
Published as a conference paper at ICLR 2024

RETHINKING CHANNEL DIMENSIONS TO ISOLATE
OUTLIERS FOR LOW-BIT WEIGHT QUANTIZATION
OF LARGE LANGUAGE MODELS

Jung Hwan Heo ∗† 1 Jeonghoon Kim ∗ ‡ 2 Beomseok Kwon2

Byeongwook Kim2 Se Jung Kwon2 Dongsoo Lee2
1 University of Southern California
2 NAVER Cloud

ABSTRACT

Large Language Models (LLMs) have recently demonstrated remarkable success
across various tasks. However, efficiently serving LLMs has been a challenge due
to the large memory bottleneck, specifically in small batch inference settings (e.g.
mobile devices). Weight-only quantization can be a promising approach, but sub-4
bit quantization remains a challenge due to large-magnitude activation outliers.
To mitigate the undesirable outlier effect, we first propose per-IC quantization,
a simple yet effective method that creates quantization groups within each input
channel (IC) rather than the conventional per-output-channel (per-OC). Our method
is motivated by the observation that activation outliers affect the input dimension
of the weight matrix, so similarly grouping the weights in the IC direction can
isolate outliers within a group. We also find that activation outliers do not dictate
quantization difficulty, and inherent weight sensitivities also exist. With per-IC
quantization as a new outlier-friendly scheme, we propose Adaptive Dimensions
(AdaDim), a versatile quantization framework that can adapt to various weight
sensitivity patterns. We demonstrate the effectiveness of AdaDim by augmenting
prior methods such as Round-To-Nearest and GPTQ, showing significant improve-
ments across various language modeling benchmarks for both base (up to +4.7%
on MMLU) and instruction-tuned (up to +10% on HumanEval) LLMs. Code is
available at: https://github.com/johnheo/adadim-llm

1 INTRODUCTION

The rise of Transformers (Vaswani et al., 2017) has led a remarkable success of Large Language
Models (LLMs) (Brown et al., 2020; Touvron et al., 2023), achieving on par or excelling human-level
performance on various tasks (Bubeck et al., 2023). However, with the rapid scaling in model
size, efficiently serving LLMs has become a significant challenge. Specifically, the autoregressive
decoding of an LLM is limited by memory bandwidth rather than compute (Kim et al., 2023b).

Low-bit weight quantization is a promising approach to reduce storage and accelerate inference
latency (Park et al., 2022). By reducing weight precision, one can pack multiple weights under equal
bit width to increase memory I/O (e.g., 4× for FP16 → INT4). However, sub-4 bit quantization
remains a challenge due to the presence of activation outliers in billion parameter scale modern
LLMs (Dettmers et al., 2022; Bondarenko et al., 2023). Prior works have sought to mitigate large
activations amplifying the rounding errors in the corresponding weights, where a small subset of
weights is much more sensitive than others (Lin et al., 2023; Dettmers et al., 2023; Yuan et al., 2023).

In this paper, we first propose per-input-channel (per-IC) quantization, a simple yet effective scheme
to address the activation outlier problem. The motivation behind per-IC quantization lies in how
activation outliers impact specific input channels of the weight matrix. Thus, similarly grouping the
weights in the IC direction can effectively isolate the effect of these outliers (ref. Figure 1). Such an
approach is particularly feasible in the weight-only quantization context because it does not rely on
specialized INT8 GEMM kernels impose the per-OC grouping constraint.

∗Equal contribution
†Work done during an internship at NAVER Cloud
‡Corresponding author:jeonghoon.samuel@gmail.com

1

https://github.com/johnheo/adadim-llm

Published as a conference paper at ICLR 2024

Intuition: per-IC quantization

Per Output Channel
Quantization (Standard)

Outliers in all groups Outlier is isolated

Per Input Channel
Quantization (Ours)

∗
! "

#out

#in

Activation outliers cause
sensitive Weight outliers

Figure 1: Per-input-channel quantization. Activation outliers that affect certain input channels
(ICs) amplify quantization errors. Such sensitive ICs exist in all groups in the conventional per-
output-channel (per-OC) quantization. With our per-IC scheme, the outlier effect is isolated.

By unlocking input dimension as a new design parameter that helps to sidestep the activation outlier
problem, we propose AdaDim, a versatile quantization framework that can adapt to different weight
sensitivity scenarios. We now organize our contributions below:

• From analyzing the structural relationship between activation outliers and sensitive weights,
we propose per-IC quantization. Unlike traditional per-OC quantization where the outlier
effect is pervasive, per-IC quantization isolates the outlier effect.

• Activation outliers emerge only in a subset of the network, prompting a selective application
of per-IC quantization. We present Adaptive Dimensions (AdaDim), a framework that
adapts to various weight sensitivity patterns by using both per-IC and per-OC quantization.

• Augmenting weight-only quantization methods such as Round-To-Nearest (RTN) and GPTQ
with AdaDim results in significant boost in various language modeling abilities and special-
ized tasks (math, coding) for both base and instruction-tuned LLMs.

2 RELATED WORK

Generative inference of an LLM is heavily memory bound (Sheng et al., 2023). In a single-batch
inference setting which is usually common for mobile devices, billions of floating point weights need
to be read in from VRAM into on-chip cache to generate a single next token. Thus, smaller weight
precision can make memory I/O more efficient by packing multiple values under equal bit width.

2.1 LLM QUANTIZATION

Quantization is an effective method to reduce weight precision, accelerating inference and reducing
storage. INT8 quantization maps both activations and weights to lower precision, so that specialized
GEMM engines can effectively accelerate arithmetic computation for large matrix mulplications (Xiao
et al., 2022). Thus in autoregressive decoding workloads as in modern LLMs (Touvron et al., 2023),
INT8 quantization is helpful for large batch sizes where compute is the bottleneck, but not for small
batches (let alone a single batch) where memory is the bottleneck.

An alternative to address the memory bottleneck is weight-only quantization (Park et al., 2022), which
leaves activations in high precision (e.g., FP16) while pushing the weights to even lower precision
(≤ 4 bits). We focus on weight-only quantization to accelerate memory I/O rather than compute,
as small-batch inputs do not saturate the powerful compute capacity of modern GPUs(Kim et al.,
2023b). In order to preserve accuracy while minimizing the number of bits, group-wise per-channel
quantization is commonly used (Shen et al., 2020; Kim et al., 2023a). It is a fine-grained quantization
scheme where a group of consecutive weights inside each channel share the same quantization
parameters.

