
OPT2023: 15th Annual Workshop on Optimization for Machine Learning 1–18

Greedy Newton: Newton’s Method with Exact Line Search

Betty Shea sheaws@cs.ubc.ca

Mark Schmidt1 schmidtm@cs.ubc.ca

The University of British Columbia, Canada. 1Canada CIFAR AI Chair (Amii)

Abstract

A defining characteristic of Newton’s method is local superlinear convergence within a
neighbourhood of a strict local minimum. However, outside this neighborhood Newton’s
method can converge slowly or even diverge. A common approach to dealing with non-
convergence is using a step size that is set by an Armijo backtracking line search. With
suitable initialization the line-search preserves local superlinear convergence, but may give
sub-optimal progress when not near a solution. In this work we consider Newton’s method
under an exact line search, which we call “greedy Newton” (GN). We show that this leads to
an improved global convergence rate, while retaining a local superlinear convergence rate.
We empirically show that GN may work better than backtracking Newton by allowing
significantly larger step sizes.

1. Introduction

For minimizing a twice-differentiable function f : Rn → R, the pure Newton iteration xNk+1

starting from some vector xk is given by

xNk+1 = xk −∇2f(xk)
−1∇f(xk). (1)

This method dates back to work by Newton and Raphson in the 1600s for finding roots of
polynomials [4]. Since then, the method has evolved to work in a variety of settings. In op-
timization, Newton’s method is a powerful tool for minimizing non-linear objectives mainly
due to its remarkable property of superlinear (quadratic) convergence in a neighborhood of
a strict local minimum (under appropriate conditions) [see 2, Section 9.5].

However, Newton’s method also has known weaknesses. For example, the method is
not guaranteed to converge in general or even decrease f . One of the standard fixes to the
non-convergence is to introduce a step size αk,

xk+1 = xk − αk∇2f(xk)
−1∇f(xk). (2)

The step size is typically set by first considering αk = 1 and dividing the step size by a fixed
constant (“backtracking”) until the Armijo condition is satisfied [2, Section 9.5]. Provided
that we eventually get close enough to a strict local minimum, Armijo backtracking preserves
the superlinear convergence of the pure Newton method. Many variations of Newton’s
method exist such as modifications for cases where the ∇2f(xk) is not invertible. Other
variations include those based on trust-region methods instead of line searches [see 13], but
the superlinear convergence proofs in the literature that we are aware of for (2) assume we
first test αk = 1 and accept this step size if it satisfies a variant of the Armijo condition.

© B. Shea & M. Schmidt.

Shea Schmidt

While αk = 1 becomes asymptotically optimal in the neighbourhood of a strict local
minimizer, it may not be the optimal step size even when close to a minimizer. Further,
when far away from a local minimizer using αk = 1 or the smaller values obtained by
backtracking may converge slowly. This paper instead investigates Newton’s method where
the step size is set to minimize the function value,

αk ∈ argmin
α

f(xk − α∇2f(xk)
−1∇f(xk)) (3)

We call using this exact line search within Newton’s method the “greedy Newton” (GN)
method. We first address two mis-conceptions the reader may have about this method:

• It typically does not significantly increase the cost of Newton’s method to
find a local minimizer of (3). For most problems just computing the Hessian is n-
times more expensive than evaluating the function or directional derivatives. Thus,
you can evaluate the objective in (3) and its derivative several times without changing
the overall cost of the method. As an example, consider logistic regression with m
training examples {ai, bi} with dense features ai ∈ Rn and binary labels bi ∈ {−1, 1},

f(x) =

m∑
i=1

log(1 + exp(−bix
Tai)). (4)

The cost of computing the Hessian for this problem is O(mn2), but the cost of eval-
uating f or a directional derivative of it is only O(mn). With bisection we can solve
the one-dimensional problem (3) to ϵ accuracy over a bounded domain in O(log(1/ϵ))
iterations, so the cost of a naive black-box numerical method is only O(mn log(1/ϵ)).

