L-BFGS optimizer (Liu & Nocedal, 1989) in scikit-
learn (Pedregosa et al., 2011)1 with stochastic gradient descent (SGD), we already witnessed a notable
accuracy boost on tabular tasks. Further enabling NCA to learn a linear projection into a larger
dimensionality (hence not dimensionality reduction) and use a soft nearest neighbor inference rule
(Salakhutdinov & Hinton, 2007; Frosst et al., 2019) bring another gain, making NCA on par with
deep methods like MLP. (See section 6 for detailed ablation studies and discussions.)

Our second attempt is to replace the linear projection with a neural network for nonlinear embeddings.
As NCA’s objective function involves the relationship of an instance to all the other training instances,
a naive implementation would incur a huge computational burden. We thus employ a stochastic
neighborhood sampling (SNS) strategy, randomly selecting a subset of training data as candidate
neighbors in each mini-batch. We show that SNS not only improves training efficiency but enhances
the model’s generalizability, as it introduces additional stochasticity (beyond SGD) in training.

Putting things together, along with the use of a pre-defined feature transform on numerical tabular
entries (Gorishniy et al., 2022), our deep NCA implementation, MODERNNCA, achieves remarkably
encouraging empirical results. Evaluated on 300 tabular datasets, MODERNNCA is ranked first in
classification tasks and just shy of CatBoost (Prokhorenkova et al., 2018) in regression tasks while
outperforming other tree-based and deep tabular models. Figure 1 further shows that MODERNNCA
well balances training efficiency (with lower training time compared to other deep tabular models),
generalizability (with higher average accuracy), and memory efficiency. We also provide a detailed
ablation study and discussion on MODERNNCA, comparing different loss functions, training and
prediction strategies, and deep architectures, aiming to systematically reveal the impacts of deep
learning techniques on NCA, after its release in 2004. In sum, our contributions are two-folded:

• We revisit the classical nearest neighbor approach NCA and systematically explore ways to improve
it using modern deep learning techniques.

• Our proposed MODERNNCA achieves outstanding performance in both classification and regres-
sion tasks, essentially serving as a strong deep baseline for tabular tasks.

Remark. In conducting this study, we become aware of several prior attempts to integrate neural
networks into NCA (Salakhutdinov & Hinton, 2007; Min et al., 2010). However, their results and

1We note that the original NCA paper (Goldberger et al., 2004) did not specify the optimizer.
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applicability were downplayed by tree-based methods, and we attribute this to the less powerful
deep-learning techniques two decades ago (e.g., restricted Boltzmann machine). In other words, our
work can be viewed as a revisit of these attempts from the lens of modern deep-learning techniques.

While our study is largely empirical, we believe it offers valuable insights. For years, nearest-
neighbor-based methods (though with solid theoretical foundations) have been overlooked in tabular
data, primarily due to their low competitiveness with tree-based methods. We hope that our thor-
ough exploration of deep learning techniques for nearest neighbors and the outcome — a strong
tabular baseline on par with the leading CatBoost (Prokhorenkova et al., 2018) — would revitalize
nearest neighbors and open up new research directions, ideally theoretical foundations behind the
improvements.

2 RELATED WORK

Learning with Tabular Data. Tabular data is a common format across various applications such
as click-through rate prediction (Richardson et al., 2007) and time-series forecasting (Ahmed et al.,
2010). Tree-based methods like XGBoost (Chen & Guestrin, 2016), LightGBM (Ke et al., 2017),
and CatBoost (Prokhorenkova et al., 2018) have proven effective at capturing feature interactions
and are widely used in real-world applications. Recognizing the ability of deep neural networks to
learn feature representations from raw data and make nonlinear predictions, recent methods have
applied deep learning techniques to tabular models (Cheng et al., 2016; Guo et al., 2017; Popov et al.,
2020; Borisov et al., 2022; Arik & Pfister, 2021; Kadra et al., 2021; Katzir et al., 2021; Chen et al.,
2022; Zhou et al., 2023). For instance, deep architectures such as residual networks and transformers
have been adapted for tabular prediction (Gorishniy et al., 2021; Hollmann et al., 2023). Moreover,
data augmentation strategies have been introduced to mitigate overfitting in deep models (Ucar et al.,
2021; Bahri et al., 2022; Rubachev et al., 2022). Deep tabular models have demonstrated competitive
performance across a wide range of applications. However, researchers have observed that deep
models still face challenges in capturing high-order feature interactions as effectively as tree-based
models (Grinsztajn et al., 2022; McElfresh et al., 2023; Ye et al., 2024a).

NCA Variants. Nearest Neighbor approaches make predictions based on the relationships between
an instance and its neighbors in the training set. Instead of identifying neighbors using raw features,
NCA employs a differentiable Nearest Neighbor loss function (also known as soft-NN loss) to learn
a linear projection for better distance measurement (Goldberger et al., 2004). Several works have
extended this idea with alternative loss functions (Globerson & Roweis, 2005; Tarlow et al., 2013),
while others explore NCA variants for data visualization (Venna et al., 2010). A few nonlinear
extensions of NCA, developed over a decade ago, demonstrated a bit improved performance on
image classification tasks using architecture like restricted Boltzmann machines (Salakhutdinov
& Hinton, 2007; Min et al., 2010). For visual tasks, the entanglement effects of soft-NN loss on
deep learned representations have been analyzed (Frosst et al., 2019), and variants of this loss have
been applied to few-shot learning scenarios (Vinyals et al., 2016; Laenen & Bertinetto, 2021). The
effectiveness of NCA variants in fields like image recognition suggests untapped potential (Wu et al.,
2018), motivating our revisit of this method with modern deep learning techniques for tabular data.