2.2 THE ACTIVATION OUTLIER PROBLEM

INT8 quantization. Low-bit transformer quantization is complicated by the presence of activation
outliers (Bondarenko et al., 2023). First characterized in OPT models (Zhang et al., 2022) by Dettmers
et al. (2022), activation outliers emerge in a small subset of hidden dimensions and have up to 20×

2

Published as a conference paper at ICLR 2024

larger magnitude than other channels. Such outliers increase quantization range, which results in
most of the activation values being mapped to the same quantization bucket, making quantization
ineffective. To address this, recent works have attempted to suppress or smooth such outliers (Wei
et al., 2022b; Xiao et al., 2022) or use training (Liu et al., 2023b; Lee et al., 2023) to achieve
acceptable INT8 accuracy.

Weight-only quantization. Although activation outliers can be seemingly unrelated, it has been
discovered that they also make weight quantization difficult (Dettmers et al., 2023; Lin et al., 2023).
When large activations are multiplied by dequantized weights that inherently possess rounding errors,
even small errors can be amplified by the large inputs, causing non-trivial perturbations to the layer
output. To address the undesirable outlier effect, existing per-channel quantization methods keep
outliers in higher precision via mixed-precision formats (Dettmers et al., 2023; Kim et al., 2023b) or
use scaling to give higher importance during quantization (Lin et al., 2023).

Reviewing renewed GPTQ. A pioneering work in LLM weight-only quantization is GPTQ (Frantar
et al., 2022) which does iterative per-channel quantization while compensating the rounding errors
with Hessian-based approximation. Contrary to what is explained in the original GPTQ paper
as Arbitrary Order Insight, it has been found that the order in which channels are quantized are
actually crucial (i.e., --act-order option in their repo1). Because salient (sensitive) weight channels
compensating the error of non-salient weight channels is undesirable, the activation reordering
technique sorts the channels in the descending order of activation magnitude to quantize salient
channels first (Figure 8). Although this provides better accuracy, reordering incurs non-trivial
hardware overhead due to quantization scales becoming non-contiguous in memory (Lin et al., 2023).

To avoid inefficient random memory access, GPTQ added another option (i.e., --static-groups)
that pre-computes the quantization parameters before reordering. This enables activation-aware
weight updates while quantization parameters are still contiguous in memory. However, we find that
such static quantization constraint fails to capture the changing weight dynamics that occur during
iterative weight updates, leading to suboptimal accuracy (Table 2b).

3 METHODOLOGY

Overview. In this section, we first structurally analyze the relationship between activation outliers
and weight sensitivity patterns (Figure 2). We then introduce per-IC quantization to isolate the outlier
effect, empirically validating its effectiveness in a preliminary study (Table 1). Finally, we propose
Adaptive Dimensions (AdaDim), a versatile framework that can automatically choose whether to use
per-IC or per-OC quantization for each layer of the network.

#in$m
od
el

Outlier activations à Row (IC) sensitivity

#out
Mild activations à Less sensitive rows; dominant

sensitivity dimension (IC or OC) can change across network depth

Blk31.mlp.up_projBlk0.attn.v_proj Blk15.mlp.up_proj

Figure 2: Weight sensitivity patterns of LLaMA-V2-7B. Darker colors indicate larger activation
magnitude (red), and higher weight sensitivity (blue). Sensitivity is computed with fisher information
approximated by the squared of the gradient. We downsample the grids with a 16x16 maxpool kernel
and take the log scale for clarity. Left: The presence of activation outliers lead to sensitive rows.
Right: Mild activations lead to less sensitive rows, while the dominant sensitivity dimension (row or
column) can change across network depth even for the same module.

1https://github.com/IST-DASLab/gptq

3

Published as a conference paper at ICLR 2024

Table 1: Isolating outliers with per-IC quantization. We observe the largest activations before
attn.qkv and mlp.down projections for LLaMA-V2 base models. Selectively applying per-IC
quantization to RTN only where outliers are present gives the most improvement in perplexity and
multi-task in-context learning performance (MMLU) on INT4 with group size 128.

Model Metric FP16 Baseline Module to apply Per-IC quant.
Size (RTN, Per-OC) (1)attn.qkv (2)mlp.down (1)&(2) All

7B Wiki-2 ppl. (↓) 8.79 9.22 9.17 9.11 9.09 9.11
MMLU 5-shot (↑) 45.98 44.54 44.77 44.7 45.21 44.38

13B Wiki-2 ppl. (↓) 7.89 8.13 8.12 8.11 8.10 8.13
MMLU 5-shot (↑) 55.61 54.43 54.76 54.90 54.97 54.67

3.1 ANALYZING WEIGHT SENSITIVITY PATTERNS

Although activation outliers are prevalent in modern LLMs (Wei et al., 2022c; 2023), they do not occur
in every layer of the network. We investigate the structural relationship between activation outliers
and sensitive weight outliers in the LLaMA-V2 base model family. We define weight sensitivity by
using fisher information following Kim et al. (2023b), which can be approximated by the squared of
the gradient obtained by using a calibration set. Here, sensitivity is defined per weight instead of per
channel, as we infer channel sensitivity from the sensitivity of its constituent individual weights.

Our preliminary study shows that the largest activations occur before QKV attention projection and
DOWN feedforward projection (Figure 9). When visualizing the sensitivity of the corresponding
weight matrices, we find that the hidden dimensions where activation outliers emerge have high
correlation to sensitive weight channels (left of Figure 2). However, even when outliers exist before
Q and K projections, they can exhibit dominant OC sensitivity (Figure 10a). Thus, activation outliers
cause sensitive rows but does not necessarily dictate the overall sensitivity.

Besides, when activation outliers do not exist, we observe that the weight matrix can have a mixture
of sensitive IC and OC channels. Moreover, the dominant sensitivity dimension can actually switch
across network depth, even if it is the same module (right of Figure 2). These observations motivate
a weight quantization method that can adapt to different sensitivity scenarios, which is largely
conditioned by the existence of activation outliers.

3.2 PER-IC QUANTIZATION

Motivation. One common thread of existing per-channel quantization methods is their usage of
per-OC channel quantization. When activation outliers emerge in certain hidden dimensions, the
amplification effect is permeated across all quantization groups for per-OC quantization (Figure 1). In
contrast, grouping within each IC yields a 1:1 mapping between hidden dimension to a quantization
group which isolates the outlier effect to be within a group. Thus, per-IC quantization can be a more
effective method that mitigates the outlier problem.

Selective outlier isolation. To first verify our intuition that per-IC quantization can isolate the
undesirable activation outlier effect, we augment the standard RTN method. As in Table 1, utilizing
per-IC quantization for modules influenced by activation outliers can effectively improve both
perplexity and multi-task in-context learning ability of an LLM. We also observe that selective
utilization per-IC quantization is important; naively applying it to all modules can actually hurt
baseline RTN performance from 44.54 to 44.38, while selectively applying it to QKV and DOWN
modules improve up to 0.67% on average MMLU score. Thus, it is desirable to search for a selective
scheme to apply per-IC quantization, motivating our adaptive approach in Section 3.3.

