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A TECHNICAL DETAILS

A.1 PROOF OF PROPOSITION 1

Note that Le(f � �) is defined on a set of fixed examples in Ee. Since fe 2 arg minf 02F Le(f 0 � �)
and fe, f�e are in the same parametric family F , we have Re(�) = Le(f�e � �)� Le(fe � �) � 0.

A.2 PROOF OF PROPOSITION 2

Proof. Consider any representation �⇤ 2 �RGM. When there are only two environments {E1, E2},
we have F�2(�⇤) = F1(�⇤) and F�1(�⇤) = F2(�⇤) by definition. Thus the RGM constraint implies

F2(�
⇤) = F�1(�

⇤) ✓ F1(�
⇤) F1(�

⇤) = F�2(�
⇤) ✓ F2(�

⇤)

Therefore F1(�⇤) = F2(�⇤). Since the loss function is non-negative and F is bounded and closed,
F1(�⇤) 6= ;. Thus, \eFe(�⇤) = F1(�⇤) 6= ;. Now consider any f 2 \eFe(�⇤). By definition,

8e : Le(f � �⇤)  min
h2F

Le(h � �⇤)

By summing the above inequality over all environments, we have
X

e

Le(f � �⇤) 
X

e

min
h2F

Le(h � �⇤)  min
h2F

X

e

Le(h � �⇤)

Since
P

e Le(f � �⇤) = L(f � �⇤), the above inequality implies

L(f � �⇤)  min
h2F

L(h � �⇤) = L⇤
RGM = L⇤

IRM

Thus, f � �⇤ is an optimal solution under IRM and �⇤ 2 �IRM.

A.3 PROOF OF PROPOSITION 3

Proof. Let us recall our assumption of the data generation process:

p(x, y, e) = p(e)p(x|e)p(y|x, e); p(y|x, e) = p(y|x, e(x))

Under this assumption, we can rephrase the IRM objective as

min
f,�

EeEx|eEy|x,e`(y, f(�(x))) (17)

s.t. Ex|eEy|x,e`(y, f(�(x)))  min
fe

Ex|eEy|x,e`(y, fe(�(x))) 8e (18)

Given any label-preserving representation �(x), its ERM optimal predictor is

f⇤(�(x)) = arg min
f

Ey|�(x)`(y, f(�(x))) (19)

To see that f⇤ is ERM optimal, consider

min
f

EeEx|eEy|x,e`(y, f(�(x))) � EeEx|e min
f

Ey|x,e`(y, f(�(x))) (20)

= EeEx|e min
f

Ey|�(x)`(y, f(�(x))) (21)

= EeEx|eEy|�(x)`(y, f⇤(�(x))) (22)

where Eq.(21) holds because �(x) is label-preserving. Note that f⇤ satisfies the IRM constraint
because it is simultaneously optimal across all environments:

8e : min
fe

Ex|eEy|x,e`(y, fe(�(x))) � Ex|e min
fe

Ey|x,e`(y, fe(�(x))) (23)

= Ex|e min
f

Ey|�(x)`(y, f(�(x))) (24)

= Ex|eEy|�(x)`(y, f⇤(�(x))) (25)

Moreover, if � 2 �IRM is an optimal representation, f⇤ � � is an optimal solution of IRM.
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Table 3: Dataset statistics

QM9 HIV Tox21 BBBP Homology Stability
Training 4K 25243 6427 1580 12.3K 54K
Validation 18K 6352 568 206 736 2.4K
Testing 113K 3959 839 256 718 13K

A.4 STRUCTURED RGM UPDATE RULE

Since f̃e and � optimizes L(f̃e � �, Ẽe) in different directions, we also introduce a gradient reversal
layer between � and f̃e. The SRGM update rule is the following:

� �� ⌘r�L(f � �)� ⌘�gr�Lg(g � �)� ⌘�
X

e

X

 2{0,�}

r�Re(�+  )

f  f � ⌘rfL(f � �) g  g � ⌘rgLg(g � �)

fe  fe � ⌘rLe(fe � �) f̃e  f̃e � ⌘rL(f̃e � (�+ �)) 8e
f�e  f�e � ⌘rL�e(f�e � �) 8e

B EXPERIMENTAL DETAILS

B.1 MOLECULAR PROPERTY PREDICTION

Data The four property prediction datasets are provided in the supplementary material, along with
the training/validation/test splits. The size of each training environment, validation and test set are
listed in Table 3. The QM9, Tox21 and BBBP dataset are downloaded from Wu et al. (2018). The
HIV dataset is downloaded from the original source with EC50 measurements.2 The positive class is
defined as molecules with EC50 less than 1µM.

