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A USE OF LARGE LANGUAGE MODELS (LLMS)

In preparing this manuscript, we employed a Large Language Model (LLM) as a general-purpose
writing assistant. Specifically, the LLM was used to polish the language, improve clarity and flow,
and enhance the presentation of the text. All technical content, experimental design, data analysis,
and model development were performed independently by the authors. The LLM was not used to
generate any novel scientific ideas, experimental results, or interpretations.

B DERIVATION OF PROJECTION-AWARE MOMENT UPDATES

The projection-aware update rule for the first-moment estimate arises from the multiplications with the
matrices UJ pUi—1 € R™*™ and UtT_ 1, rUt,r € R™>"2_ This enables an efficient shift between
subspaces without generating any intermediate high-dimensional matrices. Since both matrices
UtT ;U1 and UL 1,rUt,r are orthogonal, they represent the change of basis between the two
subspaces. Let

B, =1[biy1p, - by ] and Bip=[big, ..., b} ],

denote orthonormal bases for the subspaces U;_1,7, and U j, at time steps ¢t — 1 and ¢, respectively.
Similarly, let

Biir=1[bj_1p - b2y ] and Byr=[bip, ..., b%],

denote orthonormal bases for the subspaces U;_1 r and Uy g at time steps ¢ — 1 and ¢, respectively.
Let A;_1 € R™*"2 and we want to change its basis to Ay = U, U;_1,1,A;—1U,_,U; g, then the
p-th row and the ¢-th column of a matrix A;_; transforms under the change of basis to time step ¢ is

T T2

A;J :ZZ tL’bi) 1,L A§q1<btq 1R7bgR> (13)

p=1g¢=1

where we use superscripts to denote the elements of a matrix. Followed by analysis by (Robert et al.,
2024), the first and second moments in Adam represent the exponentially time—weighted expectation
at time ¢ with decay parameter 3, i.e., M; = E;3,[S:] and V; = E, g,[S?]. The first-moment

estimate can be expressed under a change of basis through the transformation matrices UtT UL
and U, ; pU; g. In particular, if b! ; denote the i-th row basis vector at step ¢, then the ij-th entry of

the matrix S; at time step ¢ is denoted by <b§ Ls Stb{ r)» When it has By 1, and By r as left and right
subspaces at time ¢. With this notation and eqn. equation [I3]

My = Ei,[S7] = Ev, [(b], 1, Sib] )]

TL T2

—ZZ tLv t 1,L ]Etﬁlef 1Lva? 1R>}<bg—1,R7b{,R>

p=1g¢=1

= (Ut-I:LUt—l,LMt—lUtT_lUt,R)ij
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With the same approach, we can change the basis for the second moment as well:
Vi =B, [(S7)°] = Be,[(br 1, Siby )]

T T2 2
(zz o Bl 1L,sbz_l,R>1<bz_1,R,bz,R>)

p=1qg=1
rioT2 ]
*ZZ tL? t 1L Et ﬁ2[<bt 1LvSbg—l,R>2}<b§—1,R7bg,R>2
p=1g¢=1
+ZZ AN XA [ 1L’Stbt LR (b 1R7bt.,R>
k#L k'

( i,vaifl,L>Et,Bz[<bé 1, L7Stbt 1 R>]<bt717R’bg7R>

Pq /34 J\2
*E Z tL’ t 1,L V'tfl<bt71,R7bt,R>

p=1qg=1
+ZZ tLvtlL <bt 1L7bt L)
kAL k£l
i LY j
( t,vat 1o M 1<bt LR UL R)- (14)
We employ the following equation to rewrite the second term in the last equality:

kK K j ; LU j
ZZ t,L by Lo M2 (0 0 bl ) i,L»bt o) M- 1<bt 1.7 Ut R)
ky k'

—Z tLthL 2(MPE )<bt 1L7bt 1L>2+

kk/
i LU j
Z Z 4L by_ 1.L) <bt 1L7bt 1,0)¢ t,Labt L) M 1<bt lebt,R>'
kAL k£l
With this, we can rewrite eqn. equation [T4}
1 T2
V Et/ﬂz S” ZZ t, L t 1,L W@1<bg—17R7b§,R>2
p=1¢g=1
i Ly j
+ZZ t,L> by 1.L) <bt 1L7bt 10 t,vat 1o My 1<bt lR’bi,R>
ki kL
=D Win by VIR B b )
p=1qg=1
, L ,
+ZZ b, bi11) <bt Lo )0 Uiy ) M (b 1.7 Ut R)
kil kL
= > BB M) g b )
koK'
TL T2 .
—ZZ to by Lz 2V = (M) )<bg—1,R7bi,R>2
p=1qg=1

. . 2
(o Wy ) MPL O 106 )
= (UtT,LUt—l,L)Q(Vt—l - Mt2—1)(UtT—1,RUt,R)2 + (UJLUt—l,LMt—lUtT—l,RUt,R)2'