3.3 ADAPTIVE PER-CHANNEL QUANTIZATION

Optimization objective. Beyond heuristically determining the channel quantization dimension by
looking at the sensitivity patterns offline, we propose an adaptive method that can achieve this on
the fly during quantization. For each linear layer Wℓ (linear projection W at layer ℓ) in a neural
network, we formulate channel quantization as a simple binary selection problem that chooses the
optimization parameter dim as either one of the two (OC or IC) dimensions. To measure which
dimension is more effective, we adopt the widely used reconstruction error metric (Nagel et al., 2020;
Li et al., 2021), yielding the optimization objective as

4

Published as a conference paper at ICLR 2024

dim∗ = argmin
dim∈{oc,ic}

L(dim), L(dim) = ∥Qdim(Wℓ)Xℓ −WℓXℓ∥, (1)

where the reconstruction error L(dim) is defined as the L2 distance between the outputs of a full
precision layer WℓXℓ and that of the quantized layer Q(Wℓ)Xℓ. To obtain X, we curate a small
calibration set by randomly sampling from the pretraining corpus (e.g. The Pile). Here, the per-
channel quantization function Qdim can either create quantization groups per-OC (standard) or per-IC
(proposed), as illustrated in Figure 1. Since the search space of the dimension parameter is only two,
AdaDim requires a very small number of forward passes to determine the optimal dimension.

Augmenting RTN and GPTQ. Applying our AdaDim to RTN is straightforward: we independently
quantize the full precision weights two different times (per-IC and per-OC), then choose the dimension
that yields a lower reconstruction error. Hence, we always search for the optimal dimension with RTN
and optionally apply GPTQ in the selected dimension. As the GPTQ (Frantar et al., 2022) algorithm
consists of iteratively 1) computing the quantization error of a weight channel and 2) applying
hessian-based weight updates, using our per-IC variant simply requires executing the quantization
step 1) with per-IC RTN. We also considered applying AdaDim to AWQ but found it incompatible
(see Appendix A.2 for further discussion). Furthermore, per-IC GPTQ can obtain additional benefits
from the reordering scheme, which we detail further in Appendix A.1.

4 EXPERIMENTS

4.1 EVALUATION SETUP

Quantization setting. In this work, we focus on weight-only per-channel (w/ uniform asymmetric
setting) quantization with group size of 128, which is shown to be a good accuracy/latency trade-off
point (Dettmers & Zettlemoyer, 2022). We also focus on INT3 quantization since it shows the biggest
relative improvements while INT4 quantization yields comparable performance across methods (see
Appendix C). Following the settings of GPTQ and AWQ, we use a small calibration set from the
Pile (Gao et al., 2020) dataset. For instruction-tuned models, we also experiment with task-specific
calibration sets, which is randomly sampled from the training split of the respective tasks.

Models. For base model evaluation, we use version 2 (V2) instead V1 of the LLaMA (Touvron et al.,
2023) family with the exception of 33B since it is not yet publicly available. We further benchmark
instruction-tuned models from the WizardLM (Xu et al., 2023) family, which is a series of performant
LLaMA-V2 models fine-tuned with specialized instruction dataset curation. We use WizardMath and
WizardCoder-Python (Luo et al., 2023a;b) to test mathematical reasoning and code generation ability.

Tasks. Following previous literature (Dettmers et al., 2022; Yao et al., 2022), we evaluate the
quantized models on zero-shot commonsense reasoning (CSR) ability, including PIQA (Bisk et al.,
2020), HellaSwag (Zellers et al., 2019), WinoGrande (Sakaguchi et al., 2019), and ARC-easy (Clark
et al., 2018). Besides common sense abilities, we also evaluate multi-task generalization ability
with five-shot setting (in-context learning) on MMLU (Hendrycks et al., 2020), which consists of
57 tasks including STEM, humanities, social science, and others (business, health, etc.). We used
lm-eval-harness (Gao et al., 2021) for CSR and a reproducible repo2 for MMLU. We report the
average score of the four aforementioned CSR tasks and the total average of MMLU.

Following (Luo et al., 2023a;b), we evaluate instruction-tuned models on mathematical reasoning
with Chain-of-Thought (CoT) prompting (Wei et al., 2022a) on GSM8k (Cobbe et al., 2021) dataset,
a set of grade school math questions. We also test code generation with greedy decoding on the
HumanEval (Chen et al., 2021) dataset, which includes hand-crafted programming problems written
in Python. To curate domain-specific calibration sets, we use the training splits from GSM8k and
from MBPP (Austin et al., 2021), a crowd-sourced entry level Python problem set.

Baselines. We benchmark against vanilla round-to-nearest quantization (RTN), GPTQ (Frantar et al.,
2022), and AWQ (Lin et al., 2023) for LLM weight quantization. We thorougly ablate GPTQ’s
most up-to-date design parameters as in Table 2 to find a strong baseline for modern LLMs such
as LLaMA-V2 (Touvron et al., 2023). We first observe that heuristically fixing which module
to apply per-IC quantization offline is inferior to the optimization-based (adaptive) setting where

2https://github.com/QwenLM/Qwen-7B/blob/main/eval

5

Published as a conference paper at ICLR 2024

Table 2: GPTQ ablation using LLaMA-V2-13B with MMLU 5-shot average score. We see that
adaptive method is superior to the heuristic-based approach. Although reordering by itself gives the
best results for OC cfg., it is hardware inefficient. Thus, our final design is marked in green .

(a) Heuristic-based. Results when the decision to
use per-IC quantization with reorder is fixed accord-
ing to a heuristic from an offline observation as in
Table 1.

per-IC module Accuracy (%)
none 50.56
attn.qkv 51.47
mlp.down 50.4
qkv & down 48.93
all 51.4

(b) Optimization-based. Results when AdaDim
adaptively chooses either per-OC/per-IC quantiza-
tion for each layer by minimizing the reconstruction
error.

cfg. Accuracy (%)
PPPPPPPOC

IC default reorder

default 51.07 51.54
reorder 52.18 52.68
reorder + static 51.32 52.27

dimensions are chosen on-the-fly. Once the optimal dimension is selected with RTN, there are various
combinations to apply the GPTQ algorithm: for OC dimension, we test default (baseline), reorder
(activation reordering), and the reorder + static (hardware-efficient reordering) option. We do not
test static groups for IC since it is already hardware-efficient. We empirically determine that static
reordering for per-OC and reordering for per-IC yields the best accuracy-efficiency trade-off.

