Bridging the Gap from Asymmetry Tricks to Decorrelation Principles in Non-contrastive Self-supervised Learning

1 A Proof of Lemma 3.2

2 Proof of Lemma 3.2. We can expand the loss (4), i.e.,

$$\mathcal{L} = \frac{1}{2} \mathbb{E}_x [\|W_{\mathbf{p}} f^1 - \operatorname{StopGrad}(f^2)\|^2]$$

3 as follows:

$$\mathcal{L} = \frac{1}{2} \mathbb{E}_{x} [\operatorname{tr}(W_{\mathrm{p}} f^{1} f^{1\top} W_{\mathrm{p}}^{\top}) - 2\operatorname{tr}(\operatorname{StopGrad}(f^{2}) f^{1\top} W_{\mathrm{p}}^{\top}) + \operatorname{tr}(\operatorname{StopGrad}(f^{2} f^{2\top}))]$$

$$= \frac{1}{2} (\operatorname{tr}(W_{\mathrm{p}} \mathbb{E}_{x} [f^{1} f^{1\top}] W_{\mathrm{p}}^{\top}) - 2\operatorname{tr}(\mathbb{E}_{x} [\operatorname{StopGrad}(f^{2}) f^{1\top}] W_{\mathrm{p}}^{\top}) + \operatorname{tr}(\mathbb{E}_{x} [\operatorname{StopGrad}(f^{2} f^{2\top})]))$$

$$= \frac{1}{2} (\operatorname{tr}(W_{\mathrm{p}} F^{1} F^{1\top} W_{\mathrm{p}}^{\top}) - 2\operatorname{tr}(\operatorname{StopGrad}(F^{2}) F^{1\top} W_{\mathrm{p}}^{\top}) + \operatorname{tr}(\operatorname{StopGrad}(F^{2} F^{2\top})])).$$
(20)

4 We used $\mathbb{E}_x[f^1 f^{1\top}] = F^1 F^{1\top}, \mathbb{E}_x[f^2 f^{1\top}] = F^2 F^{1\top}, \text{ and } \mathbb{E}_x[f^2 f^{2\top}] = F^2 F^{2\top}.$

5 Taking derivatives of \mathcal{L} with respect to $W_{\rm p}$ yields (7) since

$$\frac{\partial \mathcal{L}}{\partial W_{\rm p}} = \frac{1}{2} (2W_{\rm p} F^1 F^{1\top}) - F^2 F^{1\top} = W_{\rm p} F^1 F^{1\top} - F^2 F^{1\top}.$$
 (21)

⁶ Note that there is no gradient at $StopGrad(\cdot)$. Similarly, the derivative with respect to $F^{1\prime}$ is given

7 by (8) since

$$\frac{\partial \mathcal{L}}{\partial F^1} = \frac{1}{2} (2W_{\rm p}^{\top} W_{\rm p} F^1) - W_{\rm p}^{\top} F^2 = W_{\rm p}^{\top} W_{\rm p} F^1 - W_{\rm p}^{\top} F^2.$$
(22)

8

9 B Proof of Lemma 3.3

Proof of Lemma 3.3. Assume the mapping from the input $x \in \mathbb{R}^P$ to $f \in \mathbb{R}^D$ is given by a linear transformation f = Wx. (Or maybe affine f = Wx + b.) We will use a 'vectorized' representation of $W = [w_1, \ldots, w_D]^\top$ as $w = [w_1^\top, \ldots, w_D^\top]^\top \in \mathbb{R}^{DP}$. Now, suppose we change w as $w \to w + \delta w$, where we choose the gradient of L for δw as

$$\delta w = -\frac{\partial L}{\partial w}.$$
(23)

14 Then, f will change as $f \rightarrow f + \delta f$ accordingly, where

$$\delta f = \frac{\partial f}{\partial w} \delta w = -\frac{\partial f}{\partial w} \frac{\partial L}{\partial w}.$$
(24)

15 Since w affects the loss L only through f, we use chain rule to get

$$\frac{\partial L}{\partial w} = \left(\frac{\partial f}{\partial w}\right)^{\top} \frac{\partial L}{\partial f}.$$
(25)

Submitted to 36th Conference on Neural Information Processing Systems (NeurIPS 2022). Do not distribute.

16 Thus, substituting this into (24) yields

$$\delta f = -\frac{\partial f}{\partial w} \left(\frac{\partial f}{\partial w}\right)^{\top} \frac{\partial L}{\partial f}.$$
(26)

17 Since $f = [w_1^\top x, \dots, w_D^\top x]^\top$,

$$\frac{\partial f}{\partial w} = \begin{bmatrix} x^{\top} & & \\ & x^{\top} & \\ & & \ddots \\ & & & x^{\top} \end{bmatrix} (\in \mathbb{R}^{D \times DP})$$
(27)

18 Thus,

$$\frac{\partial f}{\partial w} \left(\frac{\partial f}{\partial w} \right)^{\top} = \begin{bmatrix} x^{\top} x & & \\ & x^{\top} x & \\ & & \ddots & \\ & & & x^{\top} x \end{bmatrix} = (x^{\top} x) I$$
(28)

