
6 Appendix

6.1 Block-diagonal Structure of Transformers

We observe that for the self-attention layers, the correlation of weights for the same head is stronger.
Additionally, the best grouping might depend on the type of the layer (e.g., key, query, value, or
output kernel).

To simplify the implementation, we treat all the different kernels in the self-attention as a type of
fully-connected layer. For the key, query, and value kernels, the head dimension can be viewed as
a part of the output dimension, while for the output kernel, the head dimension can be viewed as a
part of the input dimension. After combining the head dimension with either the input or the output
dimension, we use the H

out
t ordering as what is used for the fully-connected layers.

6.2 Visualization of Figure 1

We down-sample along each dimension to make the computation feasible. To relate with the Frobenius
norm, we compute the square of each element and normalize the value. We also cap the top 1% value
and average over an 8x8 block to give better visualization.

6.3 Approximation Error of Shared vs Non-shared Low-Rank Approximation

We compare the approximation error of the following: Approximate H
(i)
T directly with shared and

non-shared basis, approximate H
(i)
T with frequent direction where g

(i)
t is given one by one. We vary

the rank k and also compare them with the block diagonal approximation of block size k.

(a) The key kernel of the self-attention layer. (b) The out kernel of the self-attention layer.

Figure 5: The approximation error comparison for different approximation methods.

In Figure 5, we show the approximation error comparison for different approximation methods. We
compute the relative Frobenius norm squared

Pm
i=1 kH

(i)
T �Xk

2
FPm

i=1 kH
(i)
T k2F

,

where X is the approximation to be compared.

From the figures, we can see that basis-sharing approximation is only slightly worse than forming
an independent SVD of each diagonal block. Additionally, we can see that even though g

(i)
t is

given one by one, the approximation error is similar to the case where H
(i)
T can be accessed directly.

Lastly, we can see that the approximation error of our method is much lower than the block diagonal
approximation of the same k, even though our algorithm has lower time and space complexity.

13



6.4 Proof of Lemma 1

From Z = XW , we have
DW = X

T
DZ .

Due to kAk
2
F = Tr(AA

T ) and the cyclic property of trace, we have

kH
(i,j)

k
2
F = k(DW ):,i(DW )T:,jk

2
F = Tr((DW ):,i(DW )T:,j(DW ):,j(DW )T:,i)

=Tr((DW )T:,i(DW ):,i(DW )T:,j(DW ):,j) = kX
T (DZ):,ik

2
2kX

T (DZ):,jk
2
2.

Consequently, we have

kH
(i,i)

k
2
F + kH

(j,j)
k
2
F = kX

T (DZ):,ik
4
2 + kX

T (DZ):,jk
4
2

�2kXT (DZ):,ik
2
2kX

T (DZ):,jk
2
2 = kH

(i,j)
k
2
F + kH

(j,i)
k
2
F ,

which completes the proof.

6.5 Derivation of Equation 6

For simplicity, let c = (⇢(i)t + ✏). Since B
T
t Bt = I , we have

B
T
t (I �BtB

T
t ) = B

T
t �B

T
t = 0

and
(I �BtB

T
t )Bt = Bt �Bt = 0.

Consequently, we have

[Bt(R
(i)
t + cI)�1/2

B
T
t + c

�1/2(I �BtB
T
t )]

2 = [Bt(R
(i)
t + cI)�1

B
T
t + c

�1(I �BtB
T
t )],

as the other two terms are 0.

Similarly, we have

[Bt(R
(i)
t +cI)�1

B
T
t +c

�1(I�BtB
T
t )][Bt(R

(i)
t +cI)BT

t +c(I�BtB
T
t )] = BtB

T
t +(I�BtB

T
t ) = I.

Combining the two equations proves that

[Bt(R
(i)
t +cI)�1/2

B
T
t +c

�1/2(I�BtB
T
t )] = [Bt(R

(i)
t +cI)BT

t +c(I�BtB
T
t )]

�1/2 = [Bt(R
(i)
t )BT

t +cI]�1/2
.

6.6 Proof of Theorem 1

To prove Theorem 1, we first prove the following lemmas.