4.2 BASE MODEL QUANTIZATION

Base models serve as the fundamental backbone for modern LLMs, which demonstrated remarkable
capabilities in general knowledge understanding (Bubeck et al., 2023). To test the effect of quantiza-
tion on such models, we evaluate the LLaMA family that is widely used today (Taori et al., 2023; Liu
et al., 2023a). We evaluate INT3 per-channel quantization with group size 128 (w3g128) on common
sense reasoning with 0-shot and MMLU with 5-shot (in-context learning). As in Figure 3, AdaDim
enables notable improvements in existing methods such as RTN and GPTQ. Remarkably, augmenting
RTN with per-IC quantization yields a 4.7% MMLU accuracy boost on the 7B model, surpassing
both AWQ and GPTQ.

w/ AdaDim w/o AdaDim
AdaDim
Incompatible

MMLU
5-shot Avg.

CSR
0-shot Avg.

LLaMA
(w3g128)

V2-7B V2-13B V1-33B V2-70B

70.0

70.5

71.0

71.5

72.0

72.5

AWQ RTN GPTQ
67.5

68.0

68.5

69.0

69.5

AWQ RTN GPTQ
65.0

65.5

66.0

66.5

67.0

AWQ RTN GPTQ

52

53

54

55

56

AWQ RTN GPTQ
50

51

52

53

54

AWQ RTN GPTQ
36

38

40

42

44

AWQ RTN GPTQ
64

65

66

67

68

AWQ RTN GPTQ

72.5

73.0

73.5

74.0

74.5

AWQ RTN GPTQ

Figure 3: Base model results. Evaluating the effectiveness of our AdaDim framework for LLaMA
base models on Massive Multi-task Language Understanding (MMLU) and commonsense reasoning
(CSR) tasks. Performance boosts (in green) indicate additional gains from adaptively switching to
per-IC quantization. We observe notable gains over the original per-OC versions of RTN and GPTQ
(Frantar et al., 2022), often matching or even surpassing AWQ (Lin et al., 2023).

6

Published as a conference paper at ICLR 2024

Table 3: We evaluate Vicuna, a family of instruction-tuned LLaMA models with improved language
modeling. AdaDim applied to RTN and GPTQ are trailed by postfix ‘-ada’ and highlighted in green .

w3g128 Vicuna-V1.5-7B Vicuna-V1.5-13B Vicuna-V1.3-33B

MMLU Avg. CSR Avg. MMLU Avg. CSR Avg. MMLU Avg. CSR Avg.

FP16 50.27 67.45 56.02 69.81 59.22 71.12

AWQ 45.79 65.4 53.27 68.06 55.3 69.24
RTN 45.18 65.61 51.61 67.90 53.39 68.75
RTN-ada 46.25 66.42 51.8 67.92 55.93 69.42
GPTQ 47.32 64.88 53.11 67.55 55.68 68.08
GPTQ-ada 47.45 65.7 53.29 67.72 57.08 69.37

Table 4: Task-specific quantization. We evaluate instruction-tuned WizardLM models on math and
coding. Intuitively, we find that using a calibration set from the target domain (e.g., code-code) rather
than generic text corpus (e.g., pile-code) improves performance. Applying AdaDim (labeled green)
consistently improves both RTN and GPTQ with up to 10% on HumanEval, surpassing AWQ.

w3g128 GSM8k pass@1 (↑) HumanEval pass@1 (↑)

WizMath-7B WizMath-13B WizCoder-Py-7B WizCoder-Py-13B

FP16 55.35 63.38 55.49 64.02
RTN 32.52 49.13 35.37 50.61

calib. set base target base target base target base target

AWQ 39.42 40.49 55.19 54.97 43.29 44.51 57.32 60.36
RTN-ada 37.38 39.12 50.95 53.15 42.68 45.12 60.37 60.98
GPTQ 38.29 41.09 54.21 57.16 31.71 45.12 53.05 56.71
GPTQ-ada 41.77 42.15 56.78 57.47 46.34 46.95 53.69 62.2

4.3 INSTRUCTION-TUNED MODEL QUANTIZATION

Instruction tuning has become the method of choice to boost the performance and user interaction
experience of LLMs (Wei et al., 2021; Sanh et al., 2021; Chung et al., 2022). A well-known
instruction-tuned model that is also publicly available is Vicuna (Chiang et al., 2023) which is
fine-tuned from LLaMA models. To benchmark how quantization affects their improved language
modeling capabilities, we conduct MMLU and CSR evaluations in Table 3. AdaDim brings consistent
improvements across various model scales; similar to the base model results, strong performances are
displayed for RTN-ada on CSR and GPTQ-ada for MMLU. Performance boost is most noticeable in
the 33B scale, where our adaptive solutions can bridge the degradation down to ∼2% points.

Task-specific quantization. Beyond general abilities like commonsense reasoning, fine-tuning to a
specific task has shown to be effective in creating specialized LLMs (Luo et al., 2023a;b). WizardLM
family is a set of LLaMA fine-tuned models that show very strong performance on open benchmarks
such as GSM8k and HumanEval. Different tokens produce different activations; to better simulate the
test-time activation distribution of a task-specific LLM, it may be desirable to also use a task-relevant
calibration set. To test this intuition, we use both the generic text corpus (WikiText-2, denoted as
base) and task-relevant corpora (GSM8k for math and MBPP for coding, denoted as target). As
in Table 4, we confirm the proposition that using a target calibration set can bring improvements,
sometimes significantly up to 8.51% on the 13B coding model for GPTQ-ada. Notably, RTN-ada
brings up to a 10.3% boost over vanilla RTN, with GPTQ-ada outperforming all other methods when
using the target calibration set which may be due to the task-specific weight updates that can serve as
further fine-tuning.

4.4 ANALYSIS

Sweeping precision ranges. To test the generality of AdaDim across various quantization settings,
we use LLaMA-V2-7B to sweep INT3/INT4 precision with 256, 128, and 64 group sizes. As in
Figure 4, AdaDim strictly improves perplexity scores when applied to RTN and GPTQ. Prominently,
RTN-ada shows significant perplexity improvements from vanilla RTN up to 1.06 on w3g256, even

7

Published as a conference paper at ICLR 2024

8.5

9

9.5

10

10.5

11

11.5

12
w3g256 w3g128 w3g64 w4g256 w4g128 w4g64

RTN RTN-ada GPTQ GPTQ-ada

FP16

MMLU 5-shot Avg. (%) vs. Quant. ConfigWikiText-v2 Perplexity vs. Quant. Config

Figure 4: Sweeping various quantization configurations for LLaMA-V2-7B. Average bits per weight
increases from left to right (x-axis). AdaDim can further close the gap between INT3/4 and FP16.

