Bridging the Gap from Asymmetry Tricks to
Decorrelation Principles in Non-contrastive
Self-supervised Learning

A Proof of Lemma 3.2

Proof of Lemma 3.2. We can expand the loss (4), i.e.,

£ = LB (W, !~ StopGrad(s)|2

as follows:

L= %Ez [tr(Wof ' f1TW,)) — 2tr(StopGrad(f2) f1 T W,) + tr(StopGrad(f2 2 7))]

= %(tr(WpEm[AW = 2tr(B, [StopGrad(f2) £ TIW,) + tr(E, [StopGrad(f2 £27)]))
_ %(tr(WpFlFlTWpT) — 2tr(StopGrad (F2) F'TWT) + tx(StopGrad (F2F2T)]). (20)

Weused B, [f1f1T] = FIF'T B, [f2f'T] = F?F'T, and E,[f2f?T] = F2F?T.
Taking derivatives of £ with respect to W, yields (7) since
oL 1

o = 5 QW F) = FEETT W PR - R 2D
p

Note that there is no gradient at StopGrad(-). Similarly, the derivative with respect to F''/ is given
by (8) since
oL

1
SpT = 5 CWy W) = W P2 = W W, F! — W, F2. (22)

O

B Proof of Lemma 3.3

Proof of Lemma 3.3. Assume the mapping from the input € R” to f € RP is given by a linear
transformation f = Wxz. (Or maybe affine f = Wax+b.) We will use a ‘vectorized’ representation of

W = [wi,...,wp]" asw = [w{,...,w}]T € RPF. Now, suppose we change w as w — w + dw,
where we choose the gradient of L for dw as
oL
ow=——. 23
w 50 (23)
Then, f will change as f — f + f accordingly, where
af af oL
of = —w=———. 24
f w’ " ow Ow 4
Since w affects the loss L only through f, we use chain rule to get
oL _ (of\' oL)
ow \ow/) Of

Submitted to 36th Conference on Neural Information Processing Systems (NeurIPS 2022). Do not distribute.

20
21

22
23

24

25

26
27

28

29
30
31

Thus, substituting this into (24) yields

N GIANK)?
of = ow (8w> of (26)
Since f = [w{ z,...,whHa] T,
T
of ' DxDP
ow . (R) (27)
2T
Thus,
z'x
af /0f\ " z'x
a—i (aj;) = . = (@ o)1 (28)
z'x
Substituting this into (26) yields
__ar(orytoL v 0L
=50 (6‘w> af = @ Dgg 29)

This states that when we move w in the direction dw of minimizing L, f moves in the direction of

—9L/df.

Next, we consider the effect of weight decay on w. Then dw becomes —9L/dw — nw. We consider
the change ¢ f' of f due to —nw. This is given by

of
! —_ —_— —
of' = 5o (=) (30)
Using (27),
xTwl
, xng
off=-n| . | =-1Wz=-nf GD
xTwD

In conclusion, when we move w as w — w — dL/0w — nw, f’s change ¢ f will be given by

oL
0f = ~(e'a) 7 —nf. (32)
Supposing x to be an ImageNet image, we may think x " ~ const. Assuming =" 2 = 1, the above
leads to F' = —0L/OF — nF, which is (11). O

C Behavior of IV, in Ours

We also examine how 17/}, changes in the optimization of our proposed method. Following the same
experimental setting as Sec. 5, we train a linear predictor with W, € R8192x8192 A¢ shown in Fig.
W, approaches to a diagonal matrix during training process.

5000

0 5000 0
0

10 80 100

Epochs

(a)

5000

5000

5000
10

0 5000
0

0

Epochs

(b)

Figure 3: (a) W}, in our proposed method at different epochs of training time. (b) Normalized W, for
better visualization; each row of W), is divided by its diagonal entry.

22 D More Results with a Broader Range of Configuration

Table 5 shows more results of our method with different configurations and hyperparameter settings.

Table 5: Results of our method on more configurations.

PROJECTOR PREDICTOR LR #PARTITION INV COEF Cov COEF Acc@l
4096-256 256 0.3 1 1 1 54.7
4096-256 256 0.3 1 10 1 56.8
4096-256 256 0.3 1 1 10 53.1
4096-256 256 0.3 8 10 1 63.8
4096-256 256 0.3 32 1 1 54.8
4096-256 256 0.3 32 10 1 63.7
2048-2048-2048 2048 0.3 1 1 0 50.9
2048-2048-2048 2048 0.3 1 1 1 61.4
2048-2048-2048 2048 0.3 1 1 25 60.6
2048-2048-2048 2048 0.3 1 25 1 60.1
2048-2048-2048 2048 0.3 1 25 25 63.4
2048-2048-2048 2048 0.3 8 25 1 67.3
2048-2048-2048 2048 0.3 8 25 25 66.2
2048-2048-2048 2048 0.3 32 10 1 66.6
2048-2048-2048 2048 0.3 32 25 1 67.3
2048-2048-2048 2048 0.3 32 50 1 67.2
2048-2048-2048 2048 0.45 1 1 1 63.9
2048-2048-2048 2048 0.45 1 25 25 64.7
2048-2048-2048 2048 0.45 32 10 1 64.3
8192-8192-8192 8192 0.3 8 25 8 69.0

33

s E Standardization layer

35 Feature standardization is computed as following, independent to partitions:

Std(fl) — fZ /“‘LZ,SyTLC (33)

0i,sync

3 ,where f; is the ith entry of f, 1t; syne and o sync are synchronized sth entry of mean and deviation
37 respectively among devices.

s F Pseudo-code of our proposed method

Algorithm 1 Our Proposed Method, PyTorch-like

#
#
#
#
#
#

h: backbone + projector
w: weight of predictor

D: projector output size
C_in, C_cov: coefficients

In this pseudo-code, we assume number of partitions equals to

number of gpus, and the following code is processed on a single
gpu.

for x in loader:

x1, x2 = augl(x), aug2(x)
£1, £2 = h(x1), h(x2)
f1, f2 std(f1), std(£2)

Processed by predictor
pl, p2 =f1 @ w.T, f2 @ w.T
inv_loss = (p1-£2).pow(2) .mean() + (p2-f1).pow(2) .mean()

Note: we do not collect cov from

different gpus

wtw = w.T Q@ w

n = pl.size(0) # Batch size per gpu

covl =pl.T@pl /n

cov2 = p2.T @ p2 / n

cov_loss = (covli-wtw).pow(2).sum() + (cov2-wtw).pow(2).sum()

loss = C_in * inv_loss + C_cov / D * cov_loss
loss.backward()
update (f,w)

def std(f): # Standarization

return SyncBN(affine=False) (f)

	Proof of Lemma 3.2
	Proof of Lemma 3.3
	Behavior of Wp in Ours
	More Results with a Broader Range of Configuration
	Standardization layer
	Pseudo-code of our proposed method