Let

H
(i)
t =

tX

j=1

g
(i)
j (g(i)

j )T

be the preconditioner used by block diagonal Adagrad,

Ĥ
(i)
t = BtR

(i)
t (Bt)

T + ⇢
(i)
t I

be the preconditioner used by our proposed method, we have

Lemma 2
H

(i)
t 4 Ĥ

(i)
t 4 H

(i)
t + 2⇢(i)t I,

which implies

(H(i)
t )1/2 4 (Ĥ(i)

t )1/2 4 (H(i)
t + 2⇢(i)t I)1/2

and

(H(i)
t )�1/2 < (H̃(i)

t )�1/2 < (H(i)
t + 2⇢(i)t I)�1/2

.

14



Proof of Lemma 2
We have

BtR
(i)
t B

T
t + (⇢(i)t � ⇢

(i)
t�1)I = BtR

(i)
t B

T
t + kM

(i)
t �BtR

(i)
t (Bt)

T
kI < M

(i)
t .

Adding ⇢
(i)
t�1I on both sides, we get

Ĥ
(i)
t = BtR

(i)
t B

T
t + ⇢

(i)
t I < M

(i)
t + ⇢

(i)
t�1I

=Bt�1R
(i)
t�1(Bt�1)

T + g
(i)
t (g(i)

t )T + ⇢
(i)
t�1I = Ĥ

(i)
t�1 + g

(i)
t (g(i)

t )T .

Consequently,

Ĥ
(i)
t =

tX

j=1

Ĥ
(i)
j � Ĥ

(i)
j�1 <

tX

j=1

g
(i)
j (g(i)

j )T = H
(i)
t . (7)

On the other hand, we also have

BtR
(i)
t B

T
t 4 M

(i)
t + kM

(i)
t �BtR

(i)
t (Bt)

T
kI = M

(i)
t + (⇢(i)t � ⇢

(i)
t�1)I.

Adding ⇢
(i)
t I on both sides, we get

Ĥ
(i)
t = BtR

(i)
t B

T
t + ⇢

(i)
t I 4 M

(i)
t + (2⇢(i)t � ⇢

(i)
t�1)I

=Bt�1R
(i)
t�1(Bt�1)

T + g
(i)
t (g(i)

t )T + ⇢
(i)
t�1I + (2⇢(i)t � 2⇢(i)t�1)I

=Ĥ
(i)
t�1 + g

(i)
t (g(i)

t )T + (2⇢(i)t � 2⇢(i)t�1)I.

Consequently,

Ĥ
(i)
t =

tX

j=1

Ĥ
(i)
j � Ĥ

(i)
j�1 4

tX

j=1

g
(i)
j (g(i)

j )T + (2⇢(i)t � 2⇢(i)t�1)I = H
(i)
t + 2⇢(i)t I. (8)

Combining (7) and (8) completes our proof.

We also utilize the following property of the block diagonal Adagrad preconditioner.

Lemma 3 (Lemma 5.13, 5.14 [18]) For the block diagonal Adagrad preconditioner H
(i)
t , we have

TX

t=1

(g(i)
t )T (H(i)

t )�1/2
g
(i)
t  2Tr((H(i)

T )�1/2).

Lastly, we utilize the following lemma for online convex optimization.

Lemma 4 (Lemma 5.13 [18]) For online convex optimization, if ✓t is updated as ✓t+1 = ✓t�⌘Xtgt,

then we have

RegretT 
1

2⌘
k✓1 � ✓⇤k

2
X

�1
1

+
⌘

2

TX

t=1

(gt)
T
Xtgt +

1

2⌘

TX

t=2

(✓t � ✓⇤)
T (X�1

t �X
�1
t�1)(✓t � ✓⇤).

Proof of Theorem 1
In our proposed method, ✓t is updated as

✓
(i)
t+1 = ✓

(i)
t � ⌘(Ĥ(i)

t )�1/2
g
(i)
t .

Thus, by Lemma 4, we have

RegretT 
1

2⌘

mX

i=1

k✓
(i)
1 � ✓

(i)
⇤ k

2
(Ĥ(i)

1 )1/2
+

⌘

2

mX

i=1

TX

t=1

(g(i)
t )T (Ĥ(i)

t )�1/2
g
(i)
t

+
1

2⌘

mX

i=1

TX

t=2

(✓(i)t � ✓
(i)
⇤ )T ((Ĥ(i)

t )1/2 � (Ĥ(i)
t�1)

1/2)(✓(i)t � ✓
(i)
⇤ ).

