Bridging the Gap from Asymmetry Tricks to
Decorrelation Principles in Non-contrastive
Self-supervised Learning

A Proof of Lemma 3.2

Proof of Lemma 3.2. We can expand the loss (4), i.e.,

£ = LB (W, !~ StopGrad(s)|2

as follows:

L= %Ez [tr(Wof ' f1TW,)) — 2tr(StopGrad(f2) f1 T W, ) + tr(StopGrad(f2 2 7))]

= %(tr(WpEm[ AW = 2tr(B, [StopGrad(f2) £ TIW,) + tr(E, [StopGrad(f2 £27)]))
_ %(tr(WpFlFlTWpT ) — 2tr(StopGrad (F2) F'TWT) + tx(StopGrad (F2F2T)]).  (20)

Weused B, [f1f1T] = FIF'T B, [f2f'T] = F?F'T, and E,[f2f?T] = F2F?T.
Taking derivatives of £ with respect to W, yields (7) since
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Note that there is no gradient at StopGrad(-). Similarly, the derivative with respect to F''/ is given
by (8) since
oL

1
SpT = 5 CWy W) = W P2 = W W, F! — W, F2. (22)

O

B Proof of Lemma 3.3

Proof of Lemma 3.3. Assume the mapping from the input € R” to f € RP is given by a linear
transformation f = Wxz. (Or maybe affine f = Wax+b.) We will use a ‘vectorized’ representation of

W = [wi,...,wp]" asw = [w{,...,w}]T € RPF. Now, suppose we change w as w — w + dw,
where we choose the gradient of L for dw as
oL
ow=——. 23
w 50 (23)
Then, f will change as f — f +  f accordingly, where
af af oL
of = —w=———. 24
f w’ " ow Ow 4
Since w affects the loss L only through f, we use chain rule to get
oL _ (of\' oL )
ow \ow/) Of
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Thus, substituting this into (24) yields

N GIANK)?
of = ow (8w> of (26)
Since f = [w{ z,...,whHa] T,
T
of ' DxDP
ow . (R ) (27)
2T
Thus,
z'x
af /0f\ " z'x
a—i ( aj; ) = . = (@ o)1 (28)
z'x
Substituting this into (26) yields
__ar(orytoL v 0L
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This states that when we move w in the direction dw of minimizing L, f moves in the direction of

—9L/df.

Next, we consider the effect of weight decay on w. Then dw becomes —9L/dw — nw. We consider
the change ¢ f' of f due to —nw. This is given by

of
! —_ —_— —
of' = 5o (=) (30)
Using (27),
xTwl
, xng
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In conclusion, when we move w as w — w — dL/0w — nw, f’s change ¢ f will be given by

oL
0f = ~(e'a) 7 —nf. (32)
Supposing x to be an ImageNet image, we may think x " ~ const. Assuming =" 2 = 1, the above
leads to F' = —0L/OF — nF, which is (11). O

C Behavior of IV, in Ours

We also examine how 17/}, changes in the optimization of our proposed method. Following the same
experimental setting as Sec. 5, we train a linear predictor with W, € R8192x8192 A¢ shown in Fig.
W, approaches to a diagonal matrix during training process.
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Figure 3: (a) W}, in our proposed method at different epochs of training time. (b) Normalized W, for
better visualization; each row of W), is divided by its diagonal entry.

22 D More Results with a Broader Range of Configuration

Table 5 shows more results of our method with different configurations and hyperparameter settings.

Table 5: Results of our method on more configurations.

PROJECTOR PREDICTOR LR  #PARTITION INV COEF Cov COEF Acc@l
4096-256 256 0.3 1 1 1 54.7
4096-256 256 0.3 1 10 1 56.8
4096-256 256 0.3 1 1 10 53.1
4096-256 256 0.3 8 10 1 63.8
4096-256 256 0.3 32 1 1 54.8
4096-256 256 0.3 32 10 1 63.7
2048-2048-2048 2048 0.3 1 1 0 50.9
2048-2048-2048 2048 0.3 1 1 1 61.4
2048-2048-2048 2048 0.3 1 1 25 60.6
2048-2048-2048 2048 0.3 1 25 1 60.1
2048-2048-2048 2048 0.3 1 25 25 63.4
2048-2048-2048 2048 0.3 8 25 1 67.3
2048-2048-2048 2048 0.3 8 25 25 66.2
2048-2048-2048 2048 0.3 32 10 1 66.6
2048-2048-2048 2048 0.3 32 25 1 67.3
2048-2048-2048 2048 0.3 32 50 1 67.2
2048-2048-2048 2048 0.45 1 1 1 63.9
2048-2048-2048 2048 0.45 1 25 25 64.7
2048-2048-2048 2048 0.45 32 10 1 64.3
8192-8192-8192 8192 0.3 8 25 8 69.0

33

s E Standardization layer

35 Feature standardization is computed as following, independent to partitions:

Std(fl) — fZ /“‘LZ,SyTLC (33)

0i,sync

3 ,where f; is the ith entry of f, 1t; syne and o sync are synchronized sth entry of mean and deviation
37 respectively among devices.



s F Pseudo-code of our proposed method

Algorithm 1 Our Proposed Method, PyTorch-like

#
#
#
#
#
#

h: backbone + projector
w: weight of predictor

D: projector output size
C_in, C_cov: coefficients

In this pseudo-code, we assume number of partitions equals to

number of gpus, and the following code is processed on a single
gpu.

for x in loader:

x1, x2 = augl(x), aug2(x)
£1, £2 = h(x1), h(x2)
f1, f2 std(f1), std(£2)

# Processed by predictor
pl, p2 =f1 @ w.T, f2 @ w.T
inv_loss = (p1-£2).pow(2) .mean() + (p2-f1).pow(2) .mean()

# Note: we do not collect cov from

# different gpus

wtw = w.T Q@ w

n = pl.size(0) # Batch size per gpu

covl =pl.T@pl /n

cov2 = p2.T @ p2 / n

cov_loss = (covli-wtw).pow(2).sum() + (cov2-wtw).pow(2).sum()

loss = C_in * inv_loss + C_cov / D * cov_loss
loss.backward()
update (f,w)

def std(f): # Standarization

return SyncBN(affine=False) (f)
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