Further, if we exploit the linear composition structure of (4) the cost of bisection can
be reduced to O(mn + m log(1/ϵ)). It is also possible to use faster one-dimensional
minimizers like the secant method. Indeed, low-cost line searches are possible for a
wide variety of problems including linear models, matrix factorization models, and
certain neural networks [9; 10; 17; 18; 15].

• The exact line search can yield a significantly smaller function value than
Armijo backtracking. The optimal step size (3) may be significantly larger than the
maximum step size of 1 considered in standard implementations. While we could
backtrack from a step size larger than 1, the Armijo condition itself can exclude the
optimal step size. Indeed, for non-quadratic functions the maximum step size allowed
by the Armijo condition can be arbitrarily worse than the optimal step size.

By modifying standard arguments for the convergence of Newton’s method, we show:

1. For strongly-convex functions with a Lipschitz-continuous gradient, GN slightly im-
proves the global convergence rate compared to Armijo backtracking (Section 2.1).

2. Under the additional assumption that the Hessian is Lipschitz-continuous, superlinear
convergence is achieved by any method that decreases the function value by at least
as much as the pure Newton iteration (1) (Section 2.2).

3. Local convergence rate of Newton’s method with non-unit step sizes (Section 2.3).

2

Greedy Newton

4. Hybrid Newton-gradient methods that further improve the global convergence rate of
Netwon’s method (Section 2.4).

We are not aware of the superlinear convergence of GN appearing previously in the liter-
ature, although recent work bounds the GN step size for self-concordant functions [6] and
various progress measures give superlinear convergence for solving non-linear equations [3].
In Section 3 we experiment with the GN method for logistic regression. Our findings sug-
gest that GN consistently works better than using Armijo backtracking, and substantially
better for certain problems where the optimal step sizes can be much larger than 1.

2. Convergence of Greedy Newton Methods

All our results assume that f is twice-differentiable and that the eigenvalues of the Hessian
∇2f are bounded between positive constants µ and L for all x,

µI ⪯ ∇2f(x) ⪯ LI. (5)

These assumptions are equivalent to assuming that ∇f is L-Lipschitz continuous and that f
is µ-strongly convex. We note that without these assumptions GN may not converge [8; 7],
but various Hessian modifications guarantee convergence [see 13, Section 3.4]. The local
superlinear convergence results also require that the Hessian is M -Lipschitz continuous,

∥∇2f(x)−∇2f(y)∥ ≤ M∥x− y∥, (6)

where the matrix norm ∥ · ∥ on the left is the spectral norm. We give proofs of the results
in this section in Appendix A.

2.1. Global Convergence of Greedy Newton

We first give a global rate of convergence for the GN method.

Proposition 1 Let a twice-differentiable f be µ-strongly convex with an L-Lipschitz contin-
uous gradient (5). Then the iterations of Newton’s method (2) with the greedy step size (3)
satisfy

f(xk)− f(x∗) ≤
(
1− µ2

L2

)k

[f(x0)− f(x∗)].

This result implies that in order for the sub-optimality dk = (f(xk)− f(x∗)) to be less than
ϵ, we require at most (L2/µ2) log(d0/ϵ) iterations. If we instead set the step size by starting
from a sufficiently large guess for αk and halving it until the Armijo condition is satisfied,
then with a sufficient decrease factor of σ = 1/2 we have a slower rate of

f(xk)− f(x∗) ≤
(
1− µ2

2L2

)k

[f(x0)− f(x∗)],

This requires 2(L2/µ2) log(d0/ϵ) iterations to guarantee that we reach an accuracy of ϵ.
Thus, GN halves the worst-case number of steps compared to this standard approach. If
we use an Armijo sufficient decrease factor of σ < 1/2 and multiply the step size by β < 1

3

Shea Schmidt

instead of 1/2 when we backtrack, we require (L2/2σβµ2) log(1/ϵ) [see 2, Section 9.5] (this
again assumes the initial guess for αk is sufficiently large, and note that it may need to
be larger than 1). Note that the red factor is greater than 1 since σβ < 1/2. Thus, GN
performs as well as backtracking with an aribtrarily large initial αk, and an arbitrarily small
backtracking and sufficient decrease factor.