Metric Learning. NCA is a form of metric learning (Xing et al., 2002), where a projection is learned
to pull similar instances closer together and push dissimilar ones farther apart, leading to improved
classification and regression performance with KNN (Davis et al., 2007; Weinberger & Saul, 2009;
Kulis, 2013; Bellet et al., 2015; Ye et al., 2020). Initially applied to tabular data, metric learning
has evolved into a valuable tool, particularly when integrated with deep learning techniques, across
domains like image recognition (Schroff et al., 2015; Sohn, 2016; Song et al., 2016; Khosla et al.,
2020), person re-identification (Yi et al., 2014; Yang et al., 2018), and recommendation systems (Hsieh
et al., 2017; Wei et al., 2023). Recently, LocalPFN (Thomas et al., 2024) incorporates KNN with
TabPFN. TabR (Gorishniy et al., 2024) introduced a feed-forward network with a custom attention-
like mechanism to retrieve neighbors for each instance, enhancing tabular prediction tasks. Despite
its promising results, the high computational cost of neighborhood selection and the complexity of its
architecture limit the practicality of TabR. In contrast, our paper revisits NCA and proposes a simpler
deep tabular baseline that maintains efficient training speeds without sacrificing performance.
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3 PRELIMINARY

In this section, we first introduce the task learning with tabular data. We then provide a brief overview
of NCA (Goldberger et al., 2004) and TabR (Gorishniy et al., 2024).

3.1 LEARNING WITH TABULAR DATA

A labeled tabular dataset is formatted as N examples (rows in the table) and d features/attributes
(columns in the table). An instance xi is depicted by its d feature values. There are two kinds of
features: the numerical (continuous) ones and categorical (discrete) ones. Given xi,j as the j-th
feature of instance xi, we use xnum

i,j ∈ R and xcat
i,j to denote numerical (e.g., the height of a person) and

categorical (e.g., the gender of a person) feature values of an instance, respectively. The categorical
features are usually transformed in a one-hot manner, i.e., xcat

i,j ∈ {0, 1}Kj , where the index of
value 1 indicates the category among the Kj options. We assume the instance xi ∈ Rd w.l.o.g.
and will explore other encoding strategies later. Each instance is associated with a label yi, where
yi ∈ [C] = {1, . . . , C} in a multi-class classification task and yi ∈ R in a regression task.

Given a tabular dataset D = {(xi, yi)}Ni=1, we aim to learn a model f on D that maps xi to its label
yi. We measure the quality of f by the joint likelihood over D, i.e., maxf

∏
(xi,yi)∈D Pr(yi | f(xi)).

The objective could be reformulated in the form of negative log-likelihood of the true labels,

min
f

∑
(xi,yi)∈D

− log Pr(yi | f(xi)) =
∑

(xi,yi)∈D

ℓ(yi, ŷi = f(xi)) , (1)

or equivalently, the discrepancy between the predicted label ŷi and the true label yi measured by the
loss ℓ(·, ·), e.g., cross-entropy. We expect the learned model f is able to extend its ability to unseen
instances sampled from the same distribution as D. f could be implemented with classical methods
such as SVM and tree-based approaches or MLPs.

3.2 NEAREST NEIGHBOR FOR TABULAR DATA

KNN is one of the most representative non-parametric tabular models for classification and regression
— making predictions based on the labels of the nearest neighbors (Bishop, 2006; Mohri et al., 2012).
In other words, the prediction f(xi;D) of the model f conditions on the whole training set. Given
an instance xi, KNN calculates the distance between xi and other instances in D. Assume the K
nearest neighbors are N (xi;D) = {(x1, y1), . . . , (xK , yK)}, then, the label yi of xi is predicted
based on those labels in the neighbor set N (xi;D). For classification task ŷi is the majority voting
of labels in N (xi;D) while is the average of those labels in regression tasks.

The distance dist(xi,xj) in KNN determines the set of nearest neighbors N (xi;D), which
is one of its key factors. The Euclidean distance between a pair (xi,xj) is dist(xi,xj) =√
(xi − xj)⊤(xi − xj). A distance metric that reveals the characteristics of the dataset will improve

KNN and lead to more accurate predictions (Xing et al., 2002; Davis et al., 2007; Weinberger & Saul,
2009; Bellet et al., 2015).

Neighbourhood Component Analysis (NCA). NCA focuses on the classification task (Goldberger
et al., 2004). According to the 1NN rule, NCA defines the probability that xj locates in the
neighborhood of xi by

Pr(xj ∈ N (xi;D) | xi,D,L) =
exp

(
−dist2(L⊤xi, L

⊤xj)
)∑

(xl,yl)∈D,xl ̸=xi
exp

(
−dist2(L⊤xi, L⊤xl)

) . (2)

Then, the posterior probability that an instance xi is classified as the class yi is:

Pr(ŷi = yi | xi,D,L) =
∑

(xj ,yj)∈D∧yj=yi

Pr(xj ∈ N (xi;D) | xi,D,L) . (3)

L ∈ Rd×d′
is a linear projection usually with d′ ≤ d, which reduces the dimension of the raw input.

Therefore, the posterior that an instance xi belongs to the class yi depends on its similarity (measured
by the negative squared Euclidean distance in the space projected by L) between its neighbors from
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class yi in D. Equation 3 approximates the expected leave-one-out error for xi, and the original
NCA maximizes the sum of Pr(ŷi = yi | xi,D,L) over all instances in D. Instead of considering
all instances in the neighborhood equally, this objective mimics a soft version of KNN, where all
instances in the training set are weighted (nearer neighbors have more weight) for the nearest neighbor
decision. In the test stage, KNN is applied to classify an unseen instance in the space projected by L.

