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7 APPENDIX

7.1 ADDITIONAL PRELIMINARY DEFINITIONS

Notation We use caligraphic uppercase letters to denote sets (e.g., X ), bold uppercase letters to
denote matrices (e.g., X ), bold lowercase letters to denote vectors (e.g., p), lowercase letters to denote
scalar quantities (e.g., x), and uppercase letters to denote random variables (e.g., X). We denote the
ith row vector of a matrix (e.g., X ) by the corresponding bold lowercase letter with subscript i (e.g.,
x
i
) and the jth entry of a vector (e.g., p or x

i
) by the corresponding Roman lowercase letter with

subscript j (e.g., pj or x
ij

). We denote functions by a letter determined by the value of the function:
e.g., f if the mapping is scalar-valued, f if the mapping is vector-valued, and F if the mapping is
set-valued. We denote the set of natural numbers by N and the set of real numbers by R. We denote
the positive and strictly positive elements of a set by a + and ++ subscript, respectively, e.g., R+

and R++. For any set C, we denote its diameter maxc,c02Ckc� c
0k by diam(C).

7.2 OMMITED PROOFS

Theorem 3.1. The set of inverse NE of G�1 is the set of parameter profiles ✓ 2 ⇥ that solve the
optimization problem min✓2⇥ '(x

†;✓), or equivalently, this min-max optimization problem:

min
✓2⇥

max
y2X

f(✓,y)
.
=  (x†,y ;✓) =

X
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u
i
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i
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i
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i
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Proof of Theorem 3.1. Notice that for all action profiles x 2 X and parameter profile ✓ 2 ⇥, we
have:
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Additionally, note that under our assumption the set of inverse-NE is non-empty. Hence, there exists
a parameter profile b✓ 2 ⇥ such that b✓ is an inverse-NE, of G�1, i.e., for all players i 2 i:

max
yi2Xi

u
i
(y

i
,x†

�i
; b✓)� u

i
(x†; b✓) = 0 (7)

Summing the above equality across all players, we then have:
X

i2[n]
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yi2Xi

u
i
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i
,x†

�i
; b✓)� u

i
(x†; b✓) = 0 (8)

This means that the minimum of maxy2X f(✓,y) is achieved at 0, since for all ✓ 2 ⇥,
maxy2X f(✓,y) � 0.

Let (✓⇤,x⇤) be any optimal solution to min✓2⇥ maxy2X f(✓,y). We will show that ✓⇤ is an inverse
NE of G�1.

Since the minimum of maxy2X f(✓,y) is achieved at 0, it follows that

max
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f(✓⇤,y) =
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But then, since for all players i 2 [n], maxyi2Xi ui
(y

i
,x†

�i
;✓⇤)� u

i
(x†;✓⇤) � 0, it must hold that:
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u
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i
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u
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�i
;✓⇤) = u

i
(x†;✓⇤) (11)

hence proving that x† is a Nash equilibrium under parameters ✓
⇤, i.e., ✓⇤ is an inverse Nash

equilibrium.
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Theorem 3.2 (Detailed Statement). Suppose that Assumptions 1–2 hold. If Algorithm 1 is run with
inputs that satisfy for all " � 0, t 2 [T] ⌘(t)y = ⌘(t)✓ =

2
P

i2[n] `rui
t

, and T � diam(⇥⇥X)
"2

for
" � 0, then the time-average of all parameters ✓(T) .

= 1
T+1

P
T

t=0 ✓
(t) is an "-inverse NE, i.e.,

 (x†,y ;✓(T))�min✓2⇥ maxy2X  (x†,y ;✓)  ".

Proof of Theorem 3.2. The theorem is a direct consequence of Result 3.1 of Nemirovski et al. (2009).

Theorem 4.1 (Detailed Statement). Under Assumption 3, if Algorithm 2 is run with inputs that satisfy

for all t 2 T, " 2 (0, 1), ⌘(t)y ⇣
✏
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, then the time-average of all parameters ✓(T) .
=

1
T+1

P
T

t=0 ✓
(t) is a "-inverse NE, i.e., maxx2X  (x†,x;✓(T))�min✓2⇥ maxx2X  (x†,x;✓) 

".

Proof of Theorem 4.1. Firstly, note that under Assumption 4, f(✓,x) is 1-gradient-dominated in ✓

since it is convex in ✓ for all y 2 X (see Definition 2 of Bhandari & Russo (2019)).

