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ABSTRACT

In this paper, we propose a unified framework for hierarchical diffusion via sim-
plicial complexes (HDSC), which enables adaptive diffusion across different lev-
els of simplicial complexes, including nodes, edges, and triangles. To ensure the
accuracy and consistency of information transmission during the diffusion pro-
cess, we investigate topological consistency constraints, achieving efficient cou-
pling between structures at various levels. Additionally, by introducing a time-
dependent topological memory mechanism, we further enhance the smoothness
and coherence of global information flow, enabling features at different levels to
diffuse cooperatively throughout the entire graph structure. Experimental results
demonstrate that HDSC exhibits significant performance advantages over tradi-
tional methods. Furthermore, as the complexity and dimensionality of the graph
increase, HDSC continues to maintain its superiority, effectively avoiding the phe-
nomenon of node feature homogenization.

1 INTRODUCTION

Graph structures are capable of capturing complex relationships between entities in an intuitive
manner, making them widely applicable across a variety of real-world scenarios, including trans-
portation networks, social networks, and biomolecular networks. To better handle these intricate
graph structures, graph neural networks (GNNs) have emerged as an effective tool for processing
graph-based data. GNNs leverage message-passing mechanisms to propagate information across
graph structures, enabling nodes to update their representations based on the information from their
neighboring nodes (Kipf & Welling, 2017; Veličković et al., 2018; Hamilton et al., 2017). GNNs
have been extensively applied to tasks such as node classification (Wu et al., 2019; Shi et al., 2021),
link prediction (Zhang et al., 2023; Liu et al., 2023), graph classification (Luo et al., 2023; Wei
et al., 2023), and graph generation (Kong et al., 2023; Cong et al., 2023), achieving significant
success across various domains.

Despite the success of GNNs in handling graph data, limitations in their information propagation
process have gradually surfaced, In particular, there is the issue of over-smoothing, where nodes
lose their distinctiveness as their features become homogenized (Qureshi et al., 2023; Giraldo et al.,
2023; Chen et al., 2023). To address these challenges, diffusion equations have been introduced
into graph structures, offering a continuous perspective for modeling information propagation (At-
wood & Towsley, 2016; Zhao et al., 2021). Diffusion models are originally employed to describe
the spread of heat or particles in physical systems, and are based on the principle that informa-
tion diffuses from regions of high concentration to low concentration, until eventually reaching the
equilibrium (Paul et al., 2014). In the context of graph structures, diffusion models simulate fea-
ture propagation between nodes and provide a continuous-time interpretation of message-passing
mechanisms of GNNs (Chamberlain et al., 2021; Thorpe et al., 2022). Existing studies suggest that
diffusion equations can provide a unified theoretical framework for GNNs, bridging the gap between
discrete graph structures and continuous dynamic processes (Gasteiger et al., 2019; Li et al., 2024;
Liu et al., 2024). For example, Chamberlain et al. (2021) formalizes graph learning as a continu-
ous diffusion process, viewing GNNs as discrete approximations of underlying partial differential
equations (PDEs), systematically addressing common issues in deep GNNs such as the difficulty of
training deep networks and the over-smoothing of node features. Thorpe et al. (2022) extends this
idea by proposing a graph neural diffusion framework with a source term, constructing a continuous
deep graph learning architecture particularly suited for low-label-rate scenarios with few labeled
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nodes. Gasteiger et al. (2019) introduces generalized graph diffusion (e.g., heat kernel and person-
alized PageRank) into graph convolution, incorporating information from multi-hop neighbors to
mitigate the over-smoothing problem. Liu et al. (2024) further builds on (Gasteiger et al., 2019) by
incorporating adversarial perturbation mechanisms through min-max optimization, enhancing the
model’s robustness against adversarial attacks and noise in graph structures.

However, despite the strong potential demonstrated by the integration of diffusion equations and
GNNs, most existing works are primarily focused on handling node-to-edge relationships, lacking a
systematic extension to higher-order structures within graphs. Current graph diffusion methods face
several limitations:

(1) Limiting to modeling low-order relationships: Most existing graph diffusion convolution meth-
ods (Chamberlain et al., 2021; Thorpe et al., 2022; Gasteiger et al., 2019; Li et al., 2024; Liu et al.,
2024) primarily focus on low-order relationships between nodes and edges, overlooking the geo-
metric and topological information embedded in higher-order structures (e.g., higher-dimensional
simplicial complexes). Studies have shown that higher-order structures play a crucial role in vari-
ous scenarios, such as group relationships in social networks (Alvarez-Rodriguez et al., 2021; Bick
et al., 2023; Boccaletti et al., 2023) and atomic configurations in molecular networks (Morris et al.,
2019; Doye & Massen, 2005). However, current methods generally lack effective modeling of
these higher-order structures, leading to suboptimal performance when capturing complex graph
interactions, especially in graphs dominated by higher-order structures. Furthermore, the model-
ing of low-order relationships limits the scope and depth of information propagation, failing to
capture long-range dependencies in graphs, whereas higher-order structures can better bridge local
and global features. The absence of higher-order structure modeling not only hampers global in-
formation transmission but also restricts the recognition of complex graph patterns, particularly in
large-scale sparse graphs (Jin et al., 2022).