C CONVERGENCE ANALYSIS

Theorem C.1. (Convergence of Clean with fixed projections). Suppose that the gradient has
the parametric form Gy = Zfil A — Zf\il B;W,C; where N is a batch size and the func-
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tions A;, B; and C; have Ly,Lpg and I;Q continuity, respectively with respect to W. Let
Wl < M with M constant. Deﬁne B, = (AiL)’l/Q( L )T Bi(Wy)U} (AL L) Y2 and
5; = (Al g)” V(i R)TCi(W)U] (A R) Y2 ywhere the Aj LU L,At R and U} p are the out-
puts of Algorithm ??. Also let S; = At)L Ut’LGtUt,RALR/ N E Amin (Bi 1 ))\mm(@)

and Amin(AL), Amin(AR) > Ao > 0. Assuming that the projection matrices remain constant during
the training. Then for the learning rate n and min(x;) > (La + 2L Lo M?), the Clean satisfies

Ki——
[Sul < 5= (La+ 2L LoM?) Sl + (1 = 252 [1Si-al
=[1- %(KH ~La—2LLeM?)] |[Se-llp-

Proof. During the proof we use the Sylvester equality. Let ® presents the Kronecker product then
for arbitrary matrices A, B and X, vec(AX B) = (BT ® A)vec(X). By vectorizing the gradient
parametric form we have

N
gt = vec(Gy) = VCC(Z A; — ZBZ-WtCi) = a; — Rywy,

i=1
where w; = vec(Wy),a; = % >, vec(A;) and Ry = % > Cit ® B; ;. Using the Sylvester
equation, the vectorized form of S; = A, i/ ZUJ 1. GU, RAt_, 11%/ s

st = vee(A, ,2UT L GuUr A 1) = (A1 PUTR) @ (A /2UT ) vee(Gy)
= (M PUTR) @ (AU g (15)

Moreover, Gy = UL\, L Ut LGtUt rA, R UTR can be written as

G = vec(Uy LA, 12U GiU r A U ) = (Un g @ Up ) (A 12U R) ® (A, 2UT g
= (Uy,r @ Uy,1)5¢. (16)

Suppose that the Nystrom subspaces remain fixed over a window of iterations. That is, for the left
projections we have Uy ;, = Ur and A; ;, = Ay, and analogously for the right projections. Then s;
and g; can be restated as:

= (ARPUR) @ (A PUT)g and G = (Up ® Up)s,
Now we derive the recursive form of g;:
gt = a — Rywy = ay — Rywy — gi—1 + ge—1
=a; — Rywy — a1 + Re—qwi—1 + a1 — Re—qwi—y
=a; — Rywy —ar—1 + Re—1(wy — nge) + ap—1 — Re—qwe—q
= (ar —ap—1) + (Re—1 — Ry)wy +ap—1 — Re—qwe—y — NRi—1G¢
=er+ gi—1 — NRi—1G:
where e; = (a; — a;—1) + (Ri—1 — Ry)w, and we use w; = wi—1 + ngi—1. By left-multiplying
ARPUL) @ (AL 2UT), we obtain
se=(A"°UR) © (APUD)g = (A°UR) @ (AL *UT) (0 + 91 — nRi141)
= (AR"PUR) @ (AL PUD)er + (AR PUR) ® (ML UL )gi
— (A" PUR) @ (AL PUD Ri-1gi s
= (APUR) @ (AP0 )er + s — n(Ag PUR) @ (AL V2UT) Ry 1 (Ur @ U)sy o

= (Aﬁl/QUR) ® (AL2UT)es + 5121 — n(Ag g ALY UR©UL) Ry 1 (Ur @ UL)sy 1
17
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Let

A 1
Ri=(Ur@UL)"R(Up @ UpL) = v > (Ur@UL)(Ciy @ Biy)(Ur ® Uy)

1
= N Z(Ugcl,tUR) ® ((]LI—Bi)thL)7
i

then eqn. equation|l7|can be presented as
se= (AR P QA Ur@UL) ey + (I — (A2 @ ALY Ry_1)si_1. (18)

Now we need to bound s; in above equation. Since Uy, and Ug, are orthonormal matrices we have
UJUL = I and ULUR = I. Therefore by using Sylvester identity and submultiplicavity property of
the norm,

(AR 0 A3 (U 0 UL)Ter

= Hvec [ Ur® UL)TEt(A_1/2 ®A_1/2 }H
2
= H Ur @ Ur) Ey(Ag 1/2®A 1/2 H

< W2 U)E, A7 @ 0|

Bl
=N

where F; = % DA —Aig + % > i Bit—iWiCi 1 — B; W, C; 4 is the matrix form of e;.