Now, define the equilibrium distribution mismatch coefficient k@�⇡
†

µ /@µk1 as the Radon-Nikodym
derivative of the state-visitation distribution of the Nash equilibrium ⇡

† w.r.t. the initial state distribu-
tion µ. Under Assumption 3, by Theorem 2 and Theorem 4 of Bhandari & Russo (2019), we also

have that f(✓,x) is
✓

k@�
⇡†
µ /@µk1/(1��) · µ

◆
-gradient-dominated in x for all ✓ 2 ⇥.

Moreover, according to analysis in Section 7.5, the variance of the gradient estimator is bounded.
Hence, under our Theorem’s assumptions, the assumptions of Theorem 2 of Daskalakis et al. (2020)
are satisfied, and we have:

1

T + 1

TX

t=0

max
x2X

 (x†,x;✓(t))�min
✓2⇥

max
x2X

 (x†,x;✓)  " (12)

Note that since  (x†,x,✓) is convex in ✓ for all x 2 X, then x 7! maxx2X  (x†,x;✓(t)) is
convex by Dankin’s theorem Danskin (1966). Hence, using convexity, we obtain the theorem’s result:

max
x2X

 (x†,x;
1

T + 1

TX

t=0

✓
(t))�min

✓2⇥
max
x2X

 (x†,x;✓)  " (13)

Theorem 4.1 tells us that in inverse Markov games satisfying Assumption 3, an "-inverse NE can
be computed in T ⇣ �

2/"10k@�⇡
⇤

µ /@µk1. One way to interpret this result is that the closer the initial
state distribution is to the equilibrium state visitation distribution, i.e., the smaller

���@�
⇡⇤
µ /@µ

��� is, and
the smaller the variance �2 of the gradient estimators is, the faster the convergence. On the other
hand, if any state that is visited with strictly positive probability by the Nash equilibrium policy is not
part of the support of the initial state distribution, then

���@�
⇡⇤
µ /@µ

��� ! 1, and the convergence bound
degrades arbitrarily.
Theorem 5.1. Given an inverse simulation I�1, for any ↵,� > 0, the set of Nash simulacra of M�1

is equal to the set of minimizers of the following stochastic min-max optimization problem:

min
✓2⇥
⇡2P
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i
+ � (⇡ ,⇢;✓) (3)
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Proof of Theorem 5.1. Fix ↵,� > 0. Let (✓⇤,⇡⇤) be the optimal solutions to the above optimization
problem. Notice that for all policy profiles ⇡ 2 P and parameter profiles ✓ 2 ⇥, we have
↵
��⇡ � ⇡

†
��2
2
� 0 by the definition of the euclidean norm. Additionally, we have for all ⇡ 2 P ,

✓ 2 ⇥:
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Hence, we have:
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Additionally, note that under our assumption the set of inverse-NE is non-empty. Hence, there exists
a tuple of parameter and action profiles (✓⇤,⇡⇤) such that ⇡⇤ = ⇡

†, and ✓
⇤ is an inverse-NE, of

(n,m,P ,⇥,u,⇡†):

max
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where the final line follows from the definition of the inverse Nash equilibrium, i.e.,  (⇡†,⇢;✓⇤) = 0.

This in turn means that the minimum of max⇢2P g(✓,⇡ ,⇢) is achieved at 0.

Finally, we show that any tuple (✓⇤,⇡⇤) of parameter and action profiles which are a minimum of
max⇢2P g(✓,⇡ ,⇢), i.e. (✓⇤,⇡⇤) 2 argmin✓2⇥

⇡2P
max⇢2P g(✓,⇡ ,⇢) respectively correspond to a

tuple (✓⇤,⇡⇤) such that E
(o,o†)⇠⌅⇡⇤

⇥⌅⇡† , and ✓
⇤ is an inverse-NE of (n,m,P ,⇥,u,⇡⇤).

Recall that, by Equation (23), we have:
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Hence, it must be that
��⇡† � ⇡

⇤
��2
2
= 0 and max⇢2P  (⇡⇤,⇢;✓⇤) = 0, proving the desired

result.

As the computation of a simulacrum is in general a non-convex-non-concave problem, we cannot
compute a solution to the min-max optimization in polynomial-time, however, we can obtain best
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iterate convergence to a stationary point of the Moreau envelope of the empirical exploitability
e'(✓,x) .

