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A USE OF LARGE LANGUAGE MODELS (LLMS)

In preparing this manuscript, we employed a Large Language Model (LLM) as a general-purpose
writing assistant. Specifically, the LLM was used to polish the language, improve clarity and flow,
and enhance the presentation of the text. All technical content, experimental design, data analysis,
and model development were performed independently by the authors. The LLM was not used to
generate any novel scientific ideas, experimental results, or interpretations.

B DERIVATION OF PROJECTION-AWARE MOMENT UPDATES

The projection-aware update rule for the first-moment estimate arises from the multiplications with the
matrices UT

t,LUt→1,L → Rr1↑r1 and U
T
t→1,RUt,R → Rr2↑r2 . This enables an efficient shift between

subspaces without generating any intermediate high-dimensional matrices. Since both matrices
U

T
t,LUt→1,L and U

T
t→1,RUt,R are orthogonal, they represent the change of basis between the two

subspaces. Let

Bt→1,L =
[
b
1
t→1,L, . . . , b

r1
t→1,L

]
and Bt,L =

[
b
1
t,L, . . . , b

r1
t,L

]
,

denote orthonormal bases for the subspaces Ut→1,L and Ut,L at time steps t↑ 1 and t, respectively.
Similarly, let

Bt→1,R =
[
b
1
t→1,R, . . . , b

r2
t→1,R

]
and Bt,R =

[
b
1
t,R, . . . , b

r2
t,R

]
,

denote orthonormal bases for the subspaces Ut→1,R and Ut,R at time steps t↑ 1 and t, respectively.
Let At→1 → Rr1↑r2 and we want to change its basis to At = U

T
t,LUt→1,LAt→1U

T
t→1Ut,R, then the

p-th row and the q-th column of a matrix At→1 transforms under the change of basis to time step t is

A
ij
t =

r1∑

p=1

r2∑

q=1

↓bit,L, b
p
t→1,L↔A

pq
t→1↓b

q
t→1,R, b

j
t,R↔, (13)

where we use superscripts to denote the elements of a matrix. Followed by analysis by (Robert et al.,
2024), the first and second moments in Adam represent the exponentially time–weighted expectation
at time t with decay parameter ω, i.e., Mt = Et,ω1 [St] and Vt = Et,ω2 [S

2
t ]. The first-moment

estimate can be expressed under a change of basis through the transformation matrices UT
t,LUt→1,L

and U
T
t→1,RUt,R. In particular, if bit,L denote the i-th row basis vector at step t, then the ij-th entry of

the matrix St at time step t is denoted by ↓bit,L, Stb
j
t,R↔, when it has Bt,L and Bt,R as left and right

subspaces at time t. With this notation and eqn. equation 13

M
ij
t = Et,ω1 [S

ij
t ] = Et,ω1 [↓bit,L, Stb

j
t,R↔]

=
r1∑

p=1

r2∑

q=1

↓bit,L, b
p
t→1,L↔Et,ω1 [↓b

p
t→1,L, Stb

q
t→1,R↔]↓b

q
t→1,R, b

j
t,R↔

= (UT
t,LUt→1,LMt→1U

T
t→1Ut,R)

ij
.

13
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With the same approach, we can change the basis for the second moment as well:
V

ij
t = Et,ω2 [(S

ij
t )2] = Et,ω2 [↓bit,L, Stb

j
t,R↔

2]

=

(
r1∑

p=1

r2∑

q=1

↓bit,L, b
p
t→1,L↔Et,ω2 [↓b

p
t→1,L, Stb

q
t→1,R↔]↓b

q
t→1,R, b

j
t,R↔

)2

=
r1∑

p=1

r2∑

q=1

↓bit,L, b
p
t→1,L↔

2Et,ω2 [↓b
p
t→1,L, Stb

q
t→1,R↔

2]↓bqt→1,R, b
j
t,R↔

2

+
r1∑

k ↓=l

r2∑

k→ ↓=l→

↓bit,L, bkt→1,L↔Et,ω2 [↓bkt→1,L, Stb
k→

t→1,R↔]↓bk
→

t→1,R, b
j
t,R↔

↓bit,L, blt→1,L↔Et,ω2 [↓blt→1,L, Stb
l→

t→1,R↔]↓bl
→

t→1,R, b
j
t,R↔

=
r1∑

p=1

r2∑

q=1

↓bit,L, b
p
t→1,L↔

2
V

pq
t→1↓b

q
t→1,R, b

j
t,R↔

2

+
r1∑

k ↓=l

r2∑

k→ ↓=l→

↓bit,L, bkt→1,L↔M
k,k→

t→1 ↓bk
→

t→1,L, b
j
t→1,L↔

↓bit,L, blt→1,L↔M
l,l→

t→1↓bl
→

t→1,R, b
j
t,R↔. (14)