(2) Global diffusion leads to the loss of local information: While the introduction of global diffu-
sion mechanisms has effectively captured large-scale global structural information and mitigated the
over-smoothing problem, the global diffusion process often overlooks local detail information and
comes at the expense of sacrificing local patterns (Zhao et al., 2021; Chamberlain et al., 2021; Thorpe
et al., 2022; Gasteiger et al., 2019; Li et al., 2024; Liu et al., 2024). In large-scale sparse graphs or
graphs with pronounced community structures, global diffusion may result in over-propagation of
information between nodes, diluting or losing crucial local information (Long et al., 2020; Li et al.,
2022). For instance, in social networks, local interactions between users often exhibit highly person-
alized and fine-grained characteristics, which are critical for tasks such as recommendation systems
or influence propagation (Song et al., 2019; Wilson et al., 2009). However, the global diffusion
approach in existing models may cause these fine-grained local patterns to be diluted under the
influence of global information, leading to an inability of the model to fully perceive and utilize
these critical pieces of information. Therefore, an important research challenge is how to enhance
sensitivity to local structures while simultaneously conducting global diffusion.

(3) Absence of a unified diffusion mechanism for multi-level structures: Despite recent efforts to in-
corporate higher-order structures (such as simplicial complexes and hypergraphs) into information
propagation frameworks (Prokopchik et al., 2022; Liu et al., 2021), most existing methods treat the
diffusion mechanisms for nodes, edges, and higher-order structures independently, lacking a unified
approach to handle multi-level structures. Complex interactions often exist between different lev-
els of structures, and current graph diffusion methods tend to exhibit imbalance and fragmentation
when handling these interactions, resulting in ineffective transmission of information across differ-
ent structural levels. Although the introduction of simplicial complexes provides a way to model
higher-order structures (Yang et al., 2022; Chen et al., 2022; Benson et al., 2018), how to unify
the propagation of information across nodes, edges, and higher-order structures remains a largely
unsolved problem.

In this paper, we propose a generalized hierarchical diffusion framework based on simplicial com-
plexes (HDSC) to address the limitations of existing diffusion models and graph neural networks
(GNNs) in handling higher-order structures. Specifically, HDSC defines hierarchical diffusion using
simplicial complexes of different dimensions and introduces boundary operators to connect higher-
order geometric structures with lower-order ones, ensuring efficient information propagation across
various levels. To maintain topological consistency during information transmission, we employ a
high-order Laplacian operator to guide the hierarchical diffusion and ensure stability in the diffusion
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process through the asymptotic decay of eigenvalues. Additionally, we design a time-dependent
enhanced topological memory mechanism that strengthens the model’s structural awareness during
diffusion, preventing rapid information loss during learning.

The main contributions of this paper are threefold:

• We present a unified framework for multi-level diffusion through simplicial complexes, ca-
pable of handling feature diffusion across nodes, edges, and higher-order geometric struc-
tures simultaneously. This allows for efficient coupling of information across different
levels, enhancing both the global stability and local feature-capturing ability of the model.

• We design a time-dependent enhanced topological memory mechanism that preserves his-
torical information from different topological levels during the learning process. By cap-
turing local dynamic changes, it ensures the consistency and coherence of information,
thereby improving the model’s capacity to handle long-range dependencies.

• Extensive experiments demonstrate that our proposed HDSC framework outperforms ex-
isting methods on multiple benchmark datasets, validating the effectiveness of multi-level
diffusion in propagating higher-order geometric structure information.

2 PROBLEM SETUP
In this section, we formally introduce the problem setting for generalized hierarchical diffusion and
elaborate on the main assumptions adopted in this work. Except where stated otherwise, we will
focus on the following setting:

• Higher-order structures in graphs: Consider a graph G = (V,E,X), where the node set
V = {v1, v2, . . . , vn} and edge set the edge set E ⊆ {(vi, vj) | vi, vj ∈ V, i ̸= j} describes
the connections between nodes as unordered pairs, X = {x1,x2, . . . ,xn} is the set of
node feature vectors, where each xi ∈ Rd represents the feature of node vi. To capture
higher-order geometric information in the graph, we introduce the k-simplicial complexes
Sk ⊆ Select(V, k+1), where Select(V, k+1) denotes the set of all combinations of k+1
nodes from V . A k-simplicial complexes is formed by k + 1 nodes that are all mutually
connected, meaning that every subset of these k + 1 nodes forms a lower-order simplicial
complexes. For example, a 2-simplicial complexes (triangles) consists of 3 nodes, where
each pair of nodes is connected by an edge. The information representation of node vi
at level k is denoted as x

(k)
i ∈ Rd, i.e., x(k)

i is the feature vector of node vi within the
k-simplicial complexes. These representations participate in information propagation and
exchange across different levels of higher-order structures.