19 Substituting this into (26) yields

$$\delta f = -\frac{\partial f}{\partial w} \left(\frac{\partial f}{\partial w}\right)^{\top} \frac{\partial L}{\partial f} = -(x^{\top} x) \frac{\partial L}{\partial f}.$$
(29)

- ²⁰ This states that when we move w in the direction δw of minimizing L, f moves in the direction of ²¹ $-\partial L/\partial f$.
- Next, we consider the effect of weight decay on w. Then δw becomes $-\partial L/\partial w \eta w$. We consider
- the change $\delta f'$ of f due to $-\eta w$. This is given by

$$\delta f' = \frac{\partial f}{\partial w}(-\eta w) \tag{30}$$

24 Using (27),

$$\delta f' = -\eta \begin{bmatrix} x^{\top} w_1 \\ x^{\top} w_2 \\ \vdots \\ x^{\top} w_D \end{bmatrix} = -\eta W x = -\eta f$$
(31)

²⁵ In conclusion, when we move w as $w \to w - \partial L / \partial w - \eta w$, f's change δf will be given by

$$\delta f = -(x^{\top}x)\frac{\partial L}{\partial f} - \eta f.$$
(32)

Supposing x to be an ImageNet image, we may think $x^{\top}x \sim \text{const.}$ Assuming $x^{\top}x = 1$, the above leads to $\dot{F} = -\partial L/\partial F - \eta F$, which is (11).

$_{\rm 28}~~{\bf C}~~{\rm Behavior}~{\rm of}~W_{\rm p}$ in Ours

We also examine how W_p changes in the optimization of our proposed method. Following the same experimental setting as Sec. 5, we train a linear predictor with $W_p \in \mathbb{R}^{8192 \times 8192}$. As shown in Fig. 3, W_p approaches to a diagonal matrix during training process.

Figure 3: (a) W_p in our proposed method at different epochs of training time. (b) Normalized W_p for better visualization; each row of W_p is divided by its diagonal entry.

32 D More Results with a Broader Range of Configuration

Table 5 shows more results of our method with different configurations and hyperparameter settings.

PROJECTOR	PREDICTOR	Lr	#PARTITION	INV COEF	COV COEF	Acc@1
4096-256	256	0.3	1	1	1	54.7
4096-256	256	0.3	1	10	1	56.8
4096-256	256	0.3	1	1	10	53.1
4096-256	256	0.3	8	10	1	63.8
4096-256	256	0.3	32	1	1	54.8
4096-256	256	0.3	32	10	1	63.7
2048-2048-2048	2048	0.3	1	1	0	50.9
2048-2048-2048	2048	0.3	1	1	1	61.4
2048-2048-2048	2048	0.3	1	1	25	60.6
2048-2048-2048	2048	0.3	1	25	1	60.1
2048-2048-2048	2048	0.3	1	25	25	63.4
2048-2048-2048	2048	0.3	8	25	1	67.3
2048-2048-2048	2048	0.3	8	25	25	66.2
2048-2048-2048	2048	0.3	32	10	1	66.6
2048-2048-2048	2048	0.3	32	25	1	67.3
2048-2048-2048	2048	0.3	32	50	1	67.2
2048-2048-2048	2048	0.45	1	1	1	63.9
2048-2048-2048	2048	0.45	1	25	25	64.7
2048-2048-2048	2048	0.45	32	10	1	64.3
8192 - 8192 - 8192	8192	0.3	8	25	8	69.0

Table 5: Results of our method on more configurations.

33

34 E Standardization layer

³⁵ Feature standardization is computed as following, independent to partitions:

$$Std(f_i) = \frac{f_i - \mu_{i,sync}}{\sigma_{i,sync}}$$
(33)

36 ,where f_i is the *i*th entry of f, $\mu_{i,sync}$ and $\sigma_{i,sync}$ are synchronized *i*th entry of mean and deviation

37 respectively among devices.

38 F Pseudo-code of our proposed method

Algorithm 1 Our Proposed Method, PyTorch-like

```
# h: backbone + projector
# w: weight of predictor
# D: projector output size
# C_in, C_cov: coefficients
#
# In this pseudo-code, we assume number of partitions equals to
   number of gpus, and the following code is processed on a single
   gpu.
for x in loader:
   x1, x2 = aug1(x), aug2(x)
   f1, f2 = h(x1), h(x2)
   f1, f2 = std(f1), std(f2)
   # Processed by predictor
   p1, p2 = f1 @ w.T, f2 @ w.T
   inv_loss = (p1-f2).pow(2).mean() + (p2-f1).pow(2).mean()
   # Note: we do not collect cov from
   # different gpus
   wtw = w.T @ w
   n = p1.size(0) # Batch size per gpu
   cov1 = p1.T @ p1 / n
   cov2 = p2.T @ p2 / n
   cov_loss = (cov1-wtw).pow(2).sum() + (cov2-wtw).pow(2).sum()
   loss = C_in * inv_loss + C_cov / D * cov_loss
   loss.backward()
   update(f,w)
def std(f): # Standarization
   return SyncBN(affine=False)(f)
```