TabR is a deep tabular method that retrieves the neighbors of an instance xi using deep neural
networks. Specifically, TabR identifies the K nearest neighbors in the embedding space and defines
the contribution of each neighbor (xj , yj) to xi as follows: s(xi,xj , yj) = Wyj +T(L⊤E(xj)−
L⊤E(xi)). Here, T is a transformation composed of a linear layer without bias, dropout, ReLU
activation, and another linear layer. E represents the encoder module for TabR, while W is a
linear projection and yj is the encoded label vector of yj . The instance-specific scores are then
aggregated as: R(xj , yj ,xi) =

∑
(xj ,yj)∈D αj ·s(xi,xj , yj), where the weight αj is defined as αj ∝

{−dist(L⊤E(xj), L
⊤E(xi))} and normalized using a softmax function. Finally, R(xj , yj ,xi) is

added to E(xi), and the result is processed by a prediction module to obtain ŷi. For further details,
including instance-level layer normalization, numerical attribute encoding, and the selection strategy
for K nearest neighbors in the summation, please refer to Gorishniy et al. (2024).

4 MODERNNCA

Given the promising results of TabR on tabular data, we take the original NCA as our starting
point and gradually enhance its complexity by incorporating modern deep learning techniques. This
Occam’s-razor-style exploration may allow us to identify the key components that lead to strong
performance in tabular tasks, drawing insights from both classical and deep tabular models. In the
following, we introduce our proposed MODERNNCA (abbreviated as M-NCA) through two key
attempts to improve upon the original NCA.

4.1 THE FIRST ATTEMPT

We generalize the projection in Equation 2 by introducing a transformation ϕ, which maps xi into a
space with dimensionality d′. To remain consistent with the original NCA, we initially define ϕ as a
linear layer, i.e., ϕ(xi) = Linear(xi), consisting of a linear projection and a bias term.

Learning Objective. Assume the label yj is continuous in regression tasks and in one-hot form for
classification tasks. We modify Equation 3 as follows:

ŷi =
∑

(xj ,yj)∈D

exp
(
−dist2(ϕ(xi), ϕ(xj))

)∑
(xl,yl)∈D,xl ̸=xi

exp
(
−dist2(ϕ(xi), ϕ(xl))

)yj . (4)

This formulation ensures that similar instances (based on their distance in the embedding space
mapped by ϕ) yield closer predictions. For classification, Equation 4 generalizes Equation 3, pre-
dicting the label of a target instance by computing a weighted average of its neighbors across the
C classes. Here, ŷi ∈ RC is a probability vector representing {Pr(ŷi = c | xi,D, ϕ)}c∈[C]. In
regression tasks, the prediction is the weighted sum of scalar labels from the neighborhood.

By combining Equation 3 with Equation 1, we define ℓ in Equation 1 as negative log-likelihood for
classification and mean square error for regression. This classification loss is also known as the soft
Nearest Neighbor (soft-NN) loss (Frosst et al., 2019; Khosla et al., 2020) for visual tasks. Different
from Goldberger et al. (2004); Salakhutdinov & Hinton (2007) that used sum of probability as in the
original NCA’s loss, we find sum of log probability provides better performance on tabular data.

Prediction Strategy. For a test instance, the original NCA projects all instances using the learned ϕ
and applies KNN to classify the test instance based on its neighbors from the entire training set D.
Instead of employing the traditional “hard” KNN approach, we adopt the soft-NN rule (Equation 4)
to estimate the label posterior, applicable to both classification and regression. Specifically, in the
classification case, Equation 4 produces a C-dimensional vector, with the index of the maximum
value indicating the predicted class. For regression, ŷi directly corresponds to the predicted value.

Furthermore, we do not limit the mapping to dimensionality reduction. The linear projection ϕ can
transform xi into a higher-dimensional space if necessary. We also replace the L-BFGS optimizer
(used in scikit-learn) with stochastic gradient descent (SGD) for better scalability and performance.
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These modifications result in a notable accuracy boost for NCA on tabular tasks, making it competitive
with deep models like MLP. We refer to this improved version of (linear) NCA as L-NCA.

4.2 THE SECOND ATTEMPT

We further enhance L-NCA by incorporating modern deep learning techniques, leading to our strong
deep tabular baseline, MODERNNCA (M-NCA).

Architectures. To introduce nonlinearity into the model, we first enhance the transformation ϕ in
subsection 4.1 with multiple nonlinear layers appended. Specifically, we define a one-layer nonlinear
mapping as a sequence of operators following Gorishniy et al. (2021), consisting of one-dimensional
batch normalization (Ioffe & Szegedy, 2015), a linear layer, ReLU activation, dropout (Srivastava
et al., 2014), and another linear layer. In other words, the input xi will be transformed by

g(xi) = Linear (Dropout ((ReLU (Linear (BatchNorm (xi)))))) . (5)

One or more layers of such a block g can be appended on top of the original linear layer in sub-
section 4.1 to implement the final nonlinear mapping ϕ, which further incorporates an additional
batch normalization at the end to calibrate the output embedding. Empirical results show that batch
normalization outperforms other normalization strategies, such as layer normalization (Ba et al.,
2016), in learning a robust latent embedding space.

For categorical input features, we use one-hot encoding, and for numerical features, we leverage
PLR (lite) encoding, following TabR (Gorishniy et al., 2024). PLR encoding combines periodic
embeddings, a linear layer, and ReLU to project instances into a high-dimensional space, thereby
increasing the model’s capacity with additional nonlinearity (Gorishniy et al., 2022). PLR (lite)
restricts the linear layer to be shared across all features, balancing complexity and efficiency.

Stochastic Neighborhood Sampling. SGD is commonly applied to optimize deep neural networks —
a mini-batch of instances is sampled, and the average instance-wise loss in the mini-batch is calculated
for back-propagation. However, the instance-wise loss based on the predicted label in Equation 4
involves pairwise distances between an instance in the mini-batch and the entire training set D,
imposing a significant computational burden.

To accelerate the training speed of MODERNNCA, we propose a Stochastic Neighborhood Sampling
(SNS) strategy. In SNS, a subset D̂ of the training set D is randomly sampled for each mini-batch,
and only distances between instances in the mini-batch and this subset are calculated. In other words,
D̂ replaces D in Equation 4, and only the labels in D̂ are used to predict the label of a given instance
during training. During inference, however, the model resumes the searches for neighbors using the
entire training set D. Unlike deep metric learning methods that only consider pairs of instances within
a sampled mini-batch (Schroff et al., 2015; Song et al., 2016; Sohn, 2016), i.e., D̂ is the mini-batch,
our SNS approach retains both efficiency and diversity in the selection of neighbor candidates.

