
Bridging the Gap from Asymmetry Tricks to
Decorrelation Principles in Non-contrastive

Self-supervised Learning

A Proof of Lemma 3.21

Proof of Lemma 3.2. We can expand the loss (4), i.e.,2

L =
1

2
Ex[‖Wpf

1 − StopGrad(f2)‖2]

as follows:3

L =
1

2
Ex[tr(Wpf

1f1>W>p)− 2tr(StopGrad(f2)f1>W>p) + tr(StopGrad(f2f2>))]

=
1

2
(tr(WpEx[f

1f1>]W>p)− 2tr(Ex[StopGrad(f2)f1>]W>p) + tr(Ex[StopGrad(f2f2>)]))

=
1

2
(tr(WpF

1F 1>W>p)− 2tr(StopGrad(F 2)F 1>W>p) + tr(StopGrad(F 2F 2>)])). (20)

We used Ex[f
1f1>] = F 1F 1>, Ex[f

2f1>] = F 2F 1>, and Ex[f
2f2>] = F 2F 2>.4

Taking derivatives of L with respect to Wp yields (7) since5

∂L
∂Wp

=
1

2
(2WpF

1F 1>)− F 2F 1> =WpF
1F 1> − F 2F 1>. (21)

Note that there is no gradient at StopGrad(·). Similarly, the derivative with respect to F 1′ is given6

by (8) since7

∂L
∂F 1

=
1

2
(2W>p WpF

1)−W>p F 2 =W>p WpF
1 −W>p F 2. (22)

8

B Proof of Lemma 3.39

Proof of Lemma 3.3. Assume the mapping from the input x ∈ RP to f ∈ RD is given by a linear10

transformation f =Wx. (Or maybe affine f =Wx+b.) We will use a ‘vectorized’ representation of11

W = [w1, . . . , wD]> as w = [w>1 , . . . , w
>
D]> ∈ RDP . Now, suppose we change w as w → w+ δw,12

where we choose the gradient of L for δw as13

δw = −∂L
∂w

. (23)

Then, f will change as f → f + δf accordingly, where14

δf =
∂f

∂w
δw = − ∂f

∂w

∂L

∂w
. (24)

Since w affects the loss L only through f , we use chain rule to get15

∂L

∂w
=

(
∂f

∂w

)>
∂L

∂f
. (25)

Submitted to 36th Conference on Neural Information Processing Systems (NeurIPS 2022). Do not distribute.

Thus, substituting this into (24) yields16

δf = − ∂f
∂w

(
∂f

∂w

)>
∂L

∂f
. (26)

Since f = [w>1 x, . . . , w
>
Dx]
>,17

∂f

∂w
=


x>

x>

. . .
x>

 (∈ RD×DP) (27)

Thus,18

∂f

∂w

(
∂f

∂w

)>
=


x>x

x>x
. . .

x>x

 = (x>x)I (28)

Substituting this into (26) yields19

δf = − ∂f
∂w

(
∂f

∂w

)>
∂L

∂f
= −(x>x)∂L

∂f
. (29)

This states that when we move w in the direction δw of minimizing L, f moves in the direction of20

−∂L/∂f .21

Next, we consider the effect of weight decay on w. Then δw becomes −∂L/∂w − ηw. We consider22

the change δf ′ of f due to −ηw. This is given by23

δf ′ =
∂f

∂w
(−ηw) (30)

Using (27),24

δf ′ = −η


x>w1

x>w2

...
x>wD

 = −ηWx = −ηf (31)

In conclusion, when we move w as w → w − ∂L/∂w − ηw, f ’s change δf will be given by25

δf = −(x>x)∂L
∂f
− ηf. (32)

Supposing x to be an ImageNet image, we may think x>x ∼ const. Assuming x>x = 1, the above26

leads to Ḟ = −∂L/∂F − ηF , which is (11).27

C Behavior of Wp in Ours28

We also examine how Wp changes in the optimization of our proposed method. Following the same29

experimental setting as Sec. 5, we train a linear predictor with Wp ∈ R8192×8192. As shown in Fig. 3,30

