270 A Appendix

271 Optionally include extra information (complete proofs, additional experiments and plots) in the
272 appendix. This section will often be part of the supplemental material.

273 A.1  Proof of proposition 1

274 Proposition 1. There exists a negative-positive coupling (NPC) multiplier q( ) in the gradient of
275 Lgl):
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276 where the NPC multiplier q( )
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277 Due to the symmetry, a similar NPC multiplier qu) exists in the gradient of Ll(-k), ke {l,2},i €
278 [1, N].
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A.2  Proof of proposition 2

Proposition 2. Removing the positive pair from the denominator of Equation 2 leads to a decoupled
contrastive learning loss. If we remove the NPC multiplier qgc)i from Equation 2, we reach a

decoupled contrastive learning loss Lpc = Zke{1,2},ie[[1,N]] L(Dk)c,i’ where L(Dk)cj is:

L exp((z”,27) /7)
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Proof. By removing the positive term the denominator of Equation 4, we can repeat the procedure in
the proof of Proposition 1 and see that the coupling term disappears.

|

A.3 Linear classification on ImageNet-1K

Top-1 accuracies of linear evaluation in Table 5 shows that, we compare with the state-of-the-art
SSL approaches on ImageNet-1K. For fairness, we list the batch size and learning epoch of each
individual approach, which are shown in the original paper. During pre-training, our DCL is based on
a ResNet-50 backbone, with two views with size 224 x 224. Without relatively huge batch sizes or
other pre-training schemes, i.e., momentum encoder, clustering, and prediction head, our DCL relies
on its simplicity to reach competitive performance. We report both 200-epoch and 400-epoch versions
of our DCL. It achieves 69.5% under the batch size of 256 and 400-epoch pre-training, which is
better than SimCLR [8] in their optimal case, i.e., batch size of 4096, and 1000-epoch. Note that
SwAV [26], BYOL [15], SimCLR [8], and PIRL [27] need huge batch size of 4096, and SwAV [17]
further applies multi-cropping as generating extra views to reach optimal performance.

Table 5: ImageNet-1K top-1 accuracies (%) of linear classifiers trained on representations of different SSL
methods.

Method Architecture Param. (M) Batch size Epochs Top-1 (%)
Relative-Loc. [28] ResNet-50 24 256 200 49.3
Rotation-Pred. [3] ResNet-50 24 256 200 55.0
DeepCluster [26] ResNet-50 24 256 200 57.7
NPID [4] ResNet-50 24 256 200 56.5
Local Agg. [29] ResNet-50 24 256 200 58.8
MoCo [7] ResNet-50 24 256 200 60.6
SimCLR [8] ResNet-50 28 256 200 61.8
CMC [6] ResNet-507 44 47 256 280 64.1
MoCo v2 [25] ResNet-50 28 256 200 67.5
SwWAV [17] ResNet-50 28 4096 200 69.1
SimSiam [16] ResNet-50 28 256 200 70.0
InfoMin [30] ResNet-50 28 256 200 70.1
BYOL [15] ResNet-50 28 4096 200 70.6
DCL ResNet-50 28 256 200 67.8
PIRL [27] ResNet-50 24 256 800 63.6
SimCLR [8] ResNet-50 28 4096 1000 69.3
MoCo v2 [25] ResNet-50 28 256 800 71.1
SwAV [17] ResNet-50 28 4096 400 70.7
SimSiam [16] ResNet-50 28 256 800 71.3
DCL ResNet-50 28 256 400 69.5
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A4 Implementation details

DCL augmentations. We follow the settings of SimCLR [8] to set up the data augmentations. We
use Random ResizedCrop with scale in [0.08, 1.0] and follow by Random H orizontal F'lip. Then,
Color Jittering with strength in [0.8, 0.8, 0.8, 0.2] with probability of 0.8, and RandomGrayscale
with probability of 0.2. GaussianBlur includes Gaussian kernel with standard deviation in [0.1,
2.0].

Linear evaluation. Following the open-sourced project, OpenSelfSup [23], we first train the linear
classifier with batch size 256 for 100 epochs. We use the SGD optimizer with momentum = 0.9,
and weight decay = 0. The base I is set to 30.0 and decay by 0.1 at epoch [60, 80]. We further
demonstrate the linear evaluation protocol of SimSiam [16], which raises the batch size to 4096
for 90 epochs. The optimizer is switched to LARS optimizer with base [~ = 1.2 and cosine decay
schedule. The momentum and weight decay are remained unchanged. We found the second one
slightly improves the performance.
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