• Hierarchical diffusion process: The process of diffusion on a graph can be understood
as the propagation of features (such as signals or information) between nodes through the
graph structure. In the context of graphs, the diffusion equation can be described as captur-
ing the difference between the states of a node and its neighboring nodes:

dX(t)

dt
= −LX(t), (1)

where X(t) ∈ Rn×d is the state matrix of the nodes at time t, and L ∈ Rn×n is the graph
Laplacian matrix defined as L = D −A, with A ∈ Rn×n being the adjacency matrix of
the graph and D ∈ Rn×n is the degree matrix, where each diagonal entry Dii represents
the degree of node vi, calculated as the sum of the weights of all edges connected to vi.
By discretizing the time variable with a small time step ∆t and applying Euler’s forward
method to approximate the continuous time derivative, we obtain

X(t+1) = X(t) −∆tLX(t). (2)
Equation (2) governs how node features propagate through the graph topology at each time
step t. For the hierarchical diffusion process, we use Lk to denote the k-th-level lapla-
cian operator that acts on the k-simplicial structure. The corresponding diffusion behavior
across different levels can be formulated as follows:

X(t+1,k) = X(t,k) −∆tLkX
(t,k), (3)

where X(t,k) represents the state matrix of the nodes at time t and level k.
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• Topological consistency: In hierarchical diffusion process, the propagation of informa-
tion across nodes, edges, and higher-order structures need to be topologically consistent.
Specifically, we assume the information transfer follows the boundary operator relation-
ship:

Bk ◦Bk−1 = 0, (4)
where Bk is the boundary operator for the k-simplicial complex, defined as Bk ∈ Rn×n,
which transfers information from higher-order to lower-order structures, ensuring that in-
formation is propagated across different levels without introducing redundancy or distor-
tion. Here, the symbol “◦” represents the composition of operators, indicating the sequen-
tial application of two boundary operators Bk and Bk−1. To further ensure consistency,
we introduce the following normalized boundary operator

B̃k = D
−1/2
k Bk, (5)

where Dk ∈ Rn×n is the degree matrix of the k-simplicial complexes, representing the
inverse square root of the degree associated with each node.

3 METHODOLOGY
This section provides a detailed description of our proposed hierarchical diffusion model and its as-
sociated mechanisms, aiming to achieve adaptive diffusion from local to global levels by introducing
multi-order simplicial complexes structures (such as nodes, edges, and triangles). To accomplish
this, we construct a unified generalized hierarchical diffusion equation, combined with a topological
memory mechanism and a generalized energy optimization strategy, ensuring efficient information
propagation and convergence within complex graph structures.

3.1 HIERARCHICAL DIFFUSION EQUATION

In this section, we begin with the basic diffusion equation and gradually extend the diffusion process
to 1-simplicial complexes and 2-simplicial complexes, ultimately deriving a unified generalized
hierarchical diffusion equation.

To convert the discrete diffusion mechanism into a continuous-time representation, for Equation (3),
we consider the limiting case where the time step ∆t → 0. In this limit, the difference form is
transformed into a derivative, yielding the continuous-time fundamental diffusion equation:

dX(t,k)

dt
= −LkX

(t,k), X(0,0) = X, (6)

Thus, for the 0-simplicial complexes (nodes level), the feature evolution of node i can be described
through the feature changes of its neighboring nodes j:

dx
(t,0)
i

dt
= −

∑
j∈N(i)

Aij

(
x
(t,0)
i − x

(t,0)
j

)
, (7)

where x(t,0)
i represents the feature of node i at time t, Aij ∈ Rn×n denotes the connectivity between

nodes i and j, and N(i) is the set of neighbors of node i. The negative sign indicates that the
features tend to homogenize during the diffusion process, i.e., node features converge towards their
neighboring node features. Building upon the diffusion in 0-simplicial complexes, the diffusion
mechanism in 1-simplicial complexes (edges level) is governed by the boundary operator B1:

X(t+1,1) = X(t,1) −∆tL1X
(t,1), L1 = BT

1 B1, (8)

where X(t,1) represents the features of the 1-simplicial complexes at time t, B1 ∈ R|E|×n maps
node features to edge features, and L1 ∈ R|E|×|E| is the laplacian operator acting on edges, describ-
ing the evolution of edge features during diffusion. For each edge eij , we have:

dx
(t,1)
eij

dt
= −

∑
τ∈N2(eij)

BT
1

(
x(t,1)
eij − x(t,1)

τ

)
, x(0,1)

eij = B1(x
(0,0)
i − x

(0,0)
j ), (9)
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where x
(t,1)
eij represents the feature of edge eij at time t, N2(eij) is the set of neighboring triangles

of edge eij . Similarly, for the diffusion mechanism in 2-simplicial complexes (triangles level), we
introduce the boundary operator B2, which maps edge features to the triangle feature space:

X(t+1,2) = X(t,2) −∆tL2X
(t,2), L2 = BTB2, (10)

where X(t,2) ∈ R|T |×d represents the features of triangles at time t, B2 ∈ R|T |×|E| maps edges
to triangles, and |T | denotes the number of triangles. The Laplacian operator L2 ∈ R|T |×|T | acts
on 2-simplicial complexes, describing feature diffusion based on the adjacency relations between
triangles. For instance, if two triangles share an edge, the difference in their features influences
the rate of diffusion between them. Therefore, the diffusion equation for 2-simplicial complexes is
extended as:

dx
(t,2)
σ

dt
= −

∑
π∈N3(σ)

BT
2

(
x(t,2)
σ − x(t,2)

π

)
, x(0,2)

σ = B2(x
(0,1)
eij − x(0,1)

τ ), (11)

where x
(t,2)
σ represents the feature of the 2-simplicial complexes, N3(σ) refers to other triangles

that share an edge with the triangle σ. Finally, we obtain the unified expression for generalized
hierarchical diffusion:

X(t+1) = X(t) −∆t

K∑
k=0

θ(t,k)B̃
T
k B̃kX

(t,k), B̃k ∈ R|Sk|×|Sk−1|, (12)

dX(t)

dt
= −

K∑
k=0

θ(t,k)B̃
T
k B̃kX

(t,k), (13)

where X(t+1)represents the node features at time t+ 1, which integrate multi-level diffusion infor-
mation. θ(t,k) is a time-dependent diffusion coefficient controlling the diffusion rate at level k and
time t, B̃k is the normalized boundary operator for k-simplicial complexes, and Lk ∈ R|Sk|×|Sk|

is the higher-order Laplacian operator acting on k-simplicial complexes. Equations (12) and (13)
describe how information propagates cooperatively across the multi-level structure of the graph.

3.2 TIME-DEPENDENT ENHANCED TOPOLOGICAL MEMORY MECHANISM

Different levels of simplicial complexes are often treated as independent entities in the propagation
process, leading to a disconnection between the information in higher-order structures and lower-
order structures. This results in two major issues:

• Information Fragmentation: Local topological features in lower-order structures cannot
be effectively transferred to higher-order structures, thus limiting the propagation of global
topological information.

• Lack of Feedback from Higher-Order Structures: The overall features of higher-order
structures cannot be reflected back to lower-order structures (such as nodes and edges),
preventing the adjustment of low-dimensional feature propagation paths.

Based on the above, this paper designs a time-dependent enhanced topological memory mechanism
that captures historical topological information of simplicial complexes across different dimensions
through memory units. Specifically, at each time step k, a gating mechanism is used to update the
memory units to adapt to current local changes while retaining historical topological features. This
mechanism primarily consists of two components:

• Update Gate: Controls the weighted update between the current features and historical
memory:

u(t,k) = σ(W(t,k)
u [X(t,k),Φ(t,k)] + b(t,k)

u ), (14)

where W(t,k)
u is the learnable weight parameter matrix, b(t,k)

u is the bias. X(t,k) represents
the features of the k-simplicial complexes at time step t, and Φ(t,k) represents the historical
memory of the same simplicial complex from previous time steps.

5
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• Forget Gate: Controls the extent to which historical information is forgotten:

r(t,k) = σ(W(t,k)
r [X(t,k),Φ(t,k)] + b(t,k)

r ), (15)

where W(t,k)
r is the learnable weight parameter matrix, b(t,k)

r is the bias. The forget gate rt
regulates the impact of the historical memory Φ(t,k) on the current time step t, allowing the
system to retain long-term topological memory while adapting to short-term local changes.

At time step t + 1, the historical memory is updated based on the current features X(t,k) and the
historical memory Φ(t,k). Taking the 0-simplicial complexes historical memory as an example, the
update process is as follows:

Φ̃
(t+1,0)
node = tanh(W

(t,0)

Φ̃
[X(t,0), rt ⊙ Φ

(t,0)
node ] + b

(t,0)

Φ̃
), (16)

Φ
(t+1,0)
node =

(
1− u(t,0)

)
⊙ Φ

(t,0)
node + u(t,0) ⊙ Φ̃

(t+1,0)
node , (17)

where ⊙ represents the Hadamard product, Φ̃(t+1,0)
node represents the candidate memory state adjusted

by the forget gate rt, and Φ
(t+1,0)
node represents the final memory state obtained through the weighted

fusion by the update gate u(t,0). Incorporating the time-dependent enhanced topological memory
mechanism, the final generalized hierarchical diffusion equation can be expressed as:

X(t+1) = X(t) −∆t

K∑
k=0

θ(t,k)B̃
T
k B̃kX

(t,k) + αΩ(t), (18)

where α denotes the memory decay coefficient, controlling the influence of long-term feature
changes, and Ω(t) represents the historical information retrieved from the topological memory units
at time t, defined as:

Ω(t) = ζnodeΦ
(t,0)
node + ζedgeΦ

(t,1)
edge + ζtriangleΦ

(t,2)
triangle, (19)

where ζnode, ζedge, ζtriangle control the contributions of the historical features from the node, edge, and
triangle memory units, respectively, to the current diffusion process.

