Expressive dynamics models with nonlinear injective readouts
enable reliable recovery of latent features from neural activity
Supplementary Material

A Datasets

A.1 Simulated neural data
A.1.1 Latent trajectories

We used the Arneodo system [I] to generate synthetic data because it exhibits mildly chaotic behavior
(Lyapunov exponent equal to 0.243), it has a low-dimensional state space, and the regions around its fixed
points are well-sampled by trajectories of the system. As demonstrated by [2], these properties allow recovery
of latent dynamics in the absence of a nonlinear embedding. The Arneodo system is described by the following
system of equations

i=y (1)
Y=z (2)
5= —ax — by — cz + da? (3)

where a = =5.5, b = 4.5, c=1.0, and d = —1.0 [1].

The system was simulated using the dysts Python package, which offered well-reasoned standards for initial
conditions, integration steps, and resampling frequency [3]. Initial conditions had been determined by
running the model until the moments of the autocorrelation function were stationary. Integration steps had
been chosen based on the highest significant frequency observed in the power spectrum. After integration,
trajectories were resampled to contain 35 points per period, where period was based on the dominant
frequency in the power spectrum.

A.1.2 Embedding low-dimensional trajectories on a nonlinear manifold

We simulated neural activity by nonlinearly embedding the Arneodo trajectories as firing rates in the neural
space. First, the trajectories were linearly projected into the neural space via a set of encoding vectors ~;
and standardized for each neuron (see Methods). These activations a; were passed through a sigmoid with
input scaling 7; and output scaling b = 2 to produce reasonable firing rates as follows:

m = 1008 302, (4)
yizwi(ai)szo(mxai), iZl,Q,...,N. (5)
where o(-) denotes the sigmoid function. This resulted in a set of activation functions ;(-) ranging from

quasi-linear to step-like. The resulting rates y; were used to parameterize a Poisson process, which was
sampled to obtain spiking data for N neurons (N = 12).

A.2 Real neural data

The maze dataset was previously collected from the motor cortex of a monkey performing a reaching task
[4]. This dataset has been widely used to characterize the dynamics of motor cortical activity [4HG]. In
particular, these data are well-modeled by autonomous dynamics [6].

The monkey was trained to perform a delayed reaching task in which it had to maintain its hand at the
center of a 2D maze displayed on a screen while a target was shown somewhere within the maze. After a
randomly-timed delay, a go-cue was issued which prompted the monkey to move its hand from the center
of the screen to the indicated target. Each trial also had a set of obstacles (i.e., the walls of a maze) with
various configurations that required the monkey to produce reaches with varied trajectories, even when they
were directed towards the same target. A total of 108 of these maze configurations (i.e., target and obstacle
combinations) are included in this dataset.

Neural activity was recorded using two Utah arrays [7], one in the dorsal premotor (PMd) cortex and one
in the primary motor cortex (M1) [4]. Threshold crossings were sorted offline. The dataset contained 182
neurons in total, of which 137 were included in the held-in set and the remaining 45 were part of the held-
out set. The held-out neurons were used to calculate the co-smoothing bits-per-spike metric (F.2.1). The
monkey’s hand and cursor positions were recorded during the experiment .

These data were downloaded from the Distributed Archives for Neurophysiology Data Integration (DANDI,
[8]). We binned spike counts at 20 ms and trialized and aligned the data to 250 ms before and 450 ms after
movement onset. Further details can be found in [4] [5].