2.2. Local Convergence of “As Fast as Newton” Methods

We next consider a local rate for any method that decreases the function as much as the
pure Newton method.

Proposition 2 Let a twice-differentiable f be µ-strongly convex with an L-Lipschitz con-
tinuous gradient (5), and an M -Lipschitz continuous Hessian (6). Consider a method that
is guaranteed to decrease the function as much as the pure Newton step (1), f(xk+1) ≤
f(xk −∇2f(xk)

−1∇f(xk)). The iterations of such methods satisfy

∥xk+1 − x∗∥ ≤

√
L

µ

M

2µ
∥xk − x∗∥2.

This result implies superlinear (quadratic) convergence beginning at the first iteration where
we have

∥xk − x∗∥ <

√
µ

L

2µ

M
. (7)

Note that this radius of fast convergence is smaller than the radius for the pure Newton
method by a factor of

√
µ/L [12; 16], and thus we must be closer to the solution in order to

guarantee superlinear convergence. However, note that this result applies not only to the
GN method but a variety of other possible methods.

2.3. Local Convergence of Newton with Arbitrary Step Size

We next consider a similar result, but for Newton’s method with arbitrary step sizes.

Proposition 3 Let a twice-differentiable f be µ-strongly convex with an L-Lipschitz con-
tinuous gradient (5) and an M -Lipschitz continuous Hessian (6). Then Newton’s method
with a step size of αk (2) satisfies

∥xk+1 − x∗∥ ≤ |αk|
M

2µ
∥xk − x∗∥2 + |αk − 1| L

µ
∥xk − x∗∥

Note that if we assume |αk − 1| ≤ ∥xk − x∗∥ then we have

∥xk+1 − x∗∥ ≤ |αk|
M

2µ
∥xk − x∗∥2 +

L

µ
∥xk − x∗∥2 =

|αk|M + 2L

2µ
∥xk − x∗∥2.

Thus we have superliner (quadratic) convergence if for all k large enough we have

|αk − 1| ≤ ∥xk − x∗∥ and ∥xk − x∗∥ <
2µ

|αk|M + 2L
.

4

Greedy Newton

Thus, if L is similar to M and if αk converges to 1 at least as fast as ∥xk −x∗∥ converges to
zero, then Newton’s method with non-zero step sizes has a similar radius of fast convergence
to the pure Newton method. In the specific case of GN we have that αk converges to 1
asymptotically as the quadratic approximation in the pure Newton method becomes exact.
But the rate that αk converges to 1 is less clear.

2.4. Global Convergence of Hybrid Gradient-Newton Methods

In Section 2.1 we review how GN improves on the linear convergence rate of Newton’s
method with backtracking from (1− 2βσµ2/L2) to (1− µ2/L2). However, under the same
assumptions gradient descent with an exact line search achieves a rate of (1−µ/L) while with
backtracking gradient descent achieves a rate (1−2βσµ/L) [see 2, Section 9.3]. Fortunately,
it is possible to use the result of Section 2.2 to design methods that have these faster global
linear convergence rate while maintaining a local superlinear convergence rate.

Perhaps the simplest hybrid method is the following:

• Let xNk+1 be the pure Newton step (1) and xGk+1 be the gradient descent step with
exact line search,

xGk+1 = xk − αG
k ∇f(xk), αG

k ∈ argmin
α

{f(xk − α∇f(xk))}

• If f(xGk+1) < f(xNk+1) take the gradient step, otherwise take the pure Newton step.

This approach guarantees the (1 − µ/L) linear rate is achieved at all iterations, while the
result of Section 2.2 guarantees that this approach has a superlinear convergence rate.
However, in our experiments this hybrid approach tended to perform worse than GN.