= min(✓0,x0)2⇥⇥X

n
'(✓,x) + `rbg k(✓,x)� (✓0,x0)k2

o
, i.e., a point (✓,x) 2 ⇥ ⇥ X

s.t. kr e'(✓,x)k = 0 under suitable assumptions satisfied by a large class of Markov games including
discrete state and action space Markov games.10

Theorem 5.2 (Detailed Statement). Suppose that Assumption 3 holds, and assume in addi-
tion that for all ⇡

x 2 PX , ⌅⇡x

is twice continuously differentiable in x. If Algorithm 3

is run with inputs that satisfy for all t 2 [T] " 2 (0, 1), ⌘(t)y ⇣
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(T)
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Additionally, for any ⇣, ⇠ � 0 and for a sample size of equilibrium observations  ⇣ 1/⇠2 log(1/⇣),
with probability 1� ⇣, we have:

b'(✓(T)
best,x

(T)
best)� '(✓(T)

best,x
(T)
best)  ⇠ (27)

Proof of Theorem 3. Although Daskalakis et al. (2020)’s Theorem 2 is stated for functions which
are gradient-dominated-gradient-dominated, their proof falls through for any function which is non-
convex-gradient-dominated. Define the equilibrium distribution mismatch coefficient k@�⇡

†
µ /@µk1 as

the Radon-Nikodym derivative of the state-visitation distribution of the Nash equilibrium ⇡
† w.r.t.

the initial state distribution µ. Under Assumption 3, by Corollary 1 and Theorem 4 of Bhandari &

Russo (2019), we have that g(✓,x,y) is
✓

k@�
⇡†
µ /@µk1/(1��) · µ

◆
-gradient-dominated in y for all

✓ 2 ⇥ and x 2 X.

Moreover, according to analysis in Section 7.5, the variance of the gradient estimator is bounded.
Hence, under our Theorem’s assumptions, the assumptions of Theorem 2 of Daskalakis et al. (2020)
are satisfied, and we have:

1

T + 1

TX

t=0

���r e'(✓(t),x(t))
���  " (28)

Taking a minimum across all t = 0, 1, . . . , T, we then have:

min
t=0,1,...,T

���r e'(✓(t),x(t))
���  " (29)

The second part is then a direct consequence of the hoeffding bound, whose assumptions are satisfied
since the objective is bounded from above and from below by 0, as the objective is continuous and its
domain is non-empty, and compact.

10We note that stationary points of the Moreau envelope correspond to stationary points of the subgradient of
b', but as exploitability is not neccessarily differentiable, the Moreau envelope is used to measure distance to a
stationary point Lin et al. (2020).
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7.3 RELATED WORK

Microeconomics The literature on characterizing agent preferences that can be rationalized by
payoff functions, known under the names of reveled preference theory Samuelson (1948); Afriat
(1967); Varian (1982; 2006) and the integrability problem Mas-Colell et al. (1995), far predates
concerns of computing payoff functions that generate observed behavior. While revealed preference
theory is concerned with understanding when a set of observed purchasing decisions for a consumer
and associated market conditions (e.g., prices) is consistent with payoff-maximizing behavior, the
integrability problem aims to characterize those consumption functions that can arise as the solution
to a payoff maximization problem. The difference between revealed preference theory and the
integrability problem is analogous to the difference between inverse optimization and inverse learning.

Econometrics A large body of work in the econometrics literature is dedicated to inverse game
theory, with a recent focus on inferring bidders’ valuations in online auctions. Nekipelov et al. 2015
analyzed inferring bidders’ utilities in online ad auctions, assuming bidders are no-regret learners,
and hence learn (coarse) correlated equilibrium. Syrgkanis et al. 2017 propose a method that infers
agent types, assuming they play a Bayes-Nash equilibrium. More broadly, the identification literature
Bresnahan & Reiss (1991); Lise (2001); Bajari et al. (2010) is closely related to our work, but usually
does not address computational complexity concerns. Furthermore, the settings considered in this
literature are overwhelmingly normal-form Bayesian, game, while our primary focus in this paper is
(complete-information) stochastic games.

Inverse Optimization. Inverse optimization Heuberger (2004); Chan et al. (2021) seeks to recover
the parameters of an optimization problem given access to the solution of the problem. One of the
central results in inverse optimization demonstrates that one can recover the objective function of any
linear inverse optimization problem from its solution by solving a linear program Chan et al. (2022).
Our work considers the more general inverse problem for multiple agents with arbitrary objective,
i.e., payoff functions, and solves it using a mathematical program as well.