We employ the following equation to rewrite the second term in the last equality:∑

k,l

∑

k→,l→

↓bit,L, bkt→1,L↔M
k,k→

t→1 ↓bk
→

t→1,L, b
j
t→1,L↔↓b

i
t,L, b

l
t→1,L↔M

l,l→

t→1↓bl
→

t→1,R, b
j
t,R↔

=
∑

k,k→

↓bit,L, bkt→1,L↔2(M
k,k→

t→1 )
2↓bk

→

t→1,L, b
j
t→1,L↔

2+

r1∑

k ↓=l

r2∑

k→ ↓=l→

↓bit,L, bkt→1,L↔M
k,k→

t→1 ↓bk
→

t→1,L, b
j
t→1,L↔↓b

i
t,L, b

l
t→1,L↔M

l,l→

t→1↓bl
→

t→1,R, b
j
t,R↔.

With this, we can rewrite eqn. equation 14:

V
ij
t = Et,ω2 [(S

ij
t )2] =

r1∑

p=1

r2∑

q=1

↓bit,L, b
p
t→1,L↔

2
V

pq
t→1↓b

q
t→1,R, b

j
t,R↔

2

+
∑

k,l

∑

k→,l→

↓bit,L, bkt→1,L↔M
k,k→

t→1 ↓bk
→

t→1,L, b
j
t→1,L↔↓b

i
t,L, b

l
t→1,L↔M

l,l→

t→1↓bl
→

t→1,R, b
j
t,R↔

=
r1∑

p=1

r2∑

q=1

↓bit,L, b
p
t→1,L↔

2
V

pq
t→1↓b

q
t→1,R, b

j
t,R↔

2

+
∑

k,l

∑

k→,l→

↓bit,L, bkt→1,L↔M
k,k→

t→1 ↓bk
→

t→1,L, b
j
t→1,L↔↓b

i
t,L, b

l
t→1,L↔M

l,l→

t→1↓bl
→

t→1,R, b
j
t,R↔

↑
∑

k,k→

↓bit,L, bkt→1,L↔2(M
k,k→

t→1 )
2↓bk

→

t→1,R, b
j
t,R↔

2

=
r1∑

p=1

r2∑

q=1

↓bit,L, b
p
t→1,L↔

2(V pq
t→1 ↑ (Mpq

t→1)
2)↓bqt→1,R, b

j
t,R↔

2

+
(
↓bit,L, b

p
t→1,L↔M

p,q
t→1↓b

q
t→1,L, b

j
t→1,L↔

)2

= (UT
t,LUt→1,L)

2(Vt→1 ↑M
2
t→1)(U

T
t→1,RUt,R)

2 + (UT
t,LUt→1,LMt→1U

T
t→1,RUt,R)

2
.

C CONVERGENCE ANALYSIS

Theorem C.1. (Convergence of Clean with fixed projections). Suppose that the gradient has

the parametric form Gt =
∑N

i=1 Ai ↑
∑N

i=1 BiWtCi where N is a batch size and the func-

14
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tions Ai, Bi and Ci have LA, LB and LC continuity, respectively with respect to W . Let

↗W↗F ↘ M with M constant. Define B̂i,t = (!i
t,L)

→1/2(U i
t,L)

T
Bi(Wt)U i

t,L(!
i
t,L)

→1/2
and

Ĉi,t = (!i
t,R)

→1/2(U i
t,R)

T
Ci(Wt)U i

t,R(!
i
t,R)

→1/2
where the !i

t,L, U
i
t,L,!

i
t,R and U

i
t,R are the out-

puts of Algorithm ??. Also let St = !→1/2
t,L U

T
t,LGtUt,R!