We empirically observed that SNS not only increases the training efficiency of MODERNNCA, since
fewer examples are utilized for back-propagation, but also improves the generalization ability of
the learned mapping ϕ. We attribute the improvement to the fact that ϕ is learned on more difficult,
stochastic prediction tasks. The resulting ϕ thus becomes more robust to the potentially noisy and
unstable neighborhoods in the test scenario. The influence of sampling ratio and other sampling
strategies are investigated in detail in the experiments.

Distance Function. Empirically, we find that using the Euclidean distance instead of its squared form
in Equation 4 leads to further performance improvements. Therefore, we adopt Euclidean distance as
the default. Comparisons of various distance functions are provided in the appendix.

5 EXPERIMENTS

5.1 SETUPS

We evaluate MODERNNCA on 300 datasets from a recently released large-scale tabular bench-
mark (Ye et al., 2024a), comprising 120 binary classification datasets, 80 multi-class classification
datasets, and 100 regression datasets sourced from UCI, OpenML (Vanschoren et al., 2014), Kaggle,
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Figure 2: The critical difference diagrams based on the Wilcoxon-Holm test with a significance level
of 0.05 to detect pairwise significance for both classification tasks (evaluated using accuracy) and
regression tasks (evaluated using RMSE).

Table 1: The Win/Tie/Lose ratio between MODERNNCA and 20 comparison methods across the 300
datasets, covering both classification (based on accuracy) and regression tasks (based on RMSE).
This ratio is determined using a significant t-test at a 95% confidence interval.

Method Win Tie Lose Method Win Tie Lose

SVM 0.78 0.13 0.10 KNN 0.79 0.07 0.14
SwitchTab (Wu et al., 2024) 0.88 0.09 0.03 DANets (Chen et al., 2022) 0.74 0.18 0.08
NODE (Popov et al., 2020) 0.70 0.15 0.15 Tangos (Jeffares et al., 2023) 0.66 0.20 0.14
TabCaps (Chen et al., 2023) 0.64 0.23 0.13 PTaRL (Ye et al., 2024b) 0.62 0.22 0.16
DCNv2 (Wang et al., 2021) 0.62 0.20 0.18 MLP (Gorishniy et al., 2021) 0.61 0.23 0.15
ResNet (Gorishniy et al., 2021) 0.59 0.30 0.11 MLP-PLR (Gorishniy et al., 2022) 0.57 0.27 0.16
RandomForest 0.57 0.18 0.26 ExcelFormer (Chen et al., 2024) 0.56 0.28 0.16
SAINT (Somepalli et al., 2022) 0.55 0.28 0.18 FT-T (Gorishniy et al., 2021) 0.50 0.28 0.23
XGBoost (Chen & Guestrin, 2016) 0.49 0.19 0.32 LightGBM Ke et al. (2017) 0.45 0.23 0.32
TabR (Gorishniy et al., 2024) 0.41 0.36 0.23 CatBoost (Prokhorenkova et al., 2018) 0.38 0.27 0.35

and other repositories. The dataset collection in Ye et al. (2024a) was carefully curated, consider-
ing factors such as data diversity, representativeness, and quality mentioned in Kohli et al. (2024);
Tschalzev et al. (2024).

Evaluation. We follow the evaluation protocol from Gorishniy et al. (2021; 2024). Each dataset is
randomly split into training, validation, and test sets in proportions of 64%/16%/20%, respectively.
For each dataset, we train each model using 15 different random seeds and calculate the average
performance on the test set. For classification tasks, we consider accuracy (higher is better), and for
regression tasks, we use Root Mean Square Error (RMSE) (lower is better). To summarize overall
model performance, we report the average performance rank across all methods and datasets (lower
ranks are better), following Delgado et al. (2014); McElfresh et al. (2023). Additionally, we conduct
statistical t-tests to determine whether the differences between MODERNNCA and other methods are
statistically significant.

Comparison Methods. We compare MODERNNCA with 20 approaches among three different
categories, including classical parametric methods, parametric deep models, and neighborhood-based
methods. For brevity, only 8 of them are shown in Figure 1.

Implementation Details. We pre-process all datasets following Gorishniy et al. (2021). For all deep
methods, we set the batch size as 1024. The hyper-parameters of all methods are searched based on the
training and validation set via Optuna (Akiba et al., 2019) following Gorishniy et al. (2021; 2024) over
100 trials. We set the ranges of the hyper-parameters for the compared methods following Gorishniy
et al. (2021; 2024) and their official codes. The best-performed hyper-parameters are fixed during the
final 15 seeds. Since the sampling rate of SNS effectively enhances the performance and reduces the
training overhead, we treat it as a hyper-parameter and search within the range of [0.05, 0.6]. For
additional implementation details, please refer to Liu et al. (2024).

5.2 MAIN RESULTS

The comparison results between MODERNNCA, L-NCA, and six representative methods are pre-
sented in Figure 1. All methods are evaluated across three aspects: performance (average performance
rank), average training time, and average memory usage across all datasets. While some models,
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such as TabR, exhibit strong performance, they require significantly longer training times. In contrast,
MODERNNCA strikes an excellent balance across various evaluation criteria.

We also applied the Wilcoxon-Holm test (Demsar, 2006) to assess pairwise significance among
all methods for both classification and regression tasks. The results are shown in Figure 2. For
classification tasks (shown in the left part of Figure 2), MODERNNCA consistently outperforms tree-
based methods like XGBoost in most cases, demonstrating that its deep neural network architecture
is more effective at capturing nonlinear relationships. Furthermore, compared to deep tabular models
such as FT-T and MLP-PLR, MODERNNCA maintains its superiority. When combined with the
results in Figure 1, these observations validate the effectiveness of MODERNNCA. It achieves
performance on par with the leading tree-based method, CatBoost, while outperforming existing deep
tabular models in both classification and regression tasks across 300 datasets.