For the QM9 ablation study, we consider three training sets D8,D7,D6: molecules with no more
than 8, 7 and 6 atoms (increasing domain shift). When training on D8, we sample 20K compounds
from those with 9 atoms as our validation set and the rest for testing. This is less ideal for domain
generalization evaluation since we want the validation and test set to come from different domains.

Model Hyperparameters For the feature extractor �, we adopt the GCN implementation from Yang
et al. (2019). We use their default hyperparameters across all the datasets and baselines. Specifically,
the GCN contains three convolution layers with hidden dimension 300. The predictor f is a two-layer
MLP with hidden dimenion 300 and ReLU activation. The model is trained with Adam optimizer for
30 epochs with batch size 50 and learning rate ⌘ linearly annealed from 10�3 to 10�4.

For RGM, we explore � 2 {0.01, 0.1} for each dataset. For SRGM, we explore �g 2 {0.1, 1} for
the classification datasets while �g 2 {0.01, 0.1} for the QM9 dataset as �g = 1 causes gradient
explosion. For DANN and CDAN, its hyperparameter is the weight of the adversarial domain
classifier �d 2 {0.1, 1}. For MLDG, its hyperparameter is � 2 {0.1, 1}. Its inner optimization
also uses Adam optimizer with default learning rate ↵ = 10�3. For IRM, its hyperparameter is the
weight of its gradient penalty term � 2 {0.1, 1}. The suggested value � = 100 results in severe
gradient explosion problem. For CrossGrad, its hyperparameter is the weight of the domain classifier
�d 2 {0.1, 1}.

Scaffold Classification The scaffold classifier is trained by negative sampling since scaffolds are
structured objects. Specifically, for each molecule xi in a minibatch B, the negative samples are the
scaffolds {sk} of other molecules in the minibatch. The probability that xi is mapped to its correct
scaffold si is then defined as

p(si | xi, B) =
exp{g(�(xi))>g(�(si))}P

k2B exp{g(�(xi))>g(�(sk))}
(26)

2https://wiki.nci.nih.gov/download/attachments/158204006/aids_ec50_
may04.txt?version=1&modificationDate=1378736563000&api=v2
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Figure 5: Ablation study of SRGM. Left: SRGM performs better than SRGM-detach which does not
update � to optimize the scaffold classification loss Lg . Right: SRGM performs better than when the
scaffold classifier is a MLP instead of a linear layer.

The scaffold classification loss is �
P

i log p(si | xi, B) for a minibatch B. We choose the classifier
g to be a two-layer MLP with hidden dimension 300 and ReLU activation. As shown in Figure 5, the
two-layer MLP performs better than a simple linear function across multiple tasks.

B.2 PROTEIN MODELING

Data The homology and stability dataset are downloaded from Rao et al. (2019). The size of each
training environment, validation and test set are listed in Table 3.

Model hyperparameters For both tasks, our protein encoder is a pre-trained BERT (Rao et al.,
2019). The predictor is a linear layer and the superfamily/topology classifier is a two-layer MLP
whose hidden layer dimension is 768. The model is fine-tuned with an Adam optimizer with learning
rate 10�4 and linear warm up schedule. The batch size is 16 and 20 for the homology and stability
task. For RGM and SRGM, we explore � 2 {0.01, 0.1} and �g 2 {0.1, 1} respectively. For the other
baselines, please refer to section B.1.

B.3 ADDITIONAL ABLATION STUDY

In section 3.2, we mentioned that the feature extractor � is updated to optimize the scaffold classi-
fication loss Lg. To study the effect of this design choice, we experiment with a variant of SRGM
called SRGM-detach, in which � is not updated to optimize the scaffold classification loss. As shown
in Figure 5, the performance of SRGM-detach is worse than SRGM in general. This is because the
scaffold classifier performs much better in SRGM and the gradient �(x) clearly corresponds to the
change of scaffold information.
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