→1/2
t,R ,εt = 1

N

∑
i ϑmin(B̂i,t)ϑmin(Ĉi,t)

and ϑmin(!L),ϑmin(!R) ≃ ϑ0 ≃ 0. Assuming that the projection matrices remain constant during

the training. Then for the learning rate ϖ and min(εt) > (LA + 2LBLCM
2), the Clean satisfies

↗St↗F ↘ ϖ

ϑ0
(LA + 2LBLCM

2) ↗St→1↗F + (1↑ ϖεt→→1

ϑ0
) ↗St→1↗F

= [1↑ ϖ

ϑ0
(εt→1 ↑ LA ↑ 2LBLCM

2)] ↗St→1↗F .

Proof. During the proof we use the Sylvester equality. Let ⇐ presents the Kronecker product then
for arbitrary matrices A,B and X , vec(AXB) = (BT ⇐ A)vec(X). By vectorizing the gradient
parametric form we have

gt = vec(Gt) = vec(
N∑

i=1

Ai ↑
N∑

i=1

BiWtCi) = at ↑Rtwt,

where wt = vec(Wt), at = 1
N

∑
i vec(Ai,t) and Rt = 1

N

∑
i Ci,t ⇐ Bi,t. Using the Sylvester

equation, the vectorized form of St = !→1/2
t,L U

T
t,LGtUt,R!

→1/2
t,R is

st = vec(!→1/2
t,L U

T
t,LGtUt,R!

→1/2
t,R ) = (!→1/2

t,R U
T
t,R)⇐ (!→1/2

t,L U
T
t,L)vec(Gt)

= (!→1/2
t,R U

T
t,R)⇐ (!→1/2

t,L U
T
t,L)gt. (15)

Moreover, G̃t = Ut,L!
→1/2
t,L U

T
t,LGtUt,R!

→1/2
t,R U

T
t,R can be written as

g̃t = vec(Ut,L!
→1/2
t,L U

T
t,LGtUt,R!

→1/2
t,R U

T
t,R) = (Ut,R ⇐ Ut,L)(!

→1/2
t,R U

T
t,R)⇐ (!→1/2

t,L U
T
t,L)gt

= (Ut,R ⇐ Ut,L)st. (16)

Suppose that the Nystrom subspaces remain fixed over a window of iterations. That is, for the left
projections we have Ut,L = UR and !t,L = !L and analogously for the right projections. Then st

and g̃t can be restated as:

st = (!→1/2
R U

T
R)⇐ (!→1/2

L U
T
L )gt and g̃t = (UR ⇐ UL)st.

Now we derive the recursive form of gt:

gt = at ↑Rtwt = at ↑Rtwt ↑ gt→1 + gt→1

= at ↑Rtwt ↑ at→1 +Rt→1wt→1 + at→1 ↑Rt→1wt→1

= at ↑Rtwt ↑ at→1 +Rt→1(wt ↑ ϖg̃t) + at→1 ↑Rt→1wt→1

= (at ↑ at→1) + (Rt→1 ↑Rt)wt + at→1 ↑Rt→1wt→1 ↑ ϖRt→1g̃t

= et + gt→1 ↑ ϖRt→1g̃t

where et = (at ↑ at→1) + (Rt→1 ↑ Rt)wt and we use wt = wt→1 + ϖgt→1. By left-multiplying
!→1/2
R U

T
R)⇐ (!→1/2

L U
T
L ), we obtain

st = (!→1/2
R U

T
R)⇐ (!→1/2

L U
T
L )gt = (!→1/2

R U
T
R)⇐ (!→1/2

L U
T
L )(et + gt→1 ↑ ϖRt→1g̃t)

= (!→1/2
R U

T
R)⇐ (!→1/2

L U
T
L )et + (!→1/2

R U
T
R)⇐ (!→1/2

L U
T
L )gt→1

↑ ϖ(!→1/2
R U

T
R)⇐ (!→1/2

L U
T
L )Rt→1g̃t→1

= (!→1/2
R U

T
R)⇐ (!→1/2

L U
T
L )et + st→1 ↑ ϖ(!→1/2

R U
T
R)⇐ (!→1/2

L U
T
L )Rt→1(UR ⇐ UL)st→1

= (!→1/2
R U

T
R)⇐ (!→1/2

L U
T
L )et + st→1 ↑ ϖ(!→1/2

R ⇐ !→1/2
L )(UR ⇐ UL)