Additionally, we calculated the Win/Tie/Lose ratio between MODERNNCA and other comparison
methods across the 300 datasets. If two methods show no significant difference (based on a t-test
at a 95% confidence interval), they are considered tied. Otherwise, one method is declared the
winner based on the comparison of their average performance. Given the no free lunch theorem, it is
challenging for any single method to statistically outperform others across all cases. Nevertheless,
MODERNNCA demonstrates superior performance in most cases. For instance, MODERNNCA
outperforms TabR on 123 datasets, ties on 108 datasets, and does so with a simpler architecture
and shorter training time. Compared to CatBoost, MODERNNCA wins on 114 datasets and ties on
81 datasets. These results indicate that MODERNNCA serves as an effective and competitive deep
learning baseline for tabular data.

6 ANALYSES AND ABLATION STUDIES OF MODERNNCA

In this section, we analyze the sources of improvement in MODERNNCA. All experiments are
conducted on a tiny tabular benchmark comprising 45 datasets, as introduced in (Ye et al., 2024a).
The benchmark consists of 27 classification datasets and 18 regression datasets. The average rank of
various tabular methods on this benchmark closely aligns with the results observed on the larger set
of 300 datasets, as detailed in (Ye et al., 2024a).

6.1 IMPROVEMENTS FROM NCA TO L-NCA

We begin with the original NCA (Goldberger et al., 2004), using the scikit-learn implementation (Pe-
dregosa et al., 2011). We progressively replace key components in NCA and assess the resulting
performance improvements. Since the original NCA only targets classification tasks, this subsection
focuses on the 27 classification datasets in the tiny benchmark. To ensure a fair comparison, we
re-implement the original NCA using the deep learning framework PyTorch (Paszke et al., 2019),
denoting this baseline version as “NCAv0”.

Does Projection to a Higher Dimension Help? In the scikit-learn implementation, NCA is con-
strained to perform dimensionality reduction, i.e., d′ ≤ d for the projection L. We remove this
constraint, allowing NCA to project into higher dimensions, and refer to this version as “NCAv1”.
Although higher dimensions by linear projections do not inherently enhance the representation ability
of the squared Euclidean distance, the improvements in average performance rank from NCAv0 to
NCAv1 (shown in Table 2) indicate that projecting to a higher dimension facilitates the optimization
of this non-convex problem and improves generalization.

Does Stochastic Gradient Descent Help? Stochastic gradient descent (SGD) is a widely used
optimizer in deep learning. To explore whether SGD can improve NCA’s performance, we replace
the default L-BFGS optimizer used in scikit-learn with SGD (without momentum) and denote this
variant as “NCAv2”. The performance improvements from NCAv1 to NCAv2 in Table 2 indicate that
SGD makes NCA more effective in tabular data tasks.

The Influence of the Loss Function. The original NCA maximizes the expected leave-one-out
accuracy as shown in Equation 3. In contrast, we minimize the negative log version of this objective
as described in Equation 1. Although the log version for classification tasks was mentioned in
Goldberger et al. (2004); Salakhutdinov & Hinton (2007), the original NCA preferred the leave-one-
out formulation for better performance. We denote the variant with the modified loss function as
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Table 2: Comparison of the average rank of (the linear) NCA variants and (the nonlinear) MLP
across 27 classification datasets in the tiny-benchmark. The check marks indicate the differences in
components among the variants. The average rank represents the overall performance of a method
across all datasets, with lower ranks indicating better performance. The final variant, NCAv4,
corresponds to the L-NCA version discussed in our paper.

High dimension SGD optimizer Log loss Soft-NN prediction Average rank

NCAv0 4.400
NCAv1 ✓ 3.708
NCAv2 ✓ ✓ 3.296
NCAv3 ✓ ✓ ✓ 3.192
NCAv4 ✓ ✓ ✓ ✓ 2.962

MLP ✓ ✓ ✓ 3.000

Table 3: Comparison among various configurations of the deep architectures used to implement ϕ,
where MLP is the default choice in MODERNNCA. We show the change in average performance
rank (lower is better) across the four configurations on the 45 datasets in the tiny benchmark.

MLP Linear w/ LayerNorm ResNet

Classification 2.333 2.778 2.537 2.352
Regression 2.333 2.433 2.528 2.806

“NCAv3”. As shown in Table 2 (NCAv2 vs. NCAv3), we find that using the log version slightly
improves performance, especially when combined with deep architectures used in MODERNNCA.
Further comparisons with alternative objectives are provided in the appendix.

The Influence of the Prediction Strategy. During testing, rather than applying a “hard” KNN with
the learned embeddings as in standard metric learning, we adopt a soft nearest neighbor (soft-NN)
inference rule, consistent with the training phase. This variant, using soft-NN for prediction, is
referred to as “NCAv4”, which is equivalent to the “L-NCA” version defined in subsection 4.1. Based
on the change of average performance rank in Table 2, this modified prediction strategy further
enhances NCA’s classification performance, bringing linear NCA surpassing deep models like MLP.

6.2 IMPROVEMENTS FROM L-NCA TO M-NCA

In this subsection, we investigate the influence of architectures and encoding strategies to systemati-
cally reveal the impacts of more deep learning techniques on NCA.

Linear vs. Deep Architectures. We first investigate the architecture design for ϕ in MODERNNCA,
where one or more layers of blocks g(·) are added on top of a linear projection. We consider three
configurations. First, we set ϕ as a linear projection, where the dimensionality of the projected
space is a hyper-parameter.2 Then we replace batch normalization with layer normalization in the
block. Finally, we add a residual link from the block’s input to its output. Based on classification
and regression performance across 45 datasets, we present the average performance rank of the four
variants in Table 3. To avoid limiting model capacity, hyper-parameters such as the number of layers
are determined based on the validation set. Further comparisons of fixed architecture configurations
are listed in the appendix.