Other hybrid methods are possible, such as ones based on backtracking for either the
gradient or Newton step. Another option is to use a step size on both the gradient and
Newton step,

xk+1 = xk − αa
k∇f(xk)− αb

k∇2f(xk)
−1∇f(xk),

and optimize the step sizes αa
k and αb

k. This “plane search” approach to setting two step
sizes is efficient for many problems arising in machine learning [see 15]. However, we found
that this approach only gave small gains over the basic GN method (with αa

k close to zero).

3. Experiments

Our first experiment considered logistic regression (4) with the synthetic data included in
the minFunc package [14]. This generates m = 500 examples where the elements of ai are
sampled from a standard normal, a true x̃ is sampled from a standard normal, and we set
bi to be the sign (aTi x̃ + δi) with δi is sampled from a standard normal. We generated 4
versions: one with n = 20 yielding a strongly-convex problem, one with n = 20 where 10 of
the features are repeated yielding a convex problem, one with n = 200 yielding a strictly
convex problem, and one with n = 2000 yielding a convex problem. In the latter two cases
the data is linearly separable. For the convex cases we used ∇2f(xk) + 10−12I in place
of the Hessian, and we also considered L2-regularized variants of these problems with a
regularization strength of λ = 1 (this makes all the problems strongly-convex).

5

Shea Schmidt

Figure 1: Comparison of Newton with Armijo backtracking, hybrid gradient-Newton, and
greedy Newton on logistic regression problems with regularization (top row) and
without regularization (bottom row). From left to right, in the bottom row the
problems are convex, strongly-convex, strictly-convex, and convex (all problems
in the top row are strongly-convex). The right two datasets are linearly separable
and the left two datasets are non-separable.

In Figure 1 we compare Newton with Armijo backtracking, the hybrid of greedy gradient
descent and pure Newton discussed in Section 2.4, and GN. We see that GN outperformed
the other two methods in all settings. The performance gain was particularly large in the
unregularized case for the two separable datasets (where the optimal solutions have infinite
norm): in these cases the Armijo and hybrid methods performed poorly while GN achieved
numerical accuracy extremely quickly (in 4 iterations and 1 iteration respectively). In these
cases GN used step sizes much larger than 1, while for the other datasets GN initially used
large step sizes but they quickly converged 1 (see Figure 2). In Appendix C we report
results based on real data which largely show similar trends.

4. Open Problems

Our experiments show that we can use Newton’s method more advantageously when we do
not restrict the step size to be less than 1. However, our theory does not reflect the large
performance increases we saw in practice. Below we list some open problems:

1. Section 2.1: can we prove that step sizes bigger than 1 improve the global rate?

2. Section 2.2: is the additional
√
L/µ term in the superlinear rate necessary?

3. Section 2.3: can we analyze the rate at which αk converges to 1?

4. Section 2.4: can we justify why GN outperforms the theoretically-faster hybrid method?

5. Section 3: can we prove a faster rate for GN on separable problems?

We close by noting that a precise step size search could also be added to Newton’s method
with cubic regularization and that this does not change the radius of superlinear convergence
of that method (Appendix B).

6

Greedy Newton

Acknowledgements

We thank Frederik Kunstner and Nicolas Boumal for valuable discussions. Betty Shea is
funded by an NSERC Canada Graduate Scholarship. The work was partially supported by
the Canada CIFAR AI Chair Program and NSERC Discovery Grant RGPIN-2022-036669.

References

[1] D. P. Bertsekas. Nonlinear Programming. Athena Scientific, 3 edition, 2016.

[2] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge, 2004.

[3] O. P. Burdakov. Some globally convergent modifications of Newton’s method for solving
systems of nonlinear equations. Doklady Akademii Nauk, 254(3):521–523, 1980.

[4] P. Deuflhard. A short history of Newton’s method. Documenta Mathematica, Opti-
mization stories, pages 25–30, 2012.

[5] Gene H Golub and Charles F Van Loan. Matrix computations. JHU press, 2013.

[6] A. Ivanova and R. Hildebrand. Optimal step length for the maximal decrease of a self-
concordant function by the Newton method. Optimization Letters, pages 1–8, 2023.