T
Rt→1(UR ⇐ UL)st→1

(17)

15
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Let

R̂t = (UR ⇐ UL)
T
Rt(UR ⇐ UL) =

1

N

∑

i

(UR ⇐ UL)
T(Ci,t ⇐Bi,t)(UR ⇐ UL)

=
1

N

∑

i

(UT
RCi,tUR)⇐ (UT

LBi,tUL),

then eqn. equation 17 can be presented as

st = (!→1/2
R ⇐ !→1/2

L )(UR ⇐ UL)
T
et + (I ↑ ϖ(!→1/2

R ⇐ !→1/2
L )R̂t→1)st→1. (18)

Now we need to bound st in above equation. Since UL and UR are orthonormal matrices we have
U

T
LUL = I and U

T
RUR = I . Therefore by using Sylvester identity and submultiplicavity property of

the norm,∥∥∥(!→1/2
R ⇐ !→1/2

L )(UR ⇐ UL)
T
et

∥∥∥
2
=

∥∥∥vec
[
(UR ⇐ UL)

T
Et(!

→1/2
R ⇐ !→1/2

L )
]∥∥∥

2

=
∥∥∥(UR ⇐ UL)

T
Et(!

→1/2
R ⇐ !→1/2

L )
∥∥∥
F

↘
∥∥(UR ⇐ UL)

T
Et

∥∥
2

∥∥∥!→1/2
R ⇐ !→1/2

L

∥∥∥
F

↘
↗Et↗F
ϑ0

, (19)

where Et =
1
N

∑
i Ai,t ↑ Ai,t→1 +

1
N

∑
i Bi,t→1WtCi,t→1 ↑ Bi,tWtCi,t is the matrix form of et.

Therefore, we need to bound ↗Et↗F . By Lipchitz-continuity property of Ai, Bi and Ci we have:

↗At ↑At→1↗F ↘ LA ↗Wt ↑Wt→1↗F = ϖLA

∥∥∥G̃t→1

∥∥∥
F
↘ ϖLA ↗St→1↗F

↗(Bt→1 ↑Bt)WtCt→1↗F ↘ LB ↗Wt ↑Wt→1↗F ↗Wt↗F ↗Ct→1↗F ↘ ϖLBLCM
2 ↗St→1↗F

↗BtWt(Ct→1 ↑ Ct)↗F ↘ LC ↗Wt ↑Wt→1↗F ↗Wt↗F ↗Bt↗F ↘ ϖLBLCM
2 ↗St→1↗F .

Thus the upper bound for ↗Et↗F can be derived:

↗Et↗F
ϑ0

↘
ϖLA ↗St→1↗F + ϖLBLCM

2 ↗St→1↗F + ϖLBLCM
2 ↗St→1↗F

ϑ0

↘ ϖ

ϑ0
(LA + 2LBLBM

2) ↗St→1↗F . (20)

To find an upper bound of ↗St↗F we also need to find an upper bound for I↑ϖ(!→1/2
L ⇐!→1/2

R )R̂t→1.
This involves finding the minimum eigenvalue of R̂t. Let ϑi,t = ϑmin(UT

RCi,tUR) and ϑ
↔
i,t =

ϑmin(UT
LBi,tUL), then

ϑmin

(
(!→1/2

L ⇐ !→1/2
R )(UT

RCi,tUR)⇐ (UT
LBi,tUL)

)
=

ϑmin(!
→1/2
L )ϑmin(!

→1/2
R )ϑmin(U

T
LBi,tUL)ϑmin(U

T
RCi,tUR) ↘

ϑi,tϑ
↔
i,t

ϑ0
.