B Model training

B.1 Simulated neural data

All weights were initialized from U(—v/k, v/k), where k = 1/in_features for linear layers and k = 1/hidden size
for the GRU encoder weights. Dropout layers (p = 0.05) were inserted before and after the initial condition
linear projection during training. We used the average Poisson negative log-likelihood (NLL) across neurons
and time points as our training objective. Models were trained incrementally to improve the stability of
training: rather than compute loss on the whole trajectory, we added groups of 5 new time steps every 75
epochs, up to the max of 70 steps. Models were trained by stochastic gradient descent using Adam for 3000
epochs. A single learning rate was shared for the optimizer of the encoder, generator, and readout weights
for each model. Each generator was a NODE that contained an MLP with six hidden layers, each with 128
ReLU units. We did not find it necessary to regularize the weights for any of the models trained on the
Arneodo system. We performed initial hyperparameter (HP) sweeps to determine HP ranges that resulted
in good reconstruction performance as measured by Spike NLL (see Methods), and used the same HP set
for models across state dimensionalities. HPs for models trained on the Arneodo system are given in Table

Table S1: Training hyperparameters (Synthetic Data)

Arneodo
Linear MLP ODIN
Batch Size 650 650 650
Learning Rate 2e-3 1.88e-4 1.88e-4
Encoder Hidden Size 100 100 100
Dropout 0.05 0.05 0.05
NODE Hidden Layers 6 6 6
NODE Hidden Size 128 128 128
Readout Hidden Layers 0 2 2
Readout Hidden Size - 150 150

B.2 Real neural data

Weight initialization and dropout settings were identical to models trained on Arneodo. In addition to
Poisson NLL, we also added regularization terms (Lg norm on weights) and used different learning rates for
the encoder, generator, and readout modules. We trained these models using Adam for 1500 epochs with
the loss function given by Equation [6}

L(x,¥,0p,0c,0r) = PoissonNLL(x[§) + Az||05[13 + AcllOcl3 + Arll0r]]3 (6)

where x and y represent the observed spiking activity and the predicted firing rates, respectively, and
AE, Ag, Ar represent the regularization coefficients for the Lo regularization penalty applied to the model
weights 0, 0g, 0 of the encoder, generator, and readout, respectively. To improve training stability, we also
used different learning rates for each component of the model (ag, ag, ar). Specific parameters for models
trained on the Maze dataset are given in Table [S2}

Table S2: Training hyperparameters (Maze Data)

Magze
Linear ODIN
Batch Size 64 64
AE 1.6e-5 2.2e-6
g 1.6e-5 1.35e-9
AR 1.6e-5 4.2e-6
ap 5e-3 4e-4
ag 5e-3 Te-4
aR 5e-3 1.4e-4
Encoder Hidden Size 100 100
Dropout 0.05 0.05
NODE Hidden Layers 6 6
NODE Hidden Size 128 128
Readout Hidden Layers 0 3
Readout Hidden Size - 128
Number of Flow Steps - 25

C Approximate injectivity of Flow readout

To demonstrate the approximate injectivity of the Flow readout, we tested whether the readout could be
inverted to recover the inferred latent activity. The readout mapping g should satisfy the following equations

~H(9(20)) (7)
¢ (8)

NE
I
Ny

t

%
N>

N

t

where z; is the inferred latent activity and z; is the latent activity recovered by the reverse pass of the Flow.

We computed the R? between the inferred and recovered z; for these models and found that our mappings
were able to recover the inferred 2, with average R? values across randomly initialized models of 0.997, 0.996,
0.990, and 0.988 at D = 3,5, 8, 10, respectively (Supplementary Figure

0997 0995 0.990 0.988

3 5 8 10
State Dimensionality (D)

Figure S1: Injectivity of the Flow readout across state dimensionalities. Each bar indicates the mean value
of 5 randomly initialized ODIN models for each state dimensionality. Results from individual models are
plotted as points.

D Fixed point finding and characterization

For each model (Linear-NODE, MLP-NODE and ODIN), we located fixed points (FPs) by finding the
positions in the latent space that minimized the norm of the vector field via the objective ¢ = 1| F1I12 [0, 10].
We initialized our search with 1024 randomly sampled initial states from along inferred latent trajectories.
We used Adam with a learning rate of 5e-2 to minimize the g-value for each point independently over 10,000
iterations. Candidate points that did not achieve a g-value less than a magnitude of 7e-3 were excluded.
As more than one candidate can approach the same FP, we combined candidate points that were within a
specified distance, e = 1, from one another. In practice, points that were excluded had much larger g-values
than the putative fixed points. We then linearized the dynamics around each FP and computed the system
Jacobian to determine the stability and rotational character of the system around these FPs.

E Compute resources

We used an internal computing cluster with a total of 30 Nvidia GeForce RTX 2080 Ti GPUs for model
training. Each model trained on simulated neural data took approximately 3 hours to train, while each
model trained on real biological data took approximately 1.5 hours to train. With 2 models training on each
GPU, the 75 models included in Figs. 2, 3, and 4 took approximately 112.5 GPU-hours and the 50 models
included in Fig. 5 took approximately 37.5 GPU-hours. FP finding was fast, requiring 1 minute for each
model.

F Metrics

F.1 Synthetic data metrics

F.1.1 Rate reconstruction (Rate R?)

We computed the coefficient of determination between true (Y) and predicted (Y) rates for each neuron,
and reported the average value across neurons.

Rate R? = R*(Y,Y) = %Zl B M
i=0 o

F.1.2 Latent state reconstruction (State R?)

To compute State R?, we concatenated a vector of ones with the true latent states (Zq), then used the
pseudoinverse to find the optimal affine transformation from the true latents to the inferred latents (Z) (i.e.,
optimal linear estimation). We computed the coefficient of determination (R?) between the true and inferred

latent activity with the same equation as in [F.1.1]

W, =ZZ
State R> = R*(Z,Z,W.) (10)

F.1.3 Activation function comparison

We developed a method for deriving an estimate of the inferred activation functions 1;(-) for a comparison
to the true activation functions ¥;(-) (see Equation . We projected the true encoding vectors ~y, into the
latent space of the model via the affine transformation W, (see section [F.1.2). We then used these encoding

vectors 4; € R” to convert inferred latent states Z € RT*P into an activation &; € RT for each neuron.

’?i:’Y].,iWZW fori:1727"' aN (11)
a =174, (12)

To estimate the activation function for a given neuron i, we need pairs of inferred activations a; and firing
rates g;. For each neuron, we split firing rates into 20 quantiles and computed the corresponding median

activation a4, and firing rate 974, within each quantile.

9150, @750 = Quantize(§:, &y, 20) 19)

We represented the inferred activation function 1@() using these activation-firing rate pairs. We then per-
formed the same procedure on the true rates and activations to find a similar representation of the true
activation function ¢;(-) for each neuron. To compare the true activation function v(-) to the estimated
activation function 1&(), we combined the activations of each neuron i and its corresponding firing rate as
the columns of the matrices:

‘i’i — (é;ned yzmed)) ‘I’z — (agned yzmed)

Because the inferred latent activity can be scaled and translated arbitrarily with respect to the true latent
activity, we found the optimal affine transformation between ¥; and ¥,;. We used the R? of this mapping
to quantify the correspondence between the two activation functions ;(-) and ;(-) for each neuron.

F.2 Neural Latents Benchmark metrics
F.2.1 Co-smoothing bits-per-spike (co-bps)

Large SAEs often have sufficient computational capacity to simply pass the spiking activity through the
model (i.e., to learn the identity function) [I1I]. This can lead to models that obtain high reconstruction
performance by only learning a trivial transformation, which would hinder learning of interpretable low-
dimensional representations. A previously developed metric called co-smoothing bits-per-spike is sensitive
to this form of overfitting because reconstruction performance is evaluated on a set of held-out neurons that
are not visible to the encoders [5]. At a high-level, this metric quantifies how well the firing rates of the
held-out neurons can be predicted from the spiking of the held-in neurons (see . This metric is defined
by Equation [14] for each held-out neuron.

CO—bpS = (‘C(yn,t; Xn,t) - £(}_’n,:§ Xn,t)) (14)

nslog?2

where ¥,, . is the mean firing rate for neuron n across time, ny is the total number of spikes for that neuron,
Vn.¢ is the predicted firing rate from the model at time ¢, x,, ; represents the observed spiking of that neuron
at time ¢, and £ represents the Poisson log-likelihood. More information can be found in [5].

F.2.2 Velocity decoding R?

A common metric of performance is how well inferred firing rates can be used to predict behavioral variables,
as this can be used downstream in decoding intent for clinical applications like brain-computer interfaces
[12]. For the Maze dataset, hand velocity has been shown to be highly correlated with the neural firing in
motor cortices. We compute this metric using the method from [5], in which a ridge regression model is
trained to predict the observed hand velocity from inferred firing rates. The coefficient of determination
(R?) was then evaluated on validation data that was not used to train the ridge regression velocity decoder.

G Open-source packages used

e torch [I3] (BSD license): Deep learning framework providing layer definitions, GPU acceleration,
automatic differentiation, optimization, and more.

e pytorch lightning (Apache 2.0 license): Lightweight wrappers for model training,.

e ray.tune| [T4] (Apache 2.0 license): Distributed hyperparameter tuning.

e dysts [3] (Apache 2.0 license): Implementations for modeled dynamical systems.

e fixed point_finder [10] (Apache 2.0 license): Inspiration for torch-based fixed point finder.

e scikit-learn[I5] (BSD License): Implementations of linear regression models and principal compo-
nent analysis.

https://github.com/pytorch/pytorch
https://github.com/PyTorchLightning/pytorch-lightning
https://github.com/ray-project/ray
https://github.com/williamgilpin/dysts
https://github.com/mattgolub/fixed-point-finder
https://scikit-learn.org/stable/

References

[1]

A Arneodo, P Coullet, and C Tresser. Occurence of strange attractors in three-dimensional Volterra
equations. Physics Letters A, 79(4):259-263, October 1980. ISSN 0375-9601. doi: 10.1016/0375-9601(80)
90342-4. URL https://www.sciencedirect.com/science/article/pii/0375960180903424.

Andrew R. Sedler, Christopher Versteeg, and Chethan Pandarinath. Expressive architectures enhance
interpretability of dynamics-based neural population models, February 2023. URL http://arxiv.org/
abs/2212.03771. arXiv:2212.03771 [cs, g-bio].

William Gilpin. Chaos as an interpretable benchmark for forecasting and data-driven modelling. Ad-
vances in Neural Information Processing Systems, 2021. URL http://arxiv.org/abs/2110.05266.

Mark M. Churchland, John P. Cunningham, Matthew T. Kaufman, Stephen I. Ryu, and Krishna V.
Shenoy. Cortical preparatory activity: representation of movement or first cog in a dynamical machine?
Neuron, 68(3):387-400, November 2010. ISSN 1097-4199. doi: 10.1016/j.neuron.2010.09.015.

Felix Pei, Joel Ye, David Zoltowski, Anqi Wu, Raeed H. Chowdhury, Hansem Sohn, Joseph E. O’Doherty,
Krishna V. Shenoy, Matthew T. Kaufman, Mark Churchland, Mehrdad Jazayeri, Lee E. Miller, Jonathan
Pillow, Il Memming Park, Eva L. Dyer, and Chethan Pandarinath. Neural Latents Benchmark 21:
Evaluating latent variable models of neural population activity. Technical Report arXiv:2109.04463,
arXiv, January 2022. URL http://arxiv.org/abs/2109.04463. arXiv:2109.04463 [cs, g-bio] type:
article.

Chethan Pandarinath, Daniel J. O’Shea, Jasmine Collins, Rafal Jozefowicz, Sergey D. Stavisky,
Jonathan C. Kao, Eric M. Trautmann, Matthew T. Kaufman, Stephen I. Ryu, Leigh R. Hochberg,
Jaimie M. Henderson, Krishna V. Shenoy, L. F. Abbott, and David Sussillo. Inferring single-trial
neural population dynamics using sequential auto-encoders. Nature Methods, 15(10):805-815, October
2018. ISSN 1548-7105. doi: 10.1038/s41592-018-0109-9. URL https://www.nature.com/articles/
s41592-018-0109-9. Number: 10 Publisher: Nature Publishing Group.

Edwin M. Maynard, Craig T. Nordhausen, and Richard