Algorithm 1 HDSC

Input: Graph data G = (V,E,X), diffusion steps T , memory steps m,
Output: Total loss L

1: repeat
2: for Epoch = 1, 2, ..., MaxEpoch do
3: for Step t = 1 to T do
4: Compute hierarchical diffusion features X(t+1) from Equation (13).
5: if t%m == 0 then
6: Update memory units parameters Φnmu , Φemu, Φtmu from Equation (17).
7: Compute memory effect Ω from Equation (19).
8: end if
9: Update node features X(t+1) from Equation (18).

10: end for
11: Use the Adam optimizer to update parameters to minimize the total loss L
12: end for
13: until Convergence of the total loss L

The specific algorithm flow is shown in Algorithm 1. At each step, the node features are updated
based on the hierarchical diffusion equation. Then, at specified memory intervals, the memory units
for nodes, edges, and triangles are updated, with the corresponding historical information stored to
enhance the long-term propagation of information. Let the total loss L be as follows:

L = −
n∑

i=1

yi log(ŷi), (20)

where yi is the truth label, ŷi is the predicted probability. Finally, by adaptively adjusting the diffu-
sion rate and memory effects, the process is optimized across multiple levels of the structure until
the total loss function L converges, ensuring efficient information dissemination.

6
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4 EXPERIMENT

Dataset. For a comprehensive evaluation of the proposed HDSC model, we conduct experiments
on six widely used benchmark datasets that represent various real-world graph structures. These
datasets include three citation networks, namely Cora, Citeseer, Pubmed (Yang et al., 2016), one
co-authorship network CoauthorCS (Shchur et al., 2018), and two co-purchase networks, namely
Computer and Photo (Shchur et al., 2018). Details of the datasets can be found in Appendix.

Number of samples
per class Model Cora Citeseer Pubmed

1

MoNet 47.72 ± 15.53 39.13 ± 11.37 56.47 ± 4.67
GCN 47.72 ± 15.33 48.94 ± 10.24 58.61 ± 12.83
GAT 47.86 ± 15.38 50.31 ± 14.27 58.84 ± 12.81

GraphSage 43.04 ± 14.01 48.81 ± 11.45 55.53 ± 12.71
GRAND 52.53 ± 16.40 50.06 ± 17.98 62.11 ± 10.58

GRAND++ 54.94 ± 16.09 58.95 ± 9.59 65.94 ± 4.87
HDSC 65.63 ± 7.59 56.28 ± 6.79 62.06 ± 5.66

2

MoNet 60.85 ± 14.01 48.52 ± 9.52 61.03 ± 6.93
GCN 60.85 ± 14.01 58.06 ± 9.76 60.45 ± 16.20
GAT 58.30 ± 13.55 55.55 ± 9.19 60.24 ± 14.44

GraphSage 53.96 ± 12.18 54.39 ± 11.37 58.97 ± 12.65
GRAND 64.82 ± 11.16 59.55 ± 10.89 69.00 ± 7.55

GRAND++ 66.92 ± 10.04 64.98 ± 8.31 69.31 ± 4.87
HDSC 78.92 ± 1.55 65.69 ± 4.13 70.28 ± 5.02

5

MoNet 73.86 ± 7.97 61.66 ± 6.61 67.92 ± 2.50
GCN 73.86 ± 7.97 67.24 ± 4.19 68.69 ± 7.93
GAT 71.04 ± 5.74 67.37 ± 5.08 68.54 ± 5.75

GraphSage 68.14 ± 6.95 64.79 ± 5.16 66.07 ± 6.16
GRAND 76.07 ± 5.08 68.37 ± 5.00 73.98 ± 5.08

GRAND++ 77.80 ± 4.46 70.03 ± 3.63 71.99 ± 1.91
HDSC 82.50 ± 0.85 72.31 ± 1.16 75.80 ± 3.82

10

MoNet 78.82 ± 5.38 68.08 ± 6.29 71.24 ± 1.54
GCN 78.82 ± 5.38 72.18 ± 3.47 72.59 ± 3.19
GAT 76.31 ± 4.87 71.35 ± 4.92 72.44 ± 3.50

GraphSage 75.04 ± 5.03 68.90 ± 5.08 70.74 ± 3.11
GRAND 80.25 ± 3.40 71.90 ± 7.66 76.33 ± 3.41

GRAND++ 80.86 ± 2.99 72.34 ± 2.42 75.13 ± 3.88
HDSC 84.34 ± 0.77 73.81 ± 0.98 82.49 ± 1.04

20

MoNet 82.07 ± 2.03 71.52 ± 4.11 76.49 ± 1.75
GCN 82.07 ± 2.03 74.21 ± 2.90 76.89 ± 3.27
GAT 79.92 ± 2.28 73.22 ± 2.90 75.55 ± 4.11

GraphSage 80.04 ± 2.54 72.02 ± 2.82 74.55 ± 3.09
GRAND 80.25 ± 3.40 71.90 ± 7.66 76.33 ± 3.41

GRAND++ 82.95 ± 1.37 73.53 ± 3.31 79.16 ± 1.37
HDSC 85.75 ± 0.91 74.63 ± 1.39 84.11 ± 0.92

Table 1: Performance of different datasets. (datasets: Cora, Citeseer, Pubmed)

Baselines. The proposed HDSC is compared with four conventional graph neural network models,
including GCN (Kipf & Welling, 2017), GraphSAGE (Hamilton et al., 2017), GAT (Veličković et al.,
2018) and MoNet (Monti et al., 2017). Additionally, it is compared with two graph diffusion-based
models, GRAND (Chamberlain et al., 2021) and GRAND++ (Thorpe et al., 2022), to assess the
performance of different models on diverse graph structures.