(9)

15



For the first term, by Lemma 2, we have

k✓
(i)
1 � ✓

(i)
⇤ k

2
(Ĥ(i)

1 )1/2
 D

2 Tr((Ĥ(i)
1 )1/2)  D

2(Tr((H(i)
1 + 2⇢(i)1 I)1/2))

D
2(Tr((H(i)

1 )1/2) +
p
2b(⇢(i)1 )1/2)  (

p
2b+ 1)D2

G,

(10)

where G is the upper bound of the gradient norm.

For the second term, by Lemma 2 and Lemma 3, we have

TX

t=1

(g(i)
t )T (Ĥ(i)

t )�1/2
g
(i)
t 

TX

t=1

(g(i)
t )T (H(i)

t )�1/2
g
(i)
t  2Tr((H(i)

T )1/2)  2Tr((Ĥ(i)
T )1/2).

(11)

For the third term, by Lemma 2, we have

TX

t=2

(✓(i)t � ✓
(i)
⇤ )T ((Ĥ(i)

t )1/2 � (Ĥ(i)
t�1)

1/2)(✓(i)t � ✓
(i)
⇤ )



TX

t=1

D
2
k(Ĥ(i)

t )1/2 � (Ĥ(i)
t�1)

1/2
k



TX

t=1

D
2 Tr((Ĥ(i)

t )1/2 � (Ĥ(i)
t�1)

1/2) = D
2 Tr((Ĥ(i)

T )1/2),

(12)

where the second inequality follows the fact that the trace of a positive definite matrix is larger than
its spectral norm.

Furthermore,

Tr((Ĥ(i)
T )1/2)  Tr((H(i)

T + 2⇢(i)t I)1/2)

Tr((H(i)
t )1/2) + Tr((2⇢(i)t I)1/2) = Tr((H(i)

t )1/2) +
p
2b(⇢(i)t )1/2.

(13)

Combining (9), (10), (11), (12), and (13), and setting ⌘ = D/
p
2, we get

RegretT (
p
2b+ 1)D2

G+
p
2D

mX

i=1

Tr((Ĥ(i)
T )1/2)

(
p
2b+ 1)D2

G+
p
2D

mX

i=1

(Tr((H(i)
t )1/2) +

p
2b(⇢(i)t )1/2),

which completes the proof.

6.7 Proof of Theorem 2

By triangle inequality, we have

⇢
(i)
T =

TX

t=1

kM
(i)
t �BtR

(i)
t B

T
t k 

TX

t=1

kBtR̃
(i)
t B

T
t �BtR

(i)
t B

T
t k+kM

(i)
t �BtR̃

(i)
t B

T
t k. (14)

For the first term, since R̃
(i)
t < R

(i)
t < 0, we have

TX

t=1

kBtR̃
(i)
t Bt �BtR

(i)
t Btk2 

TX

t=1

Tr(BtR̃
(i)
t Bt �BtR

(i)
t Bt)



TX

t=1

Tr(M (i)
t �BtR

(i)
t Bt) =

TX

t=1

Tr(g(i)
t (g(i)

t )T ) = Tr(H(i)
T ).

(15)

16



For the second term, since the Frobenius norm or a matrix is larger than its spectral norm, we have

mX

i=1

kM
(i)
t �BtR̃

(i)
t Btk

2
F �

mX

i=1

kM
(i)
t �BtR̃

(i)
t Btk

2
2.

We use
stack({A(i)

}
m
i=1) 2 Rm⇥b⇥b

to denote a stack of matrices. Since Bt is the top-k left singular vectors of

M̄t = [M (1)
t ,M

(2)
t , . . . ,M

(m)
t ],

by definition, stack({BtR̃
(i)
t Bt}

m
i=1) is equal to the HOSVD of stack({M (i)

t }
m
i=1). From the

quasi-optimality of HOSVD, we have

mX

i=1

kM
(i)
t �BtR̃

(i)
t Btk

2
F = k stack({M (i)

t }
m
i=1)� stack({BtR̃

(i)
t Bt}

m
i=1)k

2
F

3k stack({M (i)
t }

m
i=1)� stack({Bt�1R̃

(i)
t�1Bt�1}

m
i=1)k

2
F

=3
mX

i=1

kM
(i)
t �Bt�1R̃

(i)
t�1Bt�1k

2
F = 3

mX

i=1

kg
(i)
t (g(i)

t )T k2F = 3
mX

i=1

kg
(i)
t k

4
.