[7] F. Jarre and P. L. Toint. Simple examples for the failure of Newton’s method with line
search for strictly convex minimization. Mathematical Programming, 158(1-2):23–34,
2016.

[8] W. F. Mascarenhas. On the divergence of line search methods. Computational &
Applied Mathematics, 26:129–169, 2007.

[9] G. Narkiss and M. Zibulevsky. Sequential subspace optimization method for large-scale
unconstrained problems. Technical report, Technion - Israel Institute of Technology,
2005.

[10] G. Narkiss and M. Zibulevsky. Support vector machine via sequential subspace opti-
mization. Technical report, Technion - Israel Institute of Technology, 2005.

[11] Y. Nesterov. Lectures on Convex Optimization, 2nd Ed. Springer, 2018.

[12] Y. Nesterov and B. Polyak. Cubic regularization of Newton method and its global
performance. Math. Program., 108:177–205, 2006.

[13] J. Nocedal and S. J. Wright. Numerical Optimization, 2nd Ed. Springer, 2006.

[14] M. Schmidt. Minfunc: unconstrained differentiable multivariate optimization in Mat-
lab, 2005.

[15] B. Shea and M. Schmidt. Why line-search when you can plane-search? arXiv preprint,
2023.

[16] Y. Sun. The happy optimist: Newton’s method I, 2021.

7

Shea Schmidt

[17] M. Zibulevsky. Sesop-tn: combining sequential subspace optimization with truncated
Newton method, 2008.

[18] M. Zibulevsky. SESOP PACK: Matlab tool for sequential subspace optimization meth-
ods, 2010.

8

Greedy Newton

Appendix A. Analysis of Greedy Newton

In this section, we prove the results in Sections 2.1-2.3. Our analyses are modifications of
existing convergence analyses of the pure and backtracking Newton method [2; 11; 16] to
use an exact line search.

A.1. Global Convergence of Greedy Newton

In this section we give the proof of Proposition 2.1. Our assumption is that ∇2f(xk) is
positive definite with eigenvalues in [µ,L]. This implies that ∇2f(xk)

−1 is symmetric and
positive definite with eigenvalues in [1/L, 1/µ]. Using these facts in a Taylor expansion
gives

f(xk+1) = f(xk) +∇f(xk)
T (xk+1 − xk) +

1

2
(xk+1 − xk)

T∇2f(z)(xk+1 − xk) (for z between xk+1 and xk)

≤ f(xk) +∇f(xk)
T (xk+1 − xk) +

L

2
∥xk+1 − xk∥2 (∇2f(z) ⪯ LI)

= f(xk)− αk∇f(xk)
T∇2f(xk)

−1∇f(xk) +
Lα2

k

2
∥∇2f(xk)

−1∇f(xk)∥2 (xk+1 is Newton step (2))

= f(xk)− αk∇f(xk)
T∇2f(xk)

−1∇f(xk) +
Lα2

k

2
∇f(xk)

T∇2f(xk)
−2∇f(xk)

≤ f(xk)− αk∇f(xk)
T∇2f(xk)

−1∇f(xk) +
Lα2

k

2µ
∇f(xk)

T∇2f(xk)
−1∇f(xk) (∇2f(xk)

−1 ⪯ (1/µ)I)

= f(xk)− αk

(
1−

αk

2

L

µ

)
∇f(xk)

T∇2f(xk)
−1∇f(xk)

With an exact line search (3), we decrease the function by at least as much as choosing
αk = µ/L, so we have

f(xk+1) ≤ f(xk)−
µ

2L
∇f(xk)

T∇2f(xk)
−1∇f(xk)

≤ f(xk)−
µ

2L2
∥∇f(xk)∥2,

using that∇2f(xk)
−1 ⪰ (1/L)I. By strong convexity we have 1

2µ∥∇f(xk)∥2 ≥ f(xk)−f(x∗),
using this and subtracting f(x∗) from both sides gives

f(xk+1)− f∗ ≤ f(xk)− f(x∗)−
µ2

L2
[f(xk)− f(x∗)]

=

(
1− µ2

L2

)
[f(xk)− f∗].