Wp approaches to a diagonal matrix during training process.31

2

0 5000
0

0

5000

0 5000
20

0

5000

0 5000
40

0

5000

0 5000
60

0

5000

0 5000
80

0

5000

0 5000
100

0

5000

Epochs

(a)

0 5000
0

0

5000

0 5000
20

0

5000

0 5000
40

0

5000

0 5000
60

0

5000

0 5000
80

0

5000

0 5000
100

0

5000

Epochs

(b)

Figure 3: (a) Wp in our proposed method at different epochs of training time. (b) Normalized Wp for
better visualization; each row of Wp is divided by its diagonal entry.

D More Results with a Broader Range of Configuration32

Table 5 shows more results of our method with different configurations and hyperparameter settings.

Table 5: Results of our method on more configurations.
PROJECTOR PREDICTOR LR #PARTITION INV COEF COV COEF ACC@1

4096-256 256 0.3 1 1 1 54.7
4096-256 256 0.3 1 10 1 56.8
4096-256 256 0.3 1 1 10 53.1
4096-256 256 0.3 8 10 1 63.8
4096-256 256 0.3 32 1 1 54.8
4096-256 256 0.3 32 10 1 63.7
2048-2048-2048 2048 0.3 1 1 0 50.9
2048-2048-2048 2048 0.3 1 1 1 61.4
2048-2048-2048 2048 0.3 1 1 25 60.6
2048-2048-2048 2048 0.3 1 25 1 60.1
2048-2048-2048 2048 0.3 1 25 25 63.4
2048-2048-2048 2048 0.3 8 25 1 67.3
2048-2048-2048 2048 0.3 8 25 25 66.2
2048-2048-2048 2048 0.3 32 10 1 66.6
2048-2048-2048 2048 0.3 32 25 1 67.3
2048-2048-2048 2048 0.3 32 50 1 67.2
2048-2048-2048 2048 0.45 1 1 1 63.9
2048-2048-2048 2048 0.45 1 25 25 64.7
2048-2048-2048 2048 0.45 32 10 1 64.3
8192-8192-8192 8192 0.3 8 25 8 69.0

33

E Standardization layer34

Feature standardization is computed as following, independent to partitions:35

Std(fi) =
fi − µi,sync

σi,sync
(33)

,where fi is the ith entry of f , µi,sync and σi,sync are synchronized ith entry of mean and deviation36

respectively among devices.37

3

F Pseudo-code of our proposed method38

Algorithm 1 Our Proposed Method, PyTorch-like

h: backbone + projector
w: weight of predictor
D: projector output size
C_in, C_cov: coefficients
#
In this pseudo-code, we assume number of partitions equals to

number of gpus, and the following code is processed on a single
gpu.

for x in loader:
x1, x2 = aug1(x), aug2(x)
f1, f2 = h(x1), h(x2)
f1, f2 = std(f1), std(f2)

Processed by predictor
p1, p2 = f1 @ w.T, f2 @ w.T
inv_loss = (p1-f2).pow(2).mean() + (p2-f1).pow(2).mean()

Note: we do not collect cov from
different gpus
wtw = w.T @ w
n = p1.size(0) # Batch size per gpu
cov1 = p1.T @ p1 / n
cov2 = p2.T @ p2 / n
cov_loss = (cov1-wtw).pow(2).sum() + (cov2-wtw).pow(2).sum()

loss = C_in * inv_loss + C_cov / D * cov_loss
loss.backward()
update(f,w)

def std(f): # Standarization
return SyncBN(affine=False)(f)

4

	Proof of Lemma 3.2
	Proof of Lemma 3.3
	Behavior of Wp in Ours
	More Results with a Broader Range of Configuration
	Standardization layer
	Pseudo-code of our proposed method