Consequently, we have

mX

i=1

kM
(i)
t �BtR̃

(i)
t Btk  m(

mX

i=1

kM
(i)
t �BtR̃

(i)
t Btk

2
2/m)1/2

m(
mX

i=1

kM
(i)
t �BtR̃

(i)
t Btk

2
F /m)1/2  m(3

mX

i=1

kg
(i)
t k

4
/m)1/2  m(3/m)1/2

mX

i=1

kg
(i)
t k

2
,

(16)
where the first inequality comes from the concavity of the square root function.

Therefore,

TX

t=1

mX

i=1

kM
(i)
t �BtR̃

(i)
t Btk  m(3/m)1/2

mX

i=1

TX

t=1

kg
(i)
t k

2 = m(3/m)1/2
mX

i=1

Tr(H(i)
T ).

This gives

mX

i=1

(
TX

t=1

kM
(i)
t �BtR̃

(i)
t Btk)

1/2
 m(

TX

t=1

mX

i=1

kM
(i)
t �BtR̃

(i)
t Btk/m)1/2

=m((3/m)1/2
mX

i=1

Tr(H(i)
T ))1/2 = (3m3)1/4(

mX

i=1

Tr(H(i)
T ))1/2.

(17)

Finally, from (14), (15), and (17), we have

mX

i=1

(⇢(i)T )1/2 

mX

i=1

((
TX

t=1

kBtR̃
(i)
t B

T
t �BtR

(i)
t B

T
t k)

1/2 + (
TX

t=1

kM
(i)
t �BtR̃

(i)
t B

T
t k)

1/2)



mX

i=1

Tr(H(i)
T )1/2 + (3m3)1/4(

mX

i=1

Tr(H(i)
T ))1/2,

(18)
which completes the proof.

17



6.8 Bounding Escaped Mass by the Lower Eigenvalues

The escaped mass ⇢(i)T can be divided into two parts.

⇢
(i)
T =

TX

t=1

kM
(i)
t �BtR

(i)
t B

T
t k 

TX

t=1

kBtR̃
(i)
t B

T
t �BtR

(i)
t B

T
t k+kM

(i)
t �BtR̃

(i)
t B

T
t k. (19)

The first part is in the original frequent direction process, while the second part is introduced because
we are sharing the basis.

We define the quality indicator at each step t as the following.

Q
(i)
T = 1�

PT
t=1 kM

(i)
t �BtR̃

(i)
t B

T
t kPT

t=1 kBtR̃
(i)
t B

T
t �BtR

(i)
t B

T
t k+ kM

(i)
t �BtR̃

(i)
t B

T
t k

(20)

This can be interpreted as the complement of the ratio of the approximation error we additionally
introduced. We always have 0  Q

(i)
T  1, and we have Q

(i)
T = 1 when the top-k eigenvectors are

the same for all the blocks for every time step.

Based on Q
(i)
T , we have the following bound.

Theorem 3 Algorithm 1 guarantees that for any i and p < kQ
(i)
T , we have

(⇢(i)T )1/2  (
1

kQ
(i)
T � p

bX

j=p+1

�j(H
(i)
T ))1/2,

where �j denotes the jth largest eigenvalues.

Proof of Theorem 3
By definition, we have

H
(i)
T �BTR

(i)
T B

T
T =

TX

t=1

(g(i)
t (g(i)

t )T�BtR
(i)
t B

T
t +Bt�1R

(i)
t�1B

T
t�1) =

TX

t=1

(M (i)
t �BtR

(i)
t B

T
t ).

(21)

From (21) and the definition of R̃(i)
t and R

(i)
t , we have

Tr(H(i)
T )� Tr(BTR

(i)
T B

T
T )

=
TX

t=1

Tr(M (i)
t �BtR

(i)
t B

T
t ) �

TX

t=1

Tr(BtR̃
(i)
t B

T
t �BtR

(i)
t B

T
t )

=
TX

t=1

kkBtR̃
(i)
t B

T
t �BtR

(i)
t B

T
t k

(22)

From (19) and (20), we have

Q
(i)
T ⇢

(i)
T 

TX

t=1

kBtR̃
(i)
t B

T
t �BtR

(i)
t B

T
t k (23)