We first compare NCA with MLP vs. with the linear counterpart in Table 3. In classification tasks,
MLP achieves a lower rank, highlighting the importance of incorporating nonlinearity into the
model. However, in regression tasks, the linear version performs well, with MLP showing only
small improvements. Although the linear projection is part of MLP’s search space, the linear version
benefits from a smaller hyper-parameter space, potentially resulting in better generalization.

As described in subsection 4.2, MLP uses batch normalization instead of layer normalization. Em-
pirically, batch normalization performs better on average in both classification and regression tasks
as shown in Table 3. Additionally, we compare the MLP implementation with and without residual
connections. While performing similarly in classification, MLP shows superiority, especially in
regression. Therefore, we adopt the MLP implementation in Table 3 for MODERNNCA.

2This “linear” version also includes the SNS sampling strategy and the nonlinear PLR encoding.
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Table 4: Comparison among MODERNNCA, MLP (Gorishniy et al., 2021), and TabR (Gorishniy
et al., 2024) with or without PLR encoding for numerical features. We show the change in average
performance rank across the four configurations on the 45 datasets in the tiny-benchmark.

w/o PLR w/ PLR

MLP TabR MODERNNCA MLP TabR MODERNNCA

Classification 4.556 3.148 3.037 4.480 3.037 2.630
Regression 4.444 3.167 3.389 3.333 3.444 3.222
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Figure 3: The change of average performance rank with different sampling rates among {10%, 30%,
50%, 80%, 100%} in SNS strategy. The dotted line denotes the rank of MODERNNCA.

Influence of the PLR Encoding. PLR encoding transforms numerical features into high-dimensional
vectors, enhancing both model capacity and nonlinearity. To assess the impact of PLR encoding, we
compare MODERNNCA with MLP and TabR, both with and without PLR encoding. Following a
similar setup as in Table 3, we present the change in average performance rank across six methods in
both classification and regression tasks in Table 4.

Without PLR encoding, TabR outperforms MLP, and MODERNNCA shows stronger performance in
classification while performing slightly worse in regression (although still better than MLP). PLR
encoding improves all methods, as evidenced by the decrease in average performance rank. In the
right section of Table 4, we observe that MODERNNCA performs best in both classification and
regression tasks, effectively leveraging PLR encoding better than TabR. This may be because the
nonlinearity introduced by PLR compensates for the relative simplicity of MODERNNCA. The
results also validate that the strength of MODERNNCA comes from a combination of its objective,
architecture, and training strategy, rather than relying solely on the PLR encoding strategy.

The Influence of Sampling Ratios. Due to the huge computational cost of calculating distances in
the learned embedding space, MODERNNCA employs a Stochastic Neighborhood Sampling (SNS)
strategy, where only a subset of the training data is randomly sampled for each mini-batch.Therefore,
the training time and memory cost is significantly reduced. We experiment with varying the pro-
portion of sampled training data while keeping other hyper-parameters constant, then evaluate the
corresponding test performance. As shown in Figure 3, sampling 30%-50% of the training set yields
better results for MODERNNCA than using the full set. SNS not only improves training efficiency but
also enhances the model’s generalization ability. The plots also indicate that, with a tuned sampling
ratio, MODERNNCA achieves a superior performance rank (dotted lines in the figure).

7 CONCLUSION

Leveraging neighborhood relationships for predictions is a classical approach in machine learning.
In this paper, we revisit and enhance one of the most representative neighborhood-based methods,
NCA, by incorporating modern deep learning techniques. The improved MODERNNCA establishes
itself as a strong baseline for deep tabular prediction tasks, offering competitive performance while
reducing the training time required to access the entire dataset. Extensive results demonstrate that
MODERNNCA frequently outperforms both tree-based and deep tabular models in classification and
regression tasks. Our detailed analyses shed light on the key factors driving these improvements,
including the enhancements introduced to the original NCA.
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The Appendix consists of two sections:

• Appendix A: Datasets and implementation details.
• Appendix B: Additional experimental results.

APPENDIX A DATASETS AND IMPLEMENTATION DETAILS

In this section, we outline the preprocessing steps applied to the datasets before training, as well as
descriptions of the datasets used.

A.1 DATA PRE-PROCESSING

We follow the data preprocessing pipeline from Gorishniy et al. (2021) for all methods. For numerical
features, we apply standardization by subtracting the mean and scaling the values. For categorical
features, we use one-hot encoding to convert them for model input.

A.2 DATASET INFORMATION

We use the recent large-scale tabular benchmark from Ye et al. (2024a), which includes 300 datasets
covering various domains such as healthcare, biology, finance, education, and physics. The dataset
sizes range from 1,000 to 1 million instances. More detailed information on the datasets can be found
in Ye et al. (2024a).

For each dataset, we randomly sample 20% of the instances to form the test set. The remaining 80%
is split further, with 20% of which held out as a validation set. The validation set is used to tune
hyper-parameters and apply early stopping. The hyper-parameters with which the model performs
best on the validation set are selected for final evaluation with the test set.

The datasets used in our analyses and ablation studies follow the tiny-benchmark in Ye et al. (2024a),
which consists of 45 datasets. The performance rankings of methods on this smaller benchmark are
consistent with those on the full benchmark, making it a useful probe for tabular analysis.

A.3 HARDWARE

The majority of experiments, including those measuring time and memory overhead, were conducted
on a Tesla V100 GPU.