Applying this recursively gives the result.

A.2. Local Convergence of “As Fast as Newton” Methods

In this section we give the proof of Proposition 2.2. If f is µ-strongly convex with an
M -Lipschitz Hessian, then the pure Newton update xNk+1 (1) satisfies [1; 16]

∥xNk+1 − x∗∥ ≤ M

2µ
∥xk − x∗∥2 (8)

9

Shea Schmidt

If ∇f is L-Lipschitz then we have

f(x) ≤ f(x∗) +∇f(x∗)
⊺(x− x∗) +

L

2
∥x− x∗∥2,

which using ∇f(x∗) = 0 implies

f(x)− f(x∗) ≤
L

2
∥x− x∗∥2 (9)

Similarly, µ-strongly convexity of f implies that

f(x)− f(x∗) ≥
µ

2
∥x− x∗∥2 (10)

Thus, if an algorithm has f(xk+1) ≤ f(xNk+1) then we have

∥xk+1 − x∗∥2 ≤
2

µ
[f(xk+1)− f(x∗)]

≤ 2

µ
[f(xNk+1)− f(x∗)]

≤ L

µ
∥xNk+1 − x∗∥2.

Combined with the progress of Newton’s method given by Equation (8), we get

∥xk+1 − x∗∥ ≤

√
L

µ

M

2µ
∥xk − x∗∥2 (11)

A.3. Local Convergence of Newton with Arbitrary Step Size

In this section we give the proof of Proposition 2.3. The result holds if αk = 0 since L/µ ≥ 1.
Thus, we focus on the case of αk ̸= 0. Subtracting x∗ from both sides of the Newton update
with a step size of αk ̸= 0 (2) gives

xk+1 − x∗ = xk − αk∇2f(xk)
−1∇f(xk)− x∗

Since ∇f(x∗) = 0, we can add the quantity αk∇2f(xk)
−1∇f(x∗) on the right hand side and

rearrange

xk+1 − x∗ = (xk − x∗)− αk∇2f(xk)
−1 (∇f(xk)−∇f(x∗))

=
αk

αk
∇2f(xk)

−1∇2f(xk)(xk − x∗)− αk∇2f(xk)
−1 (∇f(xk)−∇f(x∗))

to get

xk+1 − x∗ = αk∇2f(xk)
−1

[
1

αk
∇2f(xk)(xk − x∗)− (∇f(xk)−∇f(x∗))

]
(12)

From Taylor’s theorem we have

∇f(x∗) = ∇f(xk + (x∗ − xk)) = ∇f(xk) +

∫ 1

0
∇2f(xk + t(x∗ − xk))(x∗ − xk)dt

10

Greedy Newton

=⇒ ∇f(xk)−∇f(x∗) =

∫ 1

0
∇2f(xk + t(x∗ − xk))(xk − x∗)dt

Substituting this into (12) gives

xk+1 − x∗ = αk∇2f(xk)
−1

[
1

αk
∇2f(xk)(xk − x∗)−

∫ 1

0
∇2f(xk + t(x∗ − xk))(xk − x∗)dt

]
= αk∇2f(xk)

−1

[
1

αk
∇2f(xk)−

∫ 1

0
∇2f(xk + t(x∗ − xk))dt

]
(xk − x∗)

= αk∇2f(xk)
−1

[∫ 1

0

(
1

αk
∇2f(xk)−∇2f(xk + t(x∗ − xk))

)
dt

]
(xk − x∗).