Results. Tables 1 and 2 summarize the test results in terms of accuracy for the node classification
task. It can be observed that for most cases, HDSC significantly outperforms other baseline models
across six datasets. HDSC effectively integrates geometric information from different dimensions
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Number of samples
per class Model CoauthorCS Computer Photo

1

MoNet 58.99 ± 5.17 23.78 ± 7.57 34.72 ± 8.18
GCN 65.22 ± 2.25 49.46 ± 1.65 82.94 ± 2.17
GAT 51.13 ± 5.24 37.14 ± 7.81 73.58 ± 8.15

GraphSage 61.35 ± 1.35 27.65 ± 2.39 45.36 ± 7.13
GRAND 59.15 ± 5.73 48.67 ± 1.66 81.25 ± 2.50

GRAND++ 60.30 ± 1.50 67.65 ± 0.37 83.12 ± 0.78
HDSC 61.02 ± 0.78 65.87 ± 2.12 83.68 ± 1.38

2

MoNet 76.57 ± 4.06 38.19 ± 3.72 43.03 ± 8.22
GCN 83.61 ± 1.49 76.90 ± 1.49 83.61 ± 0.71
GAT 63.12 ± 6.09 65.07 ± 8.86 76.89 ± 4.89

GraphSage 76.51 ± 1.31 42.63 ± 4.29 51.93 ± 4.21
GRAND 73.83 ± 5.58 74.77 ± 1.85 82.13 ± 3.27

GRAND++ 76.53 ± 1.85 76.47 ± 1.48 83.71 ± 0.90
HDSC 77.33 ± 1.32 75.67 ± 0.56 84.14 ± 0.45

5

MoNet 87.02 ± 1.67 59.38 ± 4.73 71.80 ± 5.02
GCN 86.66 ± 0.43 82.47 ± 0.97 88.86 ± 1.56
GAT 71.65 ± 4.53 71.43 ± 7.34 83.01 ± 3.64

GraphSage 89.06 ± 0.69 64.83 ± 1.62 78.26 ± 1.93
GRAND 85.29 ± 2.19 80.72 ± 1.09 88.27 ± 1.94

GRAND++ 84.83 ± 0.84 82.64 ± 0.56 88.33 ± 1.21
HDSC 85.35 ± 1.13 82.78 ± 0.55 89.57 ± 0.77

10

MoNet 88.76 ± 0.49 68.66 ± 3.30 78.66 ± 3.17
GCN 88.60 ± 0.50 82.53 ± 0.74 90.41 ± 0.35
GAT 74.71 ± 3.35 76.04 ± 0.35 87.42 ± 2.38

GraphSage 89.68 ± 0.39 74.66 ± 1.29 84.38 ± 1.75
GRAND 87.81 ± 1.36 82.42 ± 1.10 90.98 ± 0.93

GRAND++ 86.94 ± 0.46 82.99 ± 0.81 90.65 ± 1.19
HDSC 85.85 ± 0.67 83.75 ± 0.43 91.12 ± 0.35

20

MoNet 90.31 ± 0.41 73.66 ± 2.87 88.61 ± 1.18
GCN 91.09 ± 0.35 82.94 ± 1.54 91.95 ± 0.11
GAT 79.95 ± 2.88 80.05 ± 1.81 89.38 ± 2.48

GraphSage 91.33 ± 0.36 79.98 ± 0.96 91.29 ± 0.67
GRAND 91.03 ± 0.47 84.54 ± 0.90 93.53 ± 0.47

GRAND++ 90.80 ± 0.34 85.73 ± 0.50 93.55 ± 0.38
HDSC 91.33 ± 0.45 86.48 ± 0.47 94.54 ± 0.31

Table 2: Performance of different datasets. (datasets: CoauthorCS, Computer, Photo)

from a hierarchical perspective, ensuring cooperative diffusion and propagation between features
at various levels. Additionally, the introduction of the topological memory mechanism allows the
model to efficiently retain historical information and optimize the information transmission paths.

Visualization of Clustering Results. Figure 1 illustrates the clustering results, demonstrating that
HDSC significantly outperforms other baseline models. Specifically, HDSC displays more distinct
clustering patterns with clearer boundaries between different categories. This indicates that the
hierarchical feature representation of HDSC effectively integrates information across multiple levels,
thereby reducing the degree of information mixing. These findings underscore the superiority of
HDSC in both information diffusion and structural capture.