Inverse Algorithmic Game Theory A literature that lies at the intersection of economics and
computer science has aimed to provide computationally-efficient methods for rationalizing equilibria,
but has mainly focused on specific types of games, such as matching Kalyanaraman & Umans (2008)
and network formation games Kalyanaraman & Umans (2009). In the latter case, they showed that
game attributes that are local to a player can be rationalized. More recently, Kuleshov & Schrijvers
(2015) showed that correlated equilibria can be rationalized in polynomial-time in succint games.
We note that these computational results concern stylized game models, and restrict certain aspects
of the game, such as the size of the game’s parameter space. In contrast, our results abstract away
the issue of efficiently representatng the game’s parameter space, and show that under appropriate
parameterization, inverse equilbirium can be computed in polynomial time.

Inverse Reinforcement Learning Algorithms that infer the reward function of an agent operating
within a Markov decision process Bellman (1952) have been studied extensively in recent years,
starting with the initial investigations by Ng et al. (2000). These algorithms can be broadly categorized
as maximum margin methods Ratliff et al. (2006); Silver et al. (2008); Abbeel & Ng (2004); Syed
& Schapire (2007), i.e., methods that seek to maximize the margin between the value of observed
behavior and the behavior associated with learned policy and rewards; maximum entropy methods
Ziebart et al. (2008); Wulfmeier et al. (2015); Ziebart et al. (2008); Theodorou et al. (2010); Boularias
et al. (2012; 2011), i.e., methods that maximize the entropy of the observed and the learned behaviors;
Bayesian learning methods Ramachandran & Amir (2007); Choi & Kim (2011); Lopes et al. (2009);
Levine et al. (2011); Babes et al. (2011), i.e., methods that learn a posterior distribution over
parameters using Bayesian updating; and classification/regression methods Klein et al. (2012); Taskar
et al. (2005); Klein et al. (2013); Brown et al. (2019), i.e., methods that learn parameters that minimize
the distance between the observed behavior and behavior generated by learned behavior using the
inferred parameters. Our methods, when used with only one player, can be characterized as a class of
novel inverse reinforcement learning methods, which seek to recover parameters that minimize the
players’ regrets.

19



Published as a conference paper at ICLR 2024

Inverse Game Theory In multiagent settings, convex programming formulations have been pro-
posed for inferring game parameters in normal-form games under the names of the inverse game
theory problem Kuleshov & Schrijvers (2015) and the inverse equilibrium problem Waugh et al.
(2013); Bestick et al. (2013). These methods focus on computing an inverse correlated equilibrium,
and in the case of Waugh et al., further seek to reproduce observed equilibrium behavior via a
maximum entropy correlated equilibrium. Hadfield-Menell et al. 2016 consider cooperative inverse
reinforcement learning, which can be seen as an inverse Nash equilibrium problem in a particu-
lar zero-sum imperfect-information game, but this method is not accompanied by computational
guarantees.

Multiagent Inverse Reinforcement Learning Multiagent inverse reinforcement learning gener-
alizes inverse game theory from normal-form games to Markov games Natarajan et al. (2010); Lin
et al. (2019); Yu et al. (2019); Lin et al. (2017); Fu et al. (2021). Even more importantly, instead
of observing equilibrium policies, only sample trajectories from equilibrium policies are observed.
Lin et al. (2019) study the inverse Nash equilibrium problem in zero-sum games Lin et al. (2017),
and extend their methods to solve for inverse correlated equilbrium in general-sum stochastic games,
and inverse Nash equilibrium in a restricted class of adversarial stochastic games. Yu et al. (2019)
propose gradient-based algorithms for computing inverse quantal response equilibria with function
approximation.
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7.4 MARKETS EXPERIMENTS

7.4.1 STATIC FISHER MARKETS

A (one-shot) Fisher market consists of n buyers and m divisible goods with unit supply(Brainard
et al., 2000). Each buyer i 2 [n] is endowed with a budget bi 2 Bi ✓ R+ and a utility function
u
i
: Rm

+ ⇥Ti ! R, which is parameterized by a type ti 2 Ti that defines a preference relation over the
consumption space Rm

+ . An instance of a Fisher market is then a tuple M .
= (n,m,u, t, b), where

u
.
= (u1, . . . , un

) is a vector-valued function of all utility functions and b
.
= (b1, . . . , bn) 2 Rn

+ is
the vector of buyer budgets. When clear from context, we simply denote M by (t, b).