Taking norms on both sides and using the Cauchy-Schwartz inequality gives

∥xk+1 − x∗∥ ≤ |αk|∥∇2f(xk)
−1∥

∥∥∥∥∫ 1

0

1

αk
∇2f(xk)−∇2f(xk + t(x∗ − xk))dt

∥∥∥∥ ∥xk − x∗∥

(13)

We bound the factor containing the integral using the triangle inequality, ∥
∫ b
a g(t)dt∥ ≤∫ b

a ∥g(t)∥dt,∥∥∥∥∫ 1

0

1

αk
∇2f(xk)−∇2f(xk + t(x∗ − xk))dt

∥∥∥∥ ≤
∫ 1

0

∥∥∥∥ 1

αk
∇2f(xk)−∇2f(xk + t(x∗ − xk))

∥∥∥∥ dt
Using Lipschitz continuity of the gradient (5) and Hessian (6), this could be rewritten∫ 1

0

∥∥∥∥−∇2f(xk) +
1

αk
∇2f(xk) +∇2f(xk)−∇2f(xk + t(x∗ − xk))

∥∥∥∥ dt
=

∫ 1

0

∥∥∥∥(−1 +
1

αk

)
∇2f(xk) +

(
∇2f(xk)−∇2f(xk + t(x∗ − xk)

)∥∥∥∥ dt
≤

∫ 1

0

∣∣∣∣1− 1

αk

∣∣∣∣ ∥∥∇2f(xk)
∥∥+

∥∥∇2f(xk)−∇2f(xk + t(x∗ − xk)
∥∥ dt

≤
∫ 1

0

∣∣∣∣1− 1

αk

∣∣∣∣ ∥∥∇2f(xk)
∥∥+Mt∥xk − x∗∥dt

≤
∫ 1

0

∣∣∣∣1− 1

αk

∣∣∣∣L+Mt∥xk − x∗∥dt,

Substituting this back into (13) gives

∥xk+1 − x∗∥ ≤ |αk|∥∇2f(xk)
−1∥

∫ 1

0

[∣∣∣∣1− 1

αk

∣∣∣∣L+Mt∥xk − x∗∥
]
dt∥xk − x∗∥

= |αk|∥∇2f(xk)
−1∥

[∣∣∣∣1− 1

αk

∣∣∣∣L+
M

2
∥xk − x∗∥

]
∥xk − x∗∥

≤ |αk|
µ

[∣∣∣∣1− 1

αk

∣∣∣∣L+
M

2
∥xk − x∗∥

]
∥xk − x∗∥ (by strong convexity)

= |αk − 1|L
µ
∥xk − x∗∥+ |αk|

M

2µ
∥xk − x∗∥2.

11

Shea Schmidt

Appendix B. Greedy Newton with Cubic Regularization

Given the Lipschitz constant of the Hessian M , Newton’s method with cubic regulariza-
tion [12] uses iterations of the form

xC,M
k+1 ∈ argmin

y

{
f(xk) +∇f(xk)

T (y − xk) +
1

2
(y − xk)

T∇2f(xk)(y − xk) +
M

6
∥y − xk∥3

}
.

Unlike the classic Newton method, it is known that this method has a quadratic convergence
rate directly in terms of function values. In particular, the method converges quadratically
beginning from the first iteration where f(xk)− f(x∗) ≤ M

2µ [see 11, Section 4.2.6].
There are several ways we could add a step size to this method:

1. If M is known, we could use iterations that take a step in the direction of a solution
of the cubic sub-problem,

xk+1 = xk + αk(x
C,M
k+1 − xk), (14)

where αk is chosen to minimize the function value. The cubic step corresponds to
choosing αk = 1, but other values may decrease the objective function by a larger
amount. Because we have f(xk+1) ≤ f(xCk) with this method, it has the same radius
of superlinear convergence as the basic Newton’s method with cubic regularization.

2. If M is not known, it is common to use a backtracking procedure to set M [12]. In this
case, we could alternate between backtracking to find an M guaranteeing sufficient
progress, and doing a line search on αk in the direction of a solution of the cubic
sub-problem (14) with the current approximation of M .