Figure 5: Adaptive dimension selection. By adaptively switching to per-IC quantization, AdaDim
can reduce the reconstruction error up to 6× in the RTN setting. The decisions vary across model
size (7B vs. 70B) and task (language modeling vs. math), showcasing the versatility of AdaDim.

surpassing GPTQ on various ranges. On MMLU, AdaDim provides accuracy lifts that are relatively
non-uniform, which we speculate is due to the nature of in-context learning.

Reduced reconstruction error. As in Figure 5, adaptively switching to per-IC quantization for
RTN-ada can save up to 6× in reconstruction error, aligning with our objective in Eq. 1. We notice
that more savings come from earlier layers, which suggest that earlier part of the network is especially
sensitive to activation outliers. Among the different modules, attn.v projection layer yields the most
error reduction, followed by the mlp.down projection layer. The switch to per-IC decisions occur at
different modules for different model sizes and tasks, demonstrating the versatility of AdaDim.

Localized GPTQ updates. Activation outlier effect is pervasive in the standard per-OC quantization,
while it is isolated in the per-IC quantization (Figure 1). We study the impact of outlier isolation on
GPTQ weight updates in Figure 6. GPTQ computes the weight update (analogous to a gradient) by
first capturing the rounding error then multiplying it by the inverse hessian (formed by activations).
Thus, quantizing the sensitive weights altogether with IC grouping will lead to larger quantization
errors, but it will be localized to a few channels where the outliers emerge. Indeed, per-IC quantization
uses larger, localized updates that target only a few input channels. In contrast, standard per-OC
quantization uses smaller updates to much more channels, caused by the pervasively spread outlier
effect. Hence, per-IC quantization minimally perturbs the weight distribution by focusing on only a
few sensitive channels that contain densely populated outliers.

4.5 PER-IC KERNEL IMPLEMENTATION

We utilize the implementation of LUT-GEMM (Park et al., 2022), a Lookup Table-based (LUT-based)
matrix multiplication method. LUT-GEMM first involves the precomputation stage, where possible
multiplication outcomes between quantized weights and activations are stored in a Lookup Table.
During actual computation in a forward pass, the matmul operations take the form of indexing the
LUT (instead of multiplying) using the weight values as keys, enabling efficient GEMM operations.
For our per-IC quantization, a similar implementation is applied. During LUT generation, each
per-IC quantization scaling factor can be multiplied in advance with activations to create the Lookup
Table. In cases of group quantization, adjusting tile sizes to fit the groups and generating LUTs on a

8

Published as a conference paper at ICLR 2024

Larger, localized updates

Smaller, pervasive updates Larger, localized updates

#in

#out

Figure 6: GPTQ update behavior. Thanks to per-IC quantization’s outlier isolation, GPTQ’s error
compensation (weight update) is localized to a small subset of input channels instead of many input
channels. By grouping sensitive weights together, AdaDim can use larger, localized updates that
minimally perturb the original weight distribution. Left: A typical distribution of GPTQ’s weight
updates (magnitude) in LLaMA-V2-7B’s attn.v layer. Middle/Right: Weight updates visualized in
the 2D matrix form (Cin,Cout), zoomed in to the top right quadrant.

1.44

2.20

2.95

3.55

1.00

2.00

3.00

4.00

128 256 512 2048

1.53

2.42

3.38

4.34

1.00

2.00

3.00

4.00

5.00

128 256 512 2048

INT4 INT3

La
te

nc
y

Sp
ee

du
p

Fa
ct

or

Group Size Group Size
Figure 7: Latency speedup of our Per-IC kernel over cuBLAS across various group sizes. We
measure the latency of the first FFN layer on OPT-175B model with 3-bit and 4-bit precision and
corresponding kernel selections with hidden dimension size set to 12288 on an A100-80GB-GPU.

tile-by-tile basis allows for a similar application of this method. Due to time and resource limitations,
we do not perform experiments with a fully optimized kernel that may further optimize the latency of
our approach. Nevertheless, our per-IC kernel exhibits faster latency than the cuBLAS baseline as in
Figure 7. This indicates that our Per-IC quantization not only achieves accuracy improvements but
also leads to measurable speedups in inference latency. Further investigation into a well-optimized
per-IC kernel is a critical direction for our future research. For further discussion, please refer to
Appendix D.

5 CONCLUSION

Per-IC quantization method offers a simple yet effective resolution to the activation outlier challenge
by strategically isolating the sensitive weights in the IC direction. This methodology is further
advanced by our Adaptive Dimensions (AdaDim) framework, which showcases adaptability to
varying quantization sensitivities. Experimental results underline AdaDim’s effectiveness, evinced
by notable performance gains in both base and instruction-tuned LLMs across diverse language
modeling benchmarks. Through this work, we hope to make a step forward in the practicality and
accessibility of LLMs in real-world applications.

9

Published as a conference paper at ICLR 2024

ACKNOWLEDGMENTS

We thank our colleagues from the AI Efficiency team at NAVER Cloud for constructive feedback,
especially Gunho Park, the author of LUT-GEMM (Park et al., 2022), for helping with the kernel
implementation. We also thank Ji Lin and Elias Frantar for fruitful discussions.

REFERENCES

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732, 2021.

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, and Yejin Choi. Piqa: Reasoning
about physical commonsense in natural language. In Thirty-Fourth AAAI Conference on Artificial
Intelligence, 2020.

Yelysei Bondarenko, Markus Nagel, and Tijmen Blankevoort. Quantizable transformers: Removing
outliers by helping attention heads do nothing. arXiv preprint arXiv:2306.12929, 2023.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler,
Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray,
Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever,
and Dario Amodei. Language models are few-shot learners. In H. Larochelle, M. Ranzato,
R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neural Information Processing Systems,
volume 33, pp. 1877–1901. Curran Associates, Inc., 2020. URL https://proceedings.neurips.
cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf.

Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece Kamar,
Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, et al. Sparks of artificial general intelligence:
Early experiments with gpt-4. arXiv preprint arXiv:2303.12712, 2023.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios
Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex Paino,
Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa,
Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob
McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating
large language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng,
Siyuan Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion Stoica, and Eric P. Xing. Vicuna:
An open-source chatbot impressing gpt-4 with 90%* chatgpt quality, March 2023. URL https:
//lmsys.org/blog/2023-03-30-vicuna/.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, et al. Scaling instruction-finetuned language models.
arXiv preprint arXiv:2210.11416, 2022.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168,
2021.

10

https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/

Published as a conference paper at ICLR 2024

Tim Dettmers and Luke Zettlemoyer. The case for 4-bit precision: k-bit inference scaling laws. arXiv
preprint arXiv:2212.09720, 2022.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Llm.int8(): 8-bit matrix
multiplication for transformers at scale. arXiv preprint arXiv:2208.07339, 2022.