Impact of α. We tested the impact of α in Equation (18), and as shown in Figure 2, for lower
values of α, the model relies more on current node or local structural information. This effect is
particularly pronounced when the number of sample labels is small, as the influence of global topo-
logical information has not yet fully emerged. However, as α increases, more historical topological
information is gradually integrated, improving overall performance on complex datasets. This is

8
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Figure 1: Visualization of clustering results. (The first row illustrates the performance on the Cora
dataset, and the second row illustrates the performance on the Citeseer dataset.)

Figure 2: The impact of different α values on performance.

especially evident when the number of labels is larger, where the introduction of global topologi-
cal memory effectively captures cross-level information interactions, thereby enhancing the model’s
performance. Nevertheless, when α becomes too large, the model may over-rely on global informa-
tion, weakening the contribution of local geometric features.

5 CONCLUSION AND FUTURE WORK

This paper presents a novel framework, HDSC, which enables adaptive information diffusion across
various levels of simplicial complexes and achieves efficient coupling between different structural
levels. Additionally, by incorporating a time-dependent topological memory mechanism, the frame-
work significantly enhances the smoothness and coherence of global information flow, allowing
multi-layer features to diffuse collaboratively. Experimental results demonstrate that HDSC exhibits
outstanding performance in downstream tasks and effectively avoids the phenomenon of node fea-
ture homogenization. A potential direction for future work could be to explore ways of integrating
more complex topological features and contextual information into the model, thereby enhancing its
capacity to handle non-stationary data.

9
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A REPRODUCIBILITY INFORMATION

Dataset. Table 3 provides detailed information about each dataset.

Dataset Nodes Edges Features Classes
Cora (Yang et al., 2016) 2,708 5,429 1,433 7
Citeseer (Yang et al., 2016) 3,327 4,732 3,703 6
Pubmed (Yang et al., 2016) 19,717 44,338 500 3
CoauthorCS (Shchur et al., 2018) 18,333 81,894 6,805 15
Amazon-Computer (Shchur et al., 2018) 13,752 574,418 767 10
Amazon-Photo (Shchur et al., 2018) 7,650 238,162 745 8

Table 3: Datasets Overview

Experimental Setup. All experiments were conducted on a machine equipped with an NVIDIA L40
GPU, an Intel Core i9 processor, and 128GB of RAM. The experimental code is based on Python 3.8,
PyTorch 1.12.1, and the PyTorch Geometric (PyG) library for graph data processing. To evaluate
the performance of the model for varying number of samples, we vary the number of samples per
class within {1, 2, 5, 10, 20}. For all methods, we performed 10 random trials and reported the
mean and variance over these 10 random trials. It is worth noting that, following the same principle,
the datasets Amazon-Computer and Amazon-Photo were processed using their largest connected
subgraphs.

Dataset α ζnode ζedge ζtriangle lr weight decay hidden units dropout

Cora 0.3 1 0.15 0.01 0.01 0.08 64 0.5
Citeseer 0.3 1 0.15 0.03 0.01 10.2 64 0.2
Pubmed 0.3 1.0 0.1 0.02 0.01 0.03 64 0.5
CoauthorCS 0.25 0.9 0.15 0.02 0.01 0.06 64 0.5
Computer 0.2 0.95 0.2 0.02 0.01 0.03 64 0.5
Photo 0.25 0.9 0.15 0.02 0.01 0.03 64 0.5

Table 4: Hyperparameters for Different Datasets

The optimal parameters of HDSC for each dataset are shown in Table 4. Specifically, α is the coeffi-
cient controlling the influence of memory. ζnode, ζedge, and ζtriangle represent the memory coefficients
for nodes, edges, and triangles, respectively, reflecting the impact of historical information from
different topological structures on the model. lr is the learning rate, which determines the step size
for updating model parameters. weight decay is the weight decay coefficient, used to prevent over-
fitting in the model. hidden units refers to the number of units in the hidden layer, affecting the
model’s capacity. dropout is the dropout rate used to prevent overfitting, controlling the proportion
of neurons randomly ignored during each training session.

Other Source Code. The acquisition of all the code below complies with the provider’s license and
do not contain personally identifiable information and offensive content. The link to the code of
baselines are listed as follows:

• GCN (MIT license): https://github.com/tkipf/gcn

• GAT (MIT license): https://github.com/gordicaleksa/pytorch-GAT

• GraphSage (MIT license): https://github.com/williamleif/GraphSAGE

• MoNet (MIT license) : https://github.com/sw-gong/MoNet

• GRAND (MIT license) : https://github.com/twitter-research/graph-neural-pde

• GRAND++ (MIT license) : https://github.com/twitter-research/graph-neural-pde
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B MORE RESULTS

Ablation Study. Tables 5, 6, 7, 8, and 9 display the ablation experiments of HDSC under different
numbers of samples per class. HDSC-1 relies solely on the diffusion mechanism of 0-simplicial
complexes; HDSC-2 incorporates 1-simplicial complexes based on HDSC-1; and HDSC employs
a multi-level diffusion mechanism utilizing 0-simplicial complexes, 1-simplicial complexes, and
2-simplicial complexes.