3. If M is not known, we could alternately search for the M that minimizes the function
value,

Mk ∈ argmin
M

{
f(xC,M

k+1)
}
,

and then use this Mk in place of M in the cubic update. A re-formulation of this
update is using [12],

xk+1 = xk − (∇2f(xk)
−1 + λI)−1∇f(xk),

and choosing
λk ∈ argmin

λ
f(xk − (∇2f(xk)

−1 + λI)−1∇f(xk)),

which is a greedy version of the classic Levenberg–Marquardt update. This method
decreases the function at least as much as any particular choice of M . Thus, it
preserves the region of superlinear convergence without requiring us to know M and
would likely perform better in practice than using a fixed M . The disadvantage of
this approach compared to line search methods is that it involves involves additional
operations with the Hessian. However, given the gradient and Hessian we could use a
suitable factorization of the Hessian such as the Schur factorization or singular value
decomposition [5] to implement this search in O(n3 + n2 log(1/ϵ)) plus the cost of
evaluating f O(log(1/ϵ)) times.

12

Greedy Newton

Appendix C. Additional Experiments

C.1. Step Sizes on Synthetic Logistic Regression Data

In Figure 2 we plot the step sizes used in the methods in Figure 1. For the hybrid method,
a step size is 1 is reported when the pure Newton step is taken and otherwise the gradient
descent step size is shown. Observe that GN used an initial step of at least 3 on every
dataset, and the largest step size used was greater than 100.

C.2. Logistic Regression with Real Data

We performed logistic regression experiments on over 40 datasets obtained using the Dataset
Downloader software (https://github.com/fKunstner/dataset-downloader). On the
majority of these datasets, we observed the following trends whether we regularized or not:

• The Armijo and hybrid methods produced identical iterations (no gradient descent
steps were selected).

• The GN method outperformed the other methods.

• The GN method typically used a large initial step size but the step sizes quickly
converged to 1.

In Figures 3 and 4 we plot the performance on 8 datasets where we observed this typical
case. On a smaller number of datasets, we observed different behaviours including:

• Cases where the performance of the hybrid method was better or worse than the
Armijo method.

• Cases where all methods converged extremely quickly.

• Cases where the hybrid method performed similar to greedy.

• Cases the GN method converges in 1 step (and one case where the hybrid method did
this).

• Cases where the GN method eventually begins to oscillate between two non-unit step
sizes (this seemed to happen for problems with singular Hessians, so is likely due to
the particular Hessian modification strategy we used).

In Figures 5 and 6 we plot the performance on 8 datasets where we observed some of these
atypical behaviours. Despite these different behaviours, we note that GN performed the
same or better than the other two across all datasets.s

13

https://github.com/fKunstner/dataset-downloader

Shea Schmidt

Figure 2: Step size chosen on each iteration for the plots in Figure 1. For iterations where
the hybrid method took a gradient step, the gradient descent step size is shown
(where a pure Newton step was taken the step size is 1).

Figure 3: Comparison of methods on real logistic regression datasets, in 8 cases where we
observed typical performance.

14

Greedy Newton

Figure 4: Step sizes of methods on real logistic regression datasets, in 8 cases where we
observed typical performance.

15

Shea Schmidt

Figure 5: Comparison of methods on real logistic regression datasets, in 8 cases where we
observed atypical performance in either the regularized or unregularized setting.

16

Greedy Newton

Figure 6: Step sizes of methods on real logistic regression datasets, in 8 cases where we
observed atypical performance in either the regularized or unregularized setting.

17

Shea Schmidt

18

	Introduction
	Convergence of Greedy Newton Methods
	Global Convergence of Greedy Newton
	Local Convergence of ``As Fast as Newton'' Methods
	Local Convergence of Newton with Arbitrary Step Size
	Global Convergence of Hybrid Gradient-Newton Methods

	Experiments
	Open Problems
	Analysis of Greedy Newton
	Global Convergence of Greedy Newton
	Local Convergence of ``As Fast as Newton" Methods
	Local Convergence of Newton with Arbitrary Step Size

	Greedy Newton with Cubic Regularization
	Additional Experiments
	Step Sizes on Synthetic Logistic Regression Data
	Logistic Regression with Real Data