A.4 POTENTIAL ALTERNATIVE IMPLEMENTATION

We explore an alternative strategy to learn the embedding ϕ in two steps. First, we apply Supervised
Contrastive loss (Sohn, 2016; Khosla et al., 2020), where supervision is generated within a mini-batch.
After learning ϕ, we use KNN for classification or regression during inference. In the regression
scenario, label values are discretized, and we refer to this baseline method as Tabular Contrastive
(TabCon). Empirically, we find that certain components of MODERNNCA, such as the Soft-NN
loss for prediction, cannot be directly applied to TabCon, even when ϕ is implemented using the
same nonlinear MLP as in MODERNNCA. Despite this, the TabCon baseline remains competitive
with FT-Transformer (FT-T), achieving average ranks similar to L-NCA in both classification and
regression tasks.

A.5 COMPARISON METHODS

We compare MODERNNCA with 20 approaches among three different categories. First, we consider
classical parametric methods, including linear SVM and tree-based methods like RandomForest,
XGBoost (Chen & Guestrin, 2016), LightGBM Ke et al. (2017), and CatBoost (Prokhorenkova
et al., 2018). Then, we consider parametric deep models, including NODE (Popov et al., 2020),
MLP (Kadra et al., 2021; Gorishniy et al., 2021), ResNet (Gorishniy et al., 2021), SAINT (Somepalli
et al., 2022), DCNv2 (Wang et al., 2021), FT-Transformer (Gorishniy et al., 2021), DANets (Chen
et al., 2022), MLP-PLR (Gorishniy et al., 2022), TabCaps (Chen et al., 2023), Tangos (Jeffares et al.,
2023), PTaRL (Ye et al., 2024b), SwitchTab (Wu et al., 2024), and ExcelFormer (Chen et al., 2024).
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Figure 4: Visualization of the embedding space of different methods.

For neighborhood-based methods, we consider KNN and TabR (Gorishniy et al., 2024). For a fair
comparison, the same PLR numerical encoding is applied in MLP-PLR, TabR, and MODERNNCA.

APPENDIX B ADDITIONAL EXPERIMENTS

B.1 VISUALIZATION RESULTS

To better analyze the properties of MODERNNCA, we visualize the learned embeddings ϕ(x) of
MODERNNCA, TabCon (mentioned in subsection A.4), and TabR using TSNE (Van der Maaten &
Hinton, 2008). As shown in Figure 4, all deep tabular methods transform the embedding spaces to
be more helpful for classification or regression compared to the raw features. The embedding space
learned by TabCon clusters samples of the same class together and separates samples of different
classes, often clustering same-class instances into a single cluster. However, it still struggles with
some hard-to-distinguish samples. TabR and MODERNNCA, on the other hand, divide samples of
the same class into multiple clusters, ensuring that similar samples are positioned closer to each other.
This strategy aligns with the prediction mechanism of KNN, where good performance is achieved by
clustering instances with similar neighbors together rather than into a single cluster. The embedding
space learned by MODERNNCA is more discriminative than that learned by TabR. The main reason
is that TabR leverages an additional architecture to modify the prediction score for each instance,
making the learned embedding space less discriminative compared to MODERNNCA.
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Table 5: Comparison among various distances used to implement Equation 4, where Euclid distance
is the default choice in MODERNNCA. We show the change in average performance rank (lower is
better) across the five configurations on the 45 datasets in the tiny-benchmark.

Euclid Dot Product Cosine Squared Euclid L1-Norm

Classification 2.593 3.852 2.111 2.630 3.769
Regression 2.500 3.222 2.529 2.722 3.889

Table 6: Comparison of different loss functions. The log loss used in MODERNNCA, the original
NCA’s summation loss, the MCML loss, and the t-distribution loss. The change in average perfor-
mance rank (lower is better) is presented across these four configurations on the 45 datasets in the
tiny-benchmark.

MODERNNCA NCA MCML t-distribution

Classification 2.074 2.519 3.074 2.333
Regression 1.500 - - 1.540

B.2 ADDITIONAL ABLATION STUDIES

The Influence of Distance Functions. The predicted label of a target instance xi is determined
by the label of its neighbors in the learned embedding space projected by ϕ. The distance function
dist(·, ·) is the key to determining the pairwise relationship between instances in the embedding
space and influences the weights in Equation 4.

In MODERNNCA, we choose Euclidean distance

distEUC(ϕ(xi), ϕ(xj)) =
√
(ϕ(xi)− ϕ(xj))⊤(ϕ(xi)− ϕ(xj)) = ∥ϕ(xi)− ϕ(xj)∥2 . (6)

We also utilize other distance functions, e.g., the squared Euclidean distance, dist2EUC(ϕ(xi), ϕ(xj)),
the ℓ1-norm distance

dist(ϕ(xi), ϕ(xj)) = ∥ϕ(xi)− ϕ(xj)∥1 , (7)
the (negative) cosine similarity dist(ϕ(xi), ϕ(xj)) = −(x⊤

i xj)/(∥xi∥2∥xj∥2), and the (negative)
inner product dist(ϕ(xi), ϕ(xj)) = −ϕ(xi)

⊤ϕ(xj). The results using different distance functions
are listed in Table 5, which contains the average performance rank over 45 datasets among the five
variants. On average, Euclidean distance performs well across both classification and regression tasks.
While cosine distance yields better results on classification datasets (with an average performance
rank of 4.5939 compared to MODERNNCA and 20 other methods across 300 datasets, please
check Figure 2 for details), its advantage diminishes on regression tasks.

Other Possible Loss Functions. NCA (Goldberger et al., 2004) originally explored two loss
functions: one that maximizes the sum of probabilities in Equation 3, and another that minimizes the
sum of log probabilities as in Equation 1. The former was selected in the original implementation of
NCA due to its better performance. We also investigated several alternative loss functions for NCA.
For instance, MCML (Globerson & Roweis, 2005) minimizes the KL-divergence between the learned
embedding in Equation 2 and a constructed ground-truth label distribution for each instance, but it
only applies to classification tasks. Another variant is the t-distributed NCA (Min et al., 2010), which
uses a heavy-tailed t-distribution to measure pairwise similarities in the objective function. We tested
both MCML and the t-distribution loss functions in MODERNNCA, and the results are summarized
in Table 6, showing the average ranks across 45 datasets. The log objective in Equation 1 performs
best for classification tasks and slightly outperforms the t-distribution variant in regression tasks.