Tim Dettmers, Ruslan Svirschevski, Vage Egiazarian, Denis Kuznedelev, Elias Frantar, Saleh Ashk-
boos, Alexander Borzunov, Torsten Hoefler, and Dan Alistarh. Spqr: A sparse-quantized represen-
tation for near-lossless llm weight compression, 2023.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Gptq: Accurate post-training
quantization for generative pre-trained transformers. arXiv preprint arXiv:2210.17323, 2022.

Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason Phang,
Horace He, Anish Thite, Noa Nabeshima, et al. The pile: An 800gb dataset of diverse text for
language modeling. arXiv preprint arXiv:2101.00027, 2020.

Leo Gao, Jonathan Tow, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster, Laurence
Golding, Jeffrey Hsu, Kyle McDonell, Niklas Muennighoff, Jason Phang, Laria Reynolds, Eric
Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework for few-shot language
model evaluation, September 2021. URL https://doi.org/10.5281/zenodo.5371628.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding. CoRR, abs/2009.03300, 2020.
URL https://arxiv.org/abs/2009.03300.

Jeonghoon Kim, Jung Hyun Lee, Sungdong Kim, Joonsuk Park, Kang Min Yoo, Se Jung Kwon, and
Dongsoo Lee. Memory-efficient fine-tuning of compressed large language models via sub-4-bit
integer quantization. arXiv preprint arXiv:2305.14152, 2023a.

Sehoon Kim, Coleman Hooper, Amir Gholami, Zhen Dong, Xiuyu Li, Sheng Shen, Michael Mahoney,
and Kurt Keutzer. Squeezellm: Dense-and-sparse quantization. arXiv, 2023b.

Jung Hyun Lee, Jeonghoon Kim, Se Jung Kwon, and Dongsoo Lee. FlexRound: Learnable rounding
based on element-wise division for post-training quantization. In Andreas Krause, Emma Brunskill,
Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), Proceedings of
the 40th International Conference on Machine Learning, volume 202 of Proceedings of Machine
Learning Research, pp. 18913–18939. PMLR, 23–29 Jul 2023. URL https://proceedings.mlr.
press/v202/lee23h.html.

Yuhang Li, Ruihao Gong, Xu Tan, Yang Yang, Peng Hu, Qi Zhang, Fengwei Yu, Wei Wang, and Shi
Gu. Brecq: Pushing the limit of post-training quantization by block reconstruction. arXiv preprint
arXiv:2102.05426, 2021.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Xingyu Dang, and Song Han. Awq: Activation-
aware weight quantization for llm compression and acceleration. arXiv, 2023.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. 2023a.

Zechun Liu, Barlas Oguz, Changsheng Zhao, Ernie Chang, Pierre Stock, Yashar Mehdad, Yangyang
Shi, Raghuraman Krishnamoorthi, and Vikas Chandra. Llm-qat: Data-free quantization aware
training for large language models. arXiv preprint arXiv:2305.17888, 2023b.

Haipeng Luo, Qingfeng Sun, Can Xu, Pu Zhao, Jianguang Lou, Chongyang Tao, Xiubo Geng,
Qingwei Lin, Shifeng Chen, and Dongmei Zhang. Wizardmath: Empowering mathematical
reasoning for large language models via reinforced evol-instruct. arXiv preprint arXiv:2308.09583,
2023a.

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xiubo Geng, Wenxiang Hu, Chongyang Tao, Jing
Ma, Qingwei Lin, and Daxin Jiang. Wizardcoder: Empowering code large language models with
evol-instruct. arXiv preprint arXiv:2306.08568, 2023b.

11

https://doi.org/10.5281/zenodo.5371628
https://arxiv.org/abs/2009.03300
https://proceedings.mlr.press/v202/lee23h.html
https://proceedings.mlr.press/v202/lee23h.html

Published as a conference paper at ICLR 2024

Markus Nagel, Rana Ali Amjad, Mart Van Baalen, Christos Louizos, and Tijmen Blankevoort. Up or
down? adaptive rounding for post-training quantization. In International Conference on Machine
Learning, pp. 7197–7206. PMLR, 2020.

Gunho Park, Baeseong Park, Se Jung Kwon, Byeongwook Kim, Youngjoo Lee, and Dongsoo Lee.
nuqmm: Quantized matmul for efficient inference of large-scale generative language models. arXiv
preprint arXiv:2206.09557, 2022.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. 2019.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An
adversarial winograd schema challenge at scale. arXiv preprint arXiv:1907.10641, 2019.

Victor Sanh, Albert Webson, Colin Raffel, Stephen H Bach, Lintang Sutawika, Zaid Alyafeai, Antoine
Chaffin, Arnaud Stiegler, Teven Le Scao, Arun Raja, et al. Multitask prompted training enables
zero-shot task generalization. arXiv preprint arXiv:2110.08207, 2021.

Sheng Shen, Zhen Dong, Jiayu Ye, Linjian Ma, Zhewei Yao, Amir Gholami, Michael W Mahoney,
and Kurt Keutzer. Q-bert: Hessian based ultra low precision quantization of bert. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 34, pp. 8815–8821, 2020.

Ying Sheng, Lianmin Zheng, Binhang Yuan, Zhuohan Li, Max Ryabinin, Daniel Y Fu, Zhiqiang Xie,
Beidi Chen, Clark Barrett, Joseph E Gonzalez, et al. High-throughput generative inference of large
language models with a single gpu. arXiv preprint arXiv:2303.06865, 2023.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model.
https://github.com/tatsu-lab/stanford alpaca, 2023.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du,
Andrew M Dai, and Quoc V Le. Finetuned language models are zero-shot learners. arXiv preprint
arXiv:2109.01652, 2021.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
Neural Information Processing Systems, 35:24824–24837, 2022a.

Xiuying Wei, Yunchen Zhang, Xiangguo Zhang, Ruihao Gong, Shanghang Zhang, Qi Zhang, Fengwei
Yu, and Xianglong Liu. Outlier suppression: Pushing the limit of low-bit transformer language
models, 2022b. URL https://arxiv.org/abs/2209.13325.

Xiuying Wei, Yunchen Zhang, Xiangguo Zhang, Ruihao Gong, Shanghang Zhang, Qi Zhang, Fengwei
Yu, and Xianglong Liu. Outlier suppression: Pushing the limit of low-bit transformer language
models. arXiv preprint arXiv:2209.13325, 2022c.

Xiuying Wei, Yunchen Zhang, Yuhang Li, Xiangguo Zhang, Ruihao Gong, Jinyang Guo, and
Xianglong Liu. Outlier suppression+: Accurate quantization of large language models by equivalent
and optimal shifting and scaling. arXiv preprint arXiv:2304.09145, 2023.