Combining (22) and (23), we get

Tr(H(i)
T )� Tr(BTR

(i)
T B

T
T ) � kQ

(i)
T ⇢

(i)
T . (24)

18



On the other hand, let v1, . . . ,vb be the eigenvectors of H(i)
T , from (21), we have

Tr(H(i)
T )� Tr(BTR

(i)
T B

T
T )

=
bX

j=1

vjH
(i)
T v

T
j �

bX

j=1

vjBTR
(i)
T B

T
T v

T
j 

bX

j=1

vjH
(i)
T v

T
j �

pX

j=1

vjBTR
(i)
T B

T
T v

T
j

=
pX

j=1

vj(H
(i)
T �BTR

(i)
T B

T
T )v

T
j +

bX

j=p+1

vjH
(i)
T v

T
j

=
pX

j=1

vj(H
(i)
T �BTR

(i)
T B

T
T )v

T
j +

bX

j=p+1

�j(H
(i)
T )

=
pX

j=1

TX

t=1

vj(M
(i)
t �BtR

(i)
t B

T
t )v

T
j +

bX

j=p+1

�j(H
(i)
T )

p

TX

t=1

kM
(i)
t �BtR

(i)
t B

T
t k+

bX

j=p+1

�j(H
(i)
T )

=p⇢
(i)
T +

bX

j=p+1

�j(H
(i)
T )

(25)

Combining (24) and (25), we have

kQ
(i)
T ⇢

(i)
T  Tr(H(i)

T )� Tr(BTR
(i)
T B

T
T )  p⇢

(i)
T +

bX

j=p+1

�j(H
(i)
T ).

Consequently, for any p < kQ
(i)
T , we have

⇢
(i)
T 

1

kQ
(i)
T � p

bX

j=p+1

�j(H
(i)
T ),

and thus

(⇢(i)T )1/2  (
1

kQ
(i)
T � p

bX

j=p+1

�j(H
(i)
T ))1/2,

which completes the proof.

19



6.9 Hyperparmaeter Search Space

We list the search space for hyperparameters in Table 4. Similar to Adam, we also use the second
moment parameter �2 for our proposed method. For the autoencoder benchmark, we set the weight
decay to 0.

Table 4: The search space for hyperparameters.

Hyperparameter Range

Learning rate [10�4
, 10�2]

Weight decay [10�3
, 10�1]

Momentum 1� �1 [10�4
, 10�1]

Second moment 1� �2 [10�4
, 10�1]

6.10 Hyperparmaeter Sensitivity

To understand the effect of the various parameters of our methods. We conduct an ablation study on
the number of iterations, the rank, and the oversampling parameters used by randomized SVD. We
also experiment with the effect of initializing ⌦ using that from the last round for randomized SVD.

From Table 5 and 6, we can see that increasing the rank improves the performance of our proposed
method. We can also see that our proposed method is still competitive with Adam with ranks smaller
than 32.

Table 5: Comparison of our proposed method with different ranks on the autoencoder benchmark.

Optimizer Adam Rank-1 Rank-2 Rank-4 Rank-8 Rank-16 Rank-32

Train Loss 54.66 55.29 53.51 52.88 52.42 51.94 51.49

Table 6: Comparison of our proposed method with different ranks on the transformer benchmark. We
use the best parameters obtained from Rank-32 and take the average result of 10 runs.

Optimizer Adam BlockAdam Rank-1 Rank-4 Rank-8 Rank-16 Rank-32

Validation Accuracy 67.70 70.36 70.30 70.41 70.35 70.38 70.51
Time (min) 123 193 140 143 153 149 161

Memory (MB) 19157 21598 19550 19553 19553 19553 19553

For the rest of the ablation study, we focus on the autoencoder benchmark. Figure 6 shows the
corresponding curves for the train loss. From Table 7, we can see that reusing ⌦ from the last round
improves the performance and the benefit is larger when the rank is smaller.

Table 7: Comparison of our proposed method regarding whether to initialize ⌦ using the value from
the last round.

Optimizer Rank-16 (no init) Rank-16 Rank-24 (no init) Rank-24 Rank-32 (no init) Rank-32

Train Loss 52.09 51.94 51.71 51.67 51.51 51.49
Time (s) 94 94 126 128 142 140

Memory (MB) 1777 1777 1779 1779 1777 1777

From Table 8 and Table 9, we find that increasing the number of iterations and the oversampling
parameter does not necessarily improve the performance. Thus, we set them to 1 and 0 respectively
in our main experiments.