Therefore, we need to bound || E || . By Lipchitz-continuity property of A;, B; and C; we have:

B

19)

[Ae = Aeallp < La[We = Weeallp = nLa HétﬂHF <nLa|[Si-1llp
1(Bi—1 = B)WiCiallp < L Wi = Wil g (Wil p 1Ceall p < nLpLoM?|[Si—1 || g
IBeWi(Com1 = C)ll g < Le [We = Wil g [Well g | Bell p < nLpLeM? ||Se—i | -
Thus the upper bound for || E;|| » can be derived:
1Eellr o nlallSe—lle + nLeLoM?||Si—illp + nLpLeM? ||Si-a|
Ao T Ao

< Sh(La+2LpLpM?) [ Si 20

To find an upper bound of ||S¢|| .- we also need to find an upper bound for I — 17(A21/2 ® Al_%l/Q)Rt,l.
This involves finding the minimum eigenvalue of R;. Let \;; = Amin(URC;:UR) and Nip =
Amin (Uv}‘rBz tUL) then

Nuin (A2 @ AR/ (URCsUR) @ (UL BiuUL) ) =

/
>‘i7t)‘i,t

Amin (A7) Amin (AR ?) Amin (UL Bi tUL) Amin (URC3 4 Ug) < "

For any vector v we have

v [(A—1/2®A—1/2 Rt] —Zv [ ‘1/2®A1;1/2)(U;ci,tUR)®(UgBl,tUL)]v

> NZ zt)‘zt _ Ht

Therefore, Apax (] — 77(/\_1/2 ® AR 1/Z)R _1) < (1- "';'—0*1) By combining eqn. equationand
eqn. equation[I8] we obtain:

K
I8l < 5o (La +2LpLeM?) Sl + (1= ) Sl

=[1- %(KH ~La—2LELeM?)] |[Se-llp-
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C.1 RANDOMIZED NYSTROM APPROXIMATION

In this section, we give the randomized Nystrom approximation algorithms from (Frangella et al.,
2023; Tropp et al.,|2017)

Algorithm 2 Randomized Nystrom Approximation (RandNystromApprox)
1: Input: Matrix G € R™*", rank size r < m, ) € R™*",

2: Q~N(0,I) € Rm*" {random Gaussian matrix }
3: Q<+ QR(Q,0) {thin QR decomposition}
4: Y + GGTQ
5: v+ eps(norm(Y, 2)) {compute shift}
6: Y, « Y +1vQ {add shift for stability}
7. B+ Q'Y,
8: C + CHOL((B + BT")/2) {Force symmetry and Cholesky decomposition}
9: B«+Y,/C {triangular solve}
10: [U,%,~] = SVD(B, 0) {thin SVD}
11: A« max{0,%? — vI} {remove shift, compute eigs}

12: Output: [U, A]

D EXPERIMENTAL SETUP DETAIL

Fine-tuning GLUE. As outlined earlier, we evaluated CLEAN by fine-tuning RoBERTa-base
model on the GLUE benchmark. The list of hyperparameters used in this experiment is also reported
in Table 4]

Table 4: Hyperparameters for fine-tuning RoOBERTa-base on GLUE.

CLEAN SOAP LoRA GalLore AdamW

Epochs 3

Warm-up X

Batch 16

Max Len 128

Data Type bfloat32

LR {le—4,2e —4,...,5e —4}/{le—5,...,5e — 5}
LR Schedule linear to 0%

b1 0.9 0.95 0.9 0.9 0.9
B2 0.999 0.95 0.999 0.999 0.999
Weight Decay X X X X X
Dropout X X X X X
Grad Clip X X X X X
Subspace Update Interval T’ 32 32 X 500 X
Rank r 32 X 4/8 4/8 X
Subspace Proj v X X v X
Accum Weight v v X X X
Grad Proj v X X v X

Pre-training on C4. To illustrate the feasibility of our approach within limited time, we pre-trained
the Llama 130M model using the hyperparameters summarized in Table 5]
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Table 5: Hyperparameters for training Llama 130M across different optimizers.

CLEAN SOAP AdamW

Training Steps 1300
Warm-up Steps 130

Max Len 1024

Batch 2000

Token Batch 2M

Data Type bfloatlé6

LR {be —4,1e — 3,5e — 3,1e — 2}
Warm-up Schedule linear from 0%

LR Schedule cosine to 0%

B1 0.9 0.95 0.9
B2 0.999 0.95 0.999
Iz 0.95 0.95 X
Regularization factor p le —2 X X
Weight Decay X X X
Dropout X X X
Grad Clip X X 1.0
Subspace Update Interval T’ 10 10 X
Rank r 256 X X
Subspace Proj v v X
Accum Weight v X X
Grad Proj v v X
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USE OF LLMS

We verify that we use LLMs (e.g., chatGPT, Claude) to polish and rephrase some sentences of the
paper text. We also used it for discovery purposes like finding related works.
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