Guangxuan Xiao, Ji Lin, Mickael Seznec, Julien Demouth, and Song Han. Smoothquant: Accurate
and efficient post-training quantization for large language models. arXiv preprint arXiv:2211.10438,
2022.

12

https://github.com/tatsu-lab/stanford_alpaca
https://arxiv.org/abs/2209.13325

Published as a conference paper at ICLR 2024

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng, Pu Zhao, Jiazhan Feng, Chongyang Tao, and Daxin
Jiang. Wizardlm: Empowering large language models to follow complex instructions. arXiv
preprint arXiv:2304.12244, 2023.

Zhewei Yao, Reza Yazdani Aminabadi, Minjia Zhang, Xiaoxia Wu, Conglong Li, and Yuxiong He.
Zeroquant: Efficient and affordable post-training quantization for large-scale transformers, 2022.
URL https://arxiv.org/abs/2206.01861.

Zhihang Yuan, Lin Niu, Jiawei Liu, Wenyu Liu, Xinggang Wang, Yuzhang Shang, Guangyu Sun,
Qiang Wu, Jiaxiang Wu, and Bingzhe Wu. Rptq: Reorder-based post-training quantization for
large language models, 2023.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine
really finish your sentence? CoRR, abs/1905.07830, 2019. URL http://arxiv.org/abs/1905.
07830.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christopher
Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer language
models. arXiv preprint arXiv:2205.01068, 2022.

13

https://arxiv.org/abs/2206.01861
http://arxiv.org/abs/1905.07830
http://arxiv.org/abs/1905.07830

Published as a conference paper at ICLR 2024

A FURTHER DISCUSSIONS

Per-IC gets Reordering for Free

#in

❌ contiguous

Mem. access

Quant. order

Reordering allows sensitive
channels to be quantized first ✅ ✅ contiguous

: Memory access
Per-OC GPTQ w/ reorder Per-IC GPTQ w/ reorder

*

* : Shuffled w/ act. reorder#in

Shuffle Shuffle

#in

*#in

Blk0.attn.v_proj

Figure 8: Activation reordering allows important (sensitive) channels to be quantized first. This
prevents salient channels from being updated to compensate for the quantization error of non-salient
ones. However in the standard per-OC scheme, activation reordering causes quantization scales to be
not contiguous, causing inefficient memory access. With per-IC, quantization scales are placed in a
row-major order, which allows scales to be contiguous even after reordering.

A.1 ACTIVATION REORDERING FOR FREE

A crucial nature of the GPTQ algorithm is that it prioritizes the weights that are quantized first,
since the error of earlier quantized weights is compensated by later quantized weights. Activation
reordering trick can help sensitive weights be quantized first, but it is only hardware-efficient with
the static groups constraint. As the static groups setting pre-determines all quantization parameters
independent of the weight update step, per-OC GPTQ with hardware-efficient static reordering leads
to suboptimal accuracy (Table 2b). In contrast, per-IC GPTQ can decouple quantization parameter’s
memory contiguity from the usage of activation reordering, thanks to the row-major layout (Figure 8).
With per-IC quantization, we can maximize the performance of the GPTQ algorithm by using
reordering for free without the static groups constraint.

A.2 INCOMPATIBILITY WITH AWQ

We found that AdaDim is incompatible to AWQ (Lin et al., 2023), which is another competitive
weight-only quantization approach alongside GPTQ (Frantar et al., 2022). The premise of AWQ
is that when conventionally grouping the weights within each OC (per-OC quant.), each weight is
multiplied by a unique hidden dimension of activations. When activation outliers emerge in a small
subset of those channels, the corresponding weights (more sensitive ones) can be identified and scaled
up. This effectively transforms the weight distribution such that sensitive weights now lie near the
maximum of the distribution, so the min-max quantizer will near-losslessly quantize the scaled up
outlier weights. In contrast, per-IC quantization groups weights within each IC, so all the weights
end up sharing the same hidden dimension; this results in all weights being scaled up equally, which
essentially nullifies AWQ’s activation-based weight transformation. Nonetheless, AWQ can indeed
be applied to layers where AdaDim uses per-OC quantization, which may further boost performance.

14

Published as a conference paper at ICLR 2024

A.3 RUNTIME AND COMPUTE

Additional runtime and compute cost incurred from adopting AdaDim is minimal. One point of
comparison is AWQ (Lin et al., 2023) which searches over the scale and clip parameters with a grid
size of 20 each, totaling 40 forward passes per layer. In contrast, AdaDim requires two forward
passes per layer, thanks to the small search space of the dimension parameter.

B IMPLEMENTATION

def rtn_ada(x:torch.tensor , layer:torch.nn, w_bit:int , group_size:int
) -> str:

Inputs: calib. data x, layer to be quantized , and quant. parameters
org_out = layer(x)
org_sd = {k: v.cpu() for k, v in layer.state_dict ().items()}
best_err = float(’inf’); best_dim = None; quant_sd = {}
for dim in [’oc’, ’ic’]:

quantize the weight matrix in place and save it temporarily
quant_sd[dim] = per_channel_quantize(weight , dim , w_bit ,

group_size)
quant_out = layer(x)
recon_err = (org_out - quant_out).float ().pow(2).mean().item()
if recon_err < best_err:

best_dim = dim
layer.load_state_dict(org_sd) # recover full precision weight

layer.load_state_dict(quant_sd[best_dim])
del quant_sd
return best_dim

def gptq_ada(x:torch.tensor , layer:torch.nn, w_bit:int , group_size:int):
weight = layer.weight.data.clone()
best_dim = rtn_ada(x, layer , w_bit , group_size)
run gptq on the searched dimension
layer.weight.data = run_gptq(weight , best_dim , w_bit , group_size)

C ADDITIONAL RESULTS

Ablating GPTQ-ada. As in Table 5, GPTQ-ada shows the best performance when using 256 samples.

Table 5: Calibration set size ablation on w3g128. We fix the max sequence length to be 512 per sample,
thus # of calibration tokens ∼ (# of samples × 512). We use 256 samples for our experiments.

of samples LLaMA-V2-7B LLaMA-V2-13B

MMLU Avg. CSR Avg. MMLU Avg. CSR Avg.

32 35.15 64.16 47.56 54.09
64 39.63 65.48 50.46 66.65
128 39.15 65.42 51.96 67.94
256 41.32 66.41 52.27 68.73
512 39.55 66.51 51.76 68.80

INT4 quantization (at least when used with the widely suggested group size of 128 (Dettmers &
Zettlemoyer, 2022)) does not have a ”winning methodology” that consistently outperforms others
(Table 6 & Table 7).