Model Cora Citeseer Pubmed CoauthorCS Computer Photo
HDSC-1 56.79 ± 7.15 55.65 ± 6.12 58.89 ± 4.15 58.45 ± 0.85 66.35 ± 1.44 81.44 ± 0.59
HDSC-2 60.35 ± 5.45 56.46 ± 5.75 61.79 ± 4.34 59.37 ± 1.48 67.04 ± 1.08 82.36 ± 1.64
HDSC 65.63 ± 7.59 56.28 ± 6.79 62.06 ± 5.66 61.02 ± 0.78 65.87 ± 2.12 83.68 ± 1.38

Table 5: Ablation study results. (The number of samples per class is 1)

Model Cora Citeseer Pubmed CoauthorCS Computer Photo
HDSC-1 67.44 ± 2.41 64.32 ± 3.56 69.04 ± 4.30 73.23 ± 0.87 74.65 ± 0.89 82.78 ± 0.85
HDSC-2 74.48 ± 2.38 65.01 ± 2.11 69.66 ± 3.75 74.87 ± 0.67 75.03 ± 0.62 83.98 ± 0.53
HDSC 78.92 ± 1.55 65.69 ± 4.13 70.28 ± 5.02 74.33 ± 1.32 75.67 ± 0.56 84.14 ± 0.45

Table 6: Ablation study results. (The number of samples per class is 2)

Model Cora Citeseer Pubmed CoauthorCS Computer Photo
HDSC-1 80.89 ± 2.15 71.35 ± 1.56 72.12 ± 3.20 84.56 ± 0.49 81.77 ± 0.93 88.21 ± 0.93
HDSC-2 81.86 ± 1.77 71.89 ± 0.78 73.68 ± 2.15 85.08 ± 0.76 82.66 ± 0.47 89.30 ± 0.45
HDSC 82.50 ± 0.85 72.31 ± 1.16 75.80 ± 3.82 85.35 ± 1.13 82.78 ± 0.55 89.57 ± 0.77

Table 7: Ablation study results. (The number of samples per class is 5)

Model Cora Citeseer Pubmed CoauthorCS Computer Photo
HDSC-1 81.02 ± 2.10 71.98 ± 1.57 76.55 ± 3.19 84.55 ± 0.57 82.78 ± 0.61 90.23 ± 1.28
HDSC-2 82.48 ± 1.57 72.54 ± 2.03 78.66 ± 2.41 85.97 ± 0.83 83.08 ± 0.45 91.04 ± 0.58
HDSC 84.34 ± 0.77 73.81 ± 0.98 82.49 ± 1.04 85.85 ± 0.67 83.75 ± 0.43 91.12 ±0.35

Table 8: Ablation study results. (The number of samples per class is 10)

Model Cora Citeseer Pubmed CoauthorCS Computer Photo
HDSC-1 82.64 ± 1.25 72.75 ± 1.15 78.84 ± 1.20 89.32 ± 0.95 84.67 ± 0.85 92.40 ± 0.58
HDSC-2 84.68 ± 1.40 73.46 ± 1.05 82.89 ± 1.30 90.57 ± 0.88 85.82 ± 0.72 93.30 ± 0.46
HDSC 85.75 ± 0.91 74.63 ± 1.39 84.11 ± 0.92 91.33 ± 0.45 86.48 ± 0.47 94.54 ±0.31

Table 9: Ablation study results. (The number of samples per class is 20)

Analysis of ζnode, ζedge, and ζtriangle. Figure 3 presents the parameter space reflecting the impact
of time memory at different levels ζnode, ζedge, and ζtriangle on the model’s diffusion performance. As
ζnode increases from 0.7 to 1.0, we observe a significant improvement in model accuracy, indicating
that the local information of nodes and their long-term memory play the most crucial role in global
predictions. When fixing the node topological memory ζnode = 1.0, as shown in Figures 4 and 5,
ζedge exhibits diminishing marginal returns, suggesting that excessive reliance on local edge con-
nections weakens the transmission of global information. Regarding ζtriangle, the results show that
the role of higher-order structures lies more in complementing local complexities. Therefore, under
the hierarchical topological memory mechanism, the structure where nodes dominate, edges play a
secondary role, and triangles provide auxiliary support can effectively enhance the diffusion model’s
adaptability to complex graph structures, thereby improving overall performance.
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Figure 3: The parameter space of ζnode, ζedge and ζtriangle

(a) Test accuracy for ζedge = 0.15 (b) Test accuracy for ζedge = 0.1

Figure 4: The impact of the relative changes of ζnode and ζtriangle when ζedge is fixed.
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(a) Test accuracy for ζtriangle = 0.01 (b) Test accuracy for ζnode = 1.0

Figure 5: The impact of changes in ζedge on the results when ζnode and ζtriangle are fixed, respec-
tively.
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