For any vector v we have

v
T
[
(!→1/2

L ⇐ !→1/2
R )R̂t

]
v =

1

N

∑

i

v
T
[
(!→1/2

L ⇐ !→1/2
R )(UT

RCi,tUR)⇐ (UT
LBi,tUL)

]
v

≃ 1

N

∑

i

ϑi,tϑ
↔
i,t

ϑ0
=

εt

ϑ0

Therefore, ϑmax(I ↑ ϖ(!→1/2
L ⇐ !→1/2

R )R̂t→1) ↘ (1↑ εϑt↑1

ϖ0
). By combining eqn. equation 20 and

eqn. equation 18 we obtain:

↗St↗F ↘ ϖ

ϑ0
(LA + 2LBLCM

2) ↗St→1↗F + (1↑ ϖεt→1

ϑ0
) ↗St→1↗F

= [1↑ ϖ

ϑ0
(εt→1 ↑ LA ↑ 2LBLCM

2)] ↗St→1↗F .
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C.1 RANDOMIZED NYSTRÖM APPROXIMATION

In this section, we give the randomized Nyström approximation algorithms from (Frangella et al.,
2023; Tropp et al., 2017)

Algorithm 2 Randomized Nyström Approximation (RandNystromApprox)

1: Input: Matrix G → Rm↑n, rank size r ↘ m, ” → Rm↑r.

2: ” ⇒ N (0, I) → Rm↑r {random Gaussian matrix}
3: ” ⇑ QR(”, 0) {thin QR decomposition}
4: Y ⇑ GG

T”
5: ϱ ⇑ eps(norm(Y, 2)) {compute shift}
6: Yϱ ⇑ Y + ϱ” {add shift for stability}
7: B ⇑ ”T

Yϱ

8: C ⇑ CHOL((B +B
T)/2) {Force symmetry and Cholesky decomposition}

9: B ⇑ Yϱ/C {triangular solve}
10: [U,#,⇒] = SVD(B, 0) {thin SVD}
11: !̂ ⇑ max{0,#2 ↑ ϱI} {remove shift, compute eigs}
12: Output: [U, !̂]

D EXPERIMENTAL SETUP DETAIL

Fine-tuning GLUE. As outlined earlier, we evaluated CLEAN by fine-tuning RoBERTa-base
model on the GLUE benchmark. The list of hyperparameters used in this experiment is also reported
in Table 4.

Table 4: Hyperparameters for fine-tuning RoBERTa-base on GLUE.

CLEAN SOAP LoRA GaLore AdamW

Epochs 3
Warm-up →
Batch 16
Max Len 128
Data Type bfloat32

LR {1e↑ 4, 2e↑ 4, . . . , 5e↑ 4} / {1e↑ 5, . . . , 5e↑ 5}
LR Schedule linear to 0%
ω1 0.9 0.95 0.9 0.9 0.9
ω2 0.999 0.95 0.999 0.999 0.999
Weight Decay → → → → →
Dropout → → → → →
Grad Clip → → → → →
Subspace Update Interval T 32 32 → 500 →
Rank r 32 → 4/8 4/8 →
Subspace Proj ↭ → → ↭ →
Accum Weight ↭ ↭ → → →
Grad Proj ↭ → → ↭ →

Pre-training on C4. To illustrate the feasibility of our approach within limited time, we pre-trained
the Llama 130M model using the hyperparameters summarized in Table 5.

17
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Table 5: Hyperparameters for training Llama 130M across different optimizers.

CLEAN SOAP AdamW

Training Steps 1300
Warm-up Steps 130
Max Len 1024
Batch 2000
Token Batch 2M
Data Type bfloat16

LR {5e↑ 4, 1e↑ 3, 5e↑ 3, 1e↑ 2}
Warm-up Schedule linear from 0%
LR Schedule cosine to 0%
ω1 0.9 0.95 0.9
ω2 0.999 0.95 0.999
µ 0.95 0.95 →
Regularization factor ε 1e↑ 2 → →
Weight Decay → → →
Dropout → → →
Grad Clip → → 1.0

Subspace Update Interval T 10 10 →
Rank r 256 → →
Subspace Proj ↭ ↭ →
Accum Weight ↭ → →
Grad Proj ↭ ↭ →

18
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USE OF LLMS

We verify that we use LLMs (e.g., chatGPT, Claude) to polish and rephrase some sentences of the
paper text. We also used it for discovery purposes like finding related works.
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