Additional experiments with SpQR. To benchmark AdaDim with more modern quantization
schemes, we have conducted additional experiments with SpQR (Dettmers et al., 2023), a novel
weight-only quantization method featuring small group-wise double quantization and an FP16 outlier
sparse representation. Table 8 illustrates that Round-To-Nearest with AdaDim (RTN-ada) achieves
comparable performance to SpQR. This similarity arises partly because RTN-ada has a higher average
bit-precision than SpQR. For a more balanced comparison regarding average bit-precision with SpQR,

15

Published as a conference paper at ICLR 2024

Table 6: Vicuna results across all model scales.

w4g128 Vicuna-V1.5-7B Vicuna-V1.5-13B Vicuna-V1.3-33B

MMLU Avg. CSR Avg. MMLU Avg. CSR Avg. MMLU Avg. CSR Avg.

FP16 50.27 67.45 56.02 69.81 59.22 71.12

AWQ 23.06 38.39 55.68 69.36 29.73 62.49
RTN 49.18 67.36 54.88 69.00 58.32 70.82
RTN-ada 49.57 67.55 55.17 69.40 59.04 70.63
GPTQ 49.63 66.84 55.27 69.37 58.82 70.58
GPTQ-ada 49.56 66.94 55.07 69.59 59.06 70.61

Table 7: LLaMA results across all model scales.

w4g128 LLaMA-V2-7B LLaMA-V2-13B LLaMA-V1-33B LLaMA-V2-70B

MMLU Avg. CSR Avg. MMLU Avg. CSR Avg. MMLU Avg. CSR Avg. MMLU Avg. CSR Avg.

FP16 45.98 67.93 55.61 70.33 58.46 72.96 69.29 74.96

AWQ 45.62 67.78 54.59 69.77 57.86 72.85 68.72 74.68
RTN 44.54 67.84 54.43 69.82 57.59 73.16 68.34 74.34
RTN-ada 45.04 67.65 54.57 70.04 57.63 72.75 68.97 74.99
GPTQ 44.93 68.18 54.20 70.00 58.00 72.51 68.99 74.66
GPTQ-ada 45.26 67.69 54.59 70.10 57.86 72.82 68.75 74.60

we conduct further experiments at lower bit-precisions. From Table 9, it is evident that SpQR
outperforms RTN-ada within a similar range of average bit-precision. However, it is crucial to note
that SpQR requires an FP16 representation for outliers, necessitating an additional sparse inference
kernel, which is not a requirement for AdaDim. We emphasize that by shifting the quantization
channel dimensions from output-channel to input-channel, AdaDim can effectively enhance the
performance of existing weight-only group-wise quantization methods.

Table 8: Perplexity (PPL) comparison between SpQR (Dettmers et al., 2023) and Round-To-Nearest
with AdaDim (RTN-ada) on the Wikitext2 and C4 datasets, employing a 4-bit channel-wise configu-
ration with grouping size of 128. The lower PPL, the better.

Method Group Size Avg Bits LLaMA-V1-7B LLaMA-V1-33B LLaMA-V1-65B
Wikitext2 / C4 Wikitext2 / C4 Wikitext2 / C4

FP16 - 16 5.68 / 7.08 4.10 / 5.98 3.53 / 5.62
RTN-ada 128 4.125 5.80 / 7.22 4.19 / 6.05 3.61 / 5.68
SpQR 128 3.9 5.87 / 7.28 4.25 / 6.08 3.68 / 5.70

Table 9: Perplexity (PPL) comparison between SpQR (Dettmers et al., 2023) and Round-To-Nearest
with AdaDim (RTN-ada) on the Wikitext2 and C4 datasets, employing a 3-bit channel-wise configu-
ration with various grouping sizes. The lower PPL, the better.

LLaMA-V1-65B Group Size Avg Bits Wikitext2 [PPL] C4 [PPL]

FP16 - 16 3.53 5.62
RTN-ada 16 4.00 3.74 5.75
RTN-ada 32 3.50 3.82 5.80
RTN-ada 64 3.25 3.91 5.87
SpQR 16 3.63 3.74 5.73

D PER-IC KERNEL

Table 10 compares the latency of our per-IC kernel against the cuBLAS baseline and other per-OC
kernels like OPTQ (Frantar et al., 2022), AWQ (Lin et al., 2023), and LUT-GEMM (Park et al.,
2022). Although it shows slower latency compared to per-OC kernels due to its sub-optimal status,
it’s noteworthy that our per-IC approach is selectively applied to layer-wise manner and enhances the
accuracy performance of per-OC baselines, as detailed in the paper.

16

Published as a conference paper at ICLR 2024

Table 10: Latency comparison of the first FFN layer on OPT-175B model with 3-bit and 4-bit
precision and corresponding kernel selections with hidden dimension size (matrix size, m) is set to
12288 and various group sizes on A100-80GB-GPU.

Method Group Size Weight (4m×m) Input (m× 1) Output (4m× 1) Latency [ms]

cuBLAS INT4 FP16 FP16 0.7258
OPTQ 128 INT3 FP16 FP16 0.3599
AWQ 128 INT4 FP16 FP16 0.3238
LUT-GEMM 128 INT4 FP16 FP16 0.2688
LUT-GEMM 128 INT3 FP16 FP16 0.225

128 INT4 FP16 FP16 0.50477
per-IC kernel 256 INT4 FP16 FP16 0.32926
(Ours) 512 INT4 FP16 FP16 0.24570

2048 INT4 FP16 FP16 0.20425

128 INT3 FP16 FP16 0.47336
per-IC kernel 256 INT3 FP16 FP16 0.29957
(Ours) 512 INT3 FP16 FP16 0.21457

2048 INT3 FP16 FP16 0.16735

E VISUALIZATIONS

Blk31.attn.qkv Blk31.attn.out Blk31.mlp.up_gate Blk31.mlp.down

Figure 9: Activation magnitude across different modules of LLaMA-V2-7B Block 31. We observe
the largest activations before the QKV projection and DOWN projection, which we then selectively
apply per-IC quantization to heuristically validate the outlier isolation effect.

17

Published as a conference paper at ICLR 2024

(a) LLaMA-V2-7B

(b) GPT-2. QKV projections are horizontally concatenated.

Figure 10: Weight sensitivity patterns shown in (Cin, Cout) shape. Both sensitive rows and
columns exist across different modules and network depth. This hints at the potential effectiveness of
AdaDim’s versatile quantization scheme to other backbones such as GPT-2 (Radford et al., 2019).

18

Published as a conference paper at ICLR 2024

Figure 11: Full visualization of adaptively selected per-IC quantization decisions and the subsequent
reconstruction error savings for INT3 with group size 128.

19