The Influence of Sampling Strategy. As mentioned before, SNS randomly samples a subset of
training data for each mini-batch when calculating the loss of Equation 4. We also investigate whether
we could further improve the classification/regression ability of the model when we incorporate richer
information during the sampling process, e.g., the label of the instances.

We consider two other sampling strategies in addition to the fully random one we used before. First
is class-wise random sampling, which means that given a proportion, we sample from each class
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Table 7: Comparison of different sampling strategies: “Random”, “Label”, and “Distance” represent
MODERNNCA’s naive uniform sampling, class-wise random sampling, and distance-based sampling,
respectively. The change in average performance rank (lower is better) is presented across these three
configurations on the 45 datasets in the tiny-benchmark.

Random Label Distance

Classification 1.869 2.230 1.901
Regression 1.508 - 1.492

Table 8: Comparison of various architecture choices based on a fixed 2-layer MLP. We only tune
architecture-independent hyper-parameters for different variants. The change in average performance
rank (lower is better) is shown across three configurations (default, Layer Norm, and Residual) on the
45 datasets in the tiny-benchmark.

MLP w/ LayerNorm ResNet

Classification 1.905 2.048 2.048
Regression 1.813 2.313 1.875

in the training set and combine them together. This strategy takes advantage of the training label
information and keeps the instances from all classes that will exist in the sampled subset. Besides,
we also consider the sampling strategy based on the pairwise distances between instances. Since
the neighbors of an instance may contribute more (with larger weights) in Equation 4, so given a
mini-batch, we first calculate the Euclidean distance between instances in the batch and all the training
set with the embedding function ϕ in the current epoch. Then we sample the training set based on
the reciprocal of the pairwise distance value. In detail, given an instance xi, we provide instance-
specific neighborhood candidates and xj in the training set is sampled based on the probability
∼ 1/(dist(ϕ(xi), ϕ(xj)))

τ . τ is a non-negative hyper-parameter to calibrate the distribution. The
distance calculation requires forward passes of the model ϕ over all the training instances, and the
instance-specific neighborhood makes the loss related to a wide range of the training data. Therefore,
the distance-based sampling strategy has a low training speed and high computational burden.

The comparison results, i.e., the average performance rank, among different sampling strategies on 45
datasets are listed in Table 7. We empirically find the label-based sampling strategy cannot provide
further improvements. Although the distance-based strategy helps in certain cases, the improvements
are limited. Taking a holistic consideration of the performance and efficiency, we choose to use the
vanilla random sampling in MODERNNCA.

Comparison between Different Deep Architectures. Unlike the ablation studies in subsection 6.2,
where we fixed the model family and tuned detailed hyper-parameters (such as the number of layers
and network width) based on the validation set, here we fix the main architecture as a two-layer MLP
and only tune architecture-independent hyper-parameters, such as the learning rate.

With this base MLP architecture, we evaluate three variants: the base MLP, one with batch normaliza-
tion replaced by layer normalization, and one with an added residual link. The average ranks of the
three variants across 45 datasets are presented in Table 8. We observe that the basic MLP remains a
better choice compared to the versions with a residual link or layer normalization.

B.3 RUN-TIME AND MEMORY USAGE ESTIMATION

We make a run-time and memory usage comparison in Figure 1. Here are the steps that we take to
perform the estimation. First, we tuned all models on the validation set for 100 iterations, saving the
optimal parameters ever found. Next, we ran the models for 15 iterations with the tuned parameters
and saved the best checkpoint on the validation set. The run-time for the models was estimated using
the average time taken by the tuned model to run one seed in the training and validation stage.

We present the average results of run-time and memory usage estimation across the full benchmark
(300 datasets) in Table 9.
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Table 9: Training time and memory usage estimation for different tuned models over 300 datasets.
The average rank represents the mean performance ranking of these models based on the performance
metrics (RMSE for regression and accuracy for classification).

Model M-NCA L-NCA MLP MLP-PLR FT-T TabR XGBoost CatBoost

Training Time (s) 87.5 33.62 30.36 42.87 111.91 173.34 4.53 20.48
Memory Usage (GB) 5.36 1.42 1.15 2.37 4.98 10.13 0.84 1.06

Average Rank 4.56 6.30 7.53 6.94 6.29 5.36 5.62 4.61

B.4 FULL RESULTS ON THE BENCHMARK

Due to the extensive size of the results table, we have uploaded the complete performance metrics of
ModernNCA alongside other comparison methods, including RealMLP (Holzmüller et al., 2024), at
https://github.com/LAMDA-Tabular/TALENT/tree/main/results.

B.5 LIMITATIONS

ModernNCA has two possible limitations.

The first limitation pertains to handling tabular data with distribution shifts, as discussed in Rubachev
et al. (2025). Specifically, ModernNCA does not explicitly account for implicit temporal relationships
between instances and their neighbors during the neighborhood search. However, a recent study (Cai
& Ye, 2025) has shown that adopting alternative data-splitting protocols—such as random splits for
training and validation—significantly improves ModernNCA’s performance, making it competitive
with other methods. Furthermore, ModernNCA’s performance is further enhanced when incorporating
temporal embeddings.

The second limitation lies in handling high-dimensional datasets where d ≫ N (Jiang et al., 2024),
as observed in Ye et al. (2025). This challenge is well-known in classical metric learning (Shi
et al., 2014; Liu et al., 2015), where distance calculations become less reliable due to the curse of
dimensionality. High-dimensional data can lead to reduced neighborhood retrieval effectiveness,
impacting prediction accuracy. Potential mitigations include pre-processing with dimensionality
reduction techniques and leveraging ensemble approaches (Liu & Ye, 2025), which may help alleviate
the adverse effects of high dimensionality.
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