Given a Fisher market (t, b), an allocation X = (x1, . . . ,xn
)T 2 Rn⇥m

+ is a map from goods
to buyers, represented as a matrix, s.t. x

ij
� 0 denotes the amount of good j 2 [m] allocated to

buyer i 2 [n]. Goods are assigned prices p = (p1, . . . , pm)T 2 Rm

+ . A tuple (X⇤,p⇤) is said to
be a competitive equilibrium (CE) (Arrow & Debreu, 1954; Walras, 1896) if 1. buyers are utility
maximizing, constrained by their budget, i.e., 8i 2 [n],x⇤

i
2 argmaxx:x·p⇤bi

u
i
(x, ti); and 2. the

market clears, i.e., 8j 2 [m], p⇤
j
> 0 )

P
i2[n] x

⇤
ij
= ej and p⇤

j
= 0 )

P
i2[n] x

⇤
ij
 ej .

The set of CE of any Fisher market (t, b) with continuous, concave, and homogeneous11 utility
functions is equal to the set of Nash equilibria of the Eisenberg-Gale min-max game,12 a convex-
concave min-max game between a seller who chooses prices p 2 Rm

+ and buyers who collectively
choose allocations X 2 Rn⇥m

+ : the objective function of this game comprises two sums: the first is
the logarithmic Nash social welfare of the buyers’ utility , while the second is the profit of a fictional
auctioneer who sells the goods in the market:

min
p2Rm

+

max
X2Rn⇥m

+

f(p,X ; t, b)
.
=

X

i2[n]

bi log (ui
(x

i
, ti)) +

X

j2[m]

0

@pj � pj
X

i2[n]

x
ij

1

A (30)

Therefore, for any Fisher market M .
= (n,m,u, t†, b†), we can construct a inverse game

G�1 .
= (G✓†

/✓†,x†) where G✓†
is the corresponding Eisenberg-Gale min-max game (Equation (30))

parameterized by the true types and budgets ✓† = (t†, b†), and x
† = (X⇤,p⇤) is not only a NE of the

game G✓†
but also a CE of market M. Our goal is to recover the true market parameters ✓† = (t†, b†)

given the observed x
† = (X⇤,p⇤), by solving this inverse game problem using Theorem 3.1 and

Algorithm 1.

We ran two different experiments13. First, we solved a simpler inverse game problem where the
true type t

† is given, and we just need to retrieve the true budgets b†; then, we attempt to recover
both true type and true budgets simultaneously. For both experiments, we created 500 markets
with each of these three (standard) classes of utility functions parameterized by types: 1. linear:
u
i
(x

i
; ti) =

P
j2[m] tijxij

; 2. Cobb-Douglas (CD): u
i
(x

i
; ti) =

Q
j2[m] xij

tij ; and 3. Leontief :

u
i
(x

i
; ti) = minj2[m]

n
xij

tij

o
. Then, we ran Algorithm 1 on min-max optimization problem defined

in Equation (1) to compute the inverse Nash Equilibrium of the inverse game G�1 defined above.
Finally, for each utility type, we recorded the percentage of markets that we could recover the
true parameters, i.e., the markets for which our computed parameters is close enough to the true
parameters, and the average exploitability of the observed equilibrium evaluated under the computed
parameters across all markets.

Table 2 shows that when only retrieving budgets,we were able to recover all the parameters and
minimize exploitability in markets with Linear and Cobb-Douglas utilities, but we hardly do so in
Leontief markets. The difficulty in this case likely arises from two aspects: first, Leontief utility
function is not differentiable, so the min-max optimization problems associated to Leontief markets
are not smooth; moreover, for any Leontief Fisher market, the CE is not guaranteed to be unique.
When computing budgets and types at once, while our algorithm can still minimize exploitability for

11A function f : Rm ! R is called homogeneous of degree k if 8x 2 Rm,� > 0, f(�x) = �kf(x).
12This min-max game corresponds to the Lagrangian saddle-point formulation of the Eisenberg-Gale program

Gale (1989); Jain et al. (2005).
13We include a detailed description of our experimental setup in the appendix.

21



Published as a conference paper at ICLR 2024

both Linear nad Cobb-Douglas markets, it cannot really retrive true parameters in Linear markets.
This may due to the fact that, in Linear markets, though competitive equilibrium prices are unique,
the competitive allocations are not guaranteed to be unique; by contrast, the CEs are always unique in
Leontief markets.

Hyperparameters We randomly initialized 500 different linear, Leontief, Cobb-Douglas Fisher
markets, each with 3 buyers and 2 goods. Buyer i’s budget bi was drawn randomly from a uniform
distribution ranging from 0 to 10 (i.e., U [0, 10]), and each buyer i’s type for good j, tij , was drawn
randomly from U [0, 10].

For Fisher markets with all three class of utilities, we ran our algorithm for 5000 iterations with
learning rate ⌘✓ = 0.01. Moreover, we stop our algorithm when our computed inverse Nash
equilibrium ✓ is closed enough to the original parameter ✓†: ||✓�✓†

✓† ||2 ✏ where we set ✏ = 0.1.

7.4.2 COURNOT COMPETITION AND BERTRAND COMPETITION

A Cournot competition model C .
= (n, c, P ) consists of n firms that produce a homogeneous product,

and each firm i chooses a quantity level of production qi that maximizes its profits. All firms face a
marginal cost c. That is, for a given firm i, the cost of producing qi unit of good is cqi. The price
function P takes the total production of all firms Qtotal =

P
i2[n] qi as input and outputs the unit

prices for the good. Thus, the profit function for firm i is fi(qi, q�i; c) = qi(P (
P

i2[n] qi)�c). Q⇤ is
a Nash equilibria of the Cournot game if and only if q⇤

i
2 argmax

qiinR+
fi(qi, q⇤�i

; c) for all i 2 [n].

A Bertrand competition model B .
= (n, c,D) is also a competition model that consists of n firms

producing a homogeneous product, but this time, each firm i set prices pi to maximize its profits. All
firms face a marginal cost c. That is, for a given firm i, the cost of producing qi unit of good is cqi.
The demand function D takes the minimum price proposed by the firms pmin = mini2[n] pi as input
and outputs the demand for that good in the whole market. Firm i’s individual demand function is a
function of the price set by each firm:

Di(pi, p�i) =

8
><

>:

D(pmin) pi = pmin, pj � pmin8j 6= i
D(pmin)

n
pi = pmin, n =# of j 2 [n] with pj = pmin

0 pi 6= pmin

(31)

Thus, the profit function for the firm i is fi(pi, p�i; c) = Di(pi, p�i)(pi � c). p⇤ is a Nash equilibria
of the Bertrand game if and only if p⇤

i
2 argmax

piinR+
fi(pi, p⇤�i

; c) for all i 2 [n].

In experiments, we generated 500 Cournot competition models and 500 Bertrand competition models
and attempted to retrieve their true parameter, i.e., marginal costs, given equilibrium production-
s/equilibrium prices respectively. Table 2 shows that our algorithm can effectively recover the true
parameters in Cournot games and minimize the exploitability of the observed equilibrium evaluated
under the computed parameters. In the Bertrand games, though we could only recover 78% true
parameters, the average exploitability of the observed equilibrium evaluated under the computed
inverse Nash equilibrium is mostly minimized.

Hyperparameters We randomly initialized 500 different duopoly Cournot competitions and
duopoly Bertrand competitions. Marginal costs was drawn randomly from a uniform distribution rang-
ing from 2 to 20 (i.e., U [2, 20]) for both Cournot and Bertrand. Moreover, we define the price functions
in Cournot competitions as P (qtotal) = a+ bqtotal where a ⇠ U [10, 100] and b ⇠ U [�10,�0.01].
We define the demand functions in Bertrand competitions as D(pmin) = c + dpmin where
c ⇠ U [10, 100] and d ⇠ U [�10,�0.01].

For Cournot competitions, we ran our algorithm for 10000 iterations with learning rate ⌘✓ = 0.01,
and for Bertrand competitions, we ran our algorithm for 250 iterations with learning rate ⌘✓ = 0.3.
Moreover, we stop our algorithm when our computed inverse Nash equilibrium ✓ is closed enough to
the original parameter ✓†: ||✓�✓†

✓† ||2 ✏ where we set ✏ = 0.1.
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7.4.3 STOCHASTIC FISHER MARKETS

A (static) Fisher market (n,m, C,u, e, t, b), (e, t, b) when clear from context, consists of n 2 N++

buyers and m 2 N++ divisible goods Brainard et al. (2000). Each buyer i 2 [n] is represented by a
tuple (Ci, ui

, ti, bi), (ti, bi) when clear from context, which consists of a budget bi 2 Bi ✓ R+ of
some numéraire good it is endowed with, a utility function u

i
: Ci⇥Ti ! R+, which is parameterized

by a type ti 2 Ti s.t. u
i
( · ; ti) defines a preference relation over the consumption space Ci ✓ Rm

+ .
Each good is characterized by a supply ej 2 Ej ✓ R+. We denote the collection of all utility
functions u .