20



(a) Initializing ⌦ (epoch) (b) Different iterations (epoch) (c) Different extra ranks (epoch)

(d) Initializing ⌦ (time) (e) Different iterations (time) (f) Different extra ranks (time)

Figure 6: Train loss for ablation study on autoencoder.

Table 8: Comparison of our proposed method with rank set to 32, oversampling parameter set to 0,
and the number of randomized SVD iterations set to different values.

Optimizer Iter-1 Iter-2 Iter-3 Iter-4 Iter-5

Train Loss 51.49 51.47 51.49 51.48 51.48
Time (s) 140 161 181 203 224

Memory (MB) 1777 1779 1779 1779 1781

Table 9: Comparison of our proposed method with rank set to 24 and different oversampling
parameters.

Optimizer Extra-0 Extra-4 Extra-8 Extra-12

Train Loss 51.67 51.66 51.67 51.80
Time (s) 128 126 130 185

Memory (MB) 1779 1779 1779 1779

6.11 Additional Experiments

To verify the effectiveness of our method, we conduct the following additional experiments. We
mainly focus on the comparison with Adam.

6.11.1 Autoencoder Benchmark on Cifar-10

We use the same autoencoder architecture and learning rate schedule as in Section 3.1 to conduct 100
epochs of training on the Cifar-10 dataset.

Table 10 shows that similar to the MNIST data set, our proposed method performs better than Adam
and Block Adam.

6.11.2 ResNet Experiment on Cifar-10

We conduct image classification experiments on Cifar-10 with ResNet20 (0.27M parameters) and
ResNet56 (0.85M parameters). We train for 100k and 200k steps with a batch size of 128. A linear

21



Table 10: Experimental results on the autoencoder benchmark on Cifar-10.

Optimizer Adam Block Adam Ours (rank 32)

Train Loss 1776.20 1764.41 1758.05

warmup of 5 epochs is used for learning rate scheduling followed by a cosine decay to 0. We conduct
60 trials of random hyperparameter search for each setting.

Table 11: Image classification results on Cifar-10 with ResNet20.

Optimizer Adam (100k step) Ours (100k step) Adam (200k step) Ours (200k step)

Test Accuracy 92.07 92.35 92.79 93.02

Table 12: Image classification results on Cifar-10 with ResNet56.

Optimizer Adam (100k step) Ours (100k step) Adam (200k step) Ours (200k step)

Test Accuracy 92.22 93.04 94.02 94.40

Table 11 and 12 show that our method performs better than Adam on both ResNet20 and ResNet56.
The performance gap naturally decreases as the number of steps increases as both methods should
reach similar performance after running for a sufficient amount of steps.

6.11.3 Experiment on LLM

We conduct a small-scale experiment for LLM on one of the smaller gpt2-models (7.3M parameters).
We train on the WikiText-103 dataset (over 100M tokens) for 10k steps with a batch size of 128. A
linear warmup of 1k steps is used for learning rate scheduling followed by a cosine decay to 0.1 of
the peak learning rate. For the embedding layer, we adopt the direction obtained from Adam.

Table 13 shows the experiment result. Our method is over 25% faster in steps and 15% faster in time
to reach the same level of validation perplexity as Adam.

Table 13: Small-scale LLM experiment on WikiText-103.

Optimizer Adam Ours (rank 32)

Validation Perplexity 55.92 54.33
Time (min) 121 130

22


	Introduction
	Proposed Method
	Block-diagonal Structure of the Preconditioner
	Block Low-rank Approximation with Shared Basis
	Regret Bound Analysis
	Comparison with Other Methods

	Experimental Results
	Autoencoder Benchmark
	Transformer Benchmark

	Related Work
	Conclusions
	Appendix
	Block-diagonal Structure of Transformers
	Visualization of Figure 1
	Approximation Error of Shared vs Non-shared Low-Rank Approximation
	Proof of Lemma 1
	Derivation of Equation 6
	Proof of Theorem 1
	Proof of Theorem 2
	Bounding Escaped Mass by the Lower Eigenvalues
	Hyperparmaeter Search Space
	Hyperparmaeter Sensitivity
	Additional Experiments
	Autoencoder Benchmark on Cifar-10
	ResNet Experiment on Cifar-10
	Experiment on LLM