= (u1, . . . , un
), the collection of buyer types t .

= (t1, . . . , tn), the collection of buyer
budgets b

.
= (b1, . . . , bn) 2 Rn

+, the collection of all good supplies e
.
= (e1, . . . , em) 2 Rm

+ , the
joint space of consumptions C .

=⇥i2[n]
Ci, the joint space of types T .

=⇥i2[n]
Ti, and the joint

space of budgets B .
=⇥i2[n]

Bi.

Definition 1 (Stochastic Fisher Market Game). Given a stochastic Fisher market F .
=

(n,m, l,S,u, p, �, µ), we define the Stochastic Fisher Market Game MF .
= (n,S,A,B, r, p, �, µ)

where:

S .
= O ⇥ E ⇥ B ⇥ T A .

= P B(s) .
= C ⇥A(s) (32)

r((! , e, t, b),p, (X ,�))
.
= p ·

0

@e�
X

i2[n]

x
i

1

A+
X

i2[n]

(bi + �
i
) log

✓
u
i
(x

i
; ti)

bi + �
i

◆
(33)

Experimental setup We use Jax, and Haiku to traint he simulacrum policies and use a feedforward
neural network with 4 layers with 200 nodes. We run our experiments with 5 random seed and report
the best results.
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7.5 GRADIENT ESTIMATORS

Notice that the deterministic policy gradient theorem tells us that to compute a the policy gradient
we need to compute the gradient of state-action value function with respect to the actions and then
multiply it by the gradient of the policy w.r.t. the policies. Since we have access to a first order oracle
of the reward and transition we can then compute gradient of the cumulative regret with the following
quantities:

fx(✓,y ;H,h0)

/
X

i2[n]

h
rari(s

i,(0),ai,(0);✓)

+ �rap(s
i,(1) | si,(0),ai,(0))

"
r
i

⇣
s
i,(1),ai,(1);✓

⌘
+

1X

t=2

r
i

⇣
s
i,(t),ai,(t)

⌘ tY

k=2

�k+1p(si,(k) | si,(k�1),ai,(k�1))

##

(34)

f✓ (✓,y ;h,h
0)

.
=

X

i2[n]

"
X

t

r✓ri(s
i,(t),ai,(t);✓)�

X

t

r✓ri(s
0(t),a0(t);✓)

#
(35)

Under Assumption 3, these estimators are unbiased estimates of the gradients r✓f and rxf,
respectively. Assuming these estimators have bounded variance, we can now solve the min-
max optimization problem min✓2⇥ maxx2X f(✓,x) for an "-inverse NE in O(1/") iterations via
stochastic gradient descent (Algorithm 2).14 It thus remains to show that the variance of the
gradient estimators are bounded: i.e., there exists � 2 [0,1) s.t. for all (✓,x) 2 ⇥ ⇥ X,��Eh,h0 [(f✓ , fx)(✓,x;h,h0)]�rf(✓,x)

��  �. Since rewards, transitions, and policies, are
twice continuously-differentiable, both the gradient estimates (f✓ , fx) and rf also are, and
we have:

��Eh,h0 [(f✓ , fx)(✓,x;h,h0)]�rf(✓,x)
��  max✓ ,x,h,h0

��(f✓ , fx)(✓,x;h,h0)
�� =��(f✓ , fx)

��
1, where the max is well defined, since the objective is continuous and the maximization

domains S,A,X,⇥ are non-empty and compact. This means that, under Assumption 3, the variance
of gradient estimator (f✓ , fx) is bounded by �2 .

=
��(f✓ , fx)

��2
1.

14With additional care, the assumption made on the rewards and probability transition functions in Part 2 of
Assumption 3 can be weakened to continuous differentiability and local Lipschitz-continuity, respectively (see
Lemma 3.2 of Suh et al. (2022)) to obtain unbiased estimates; for clarity we make the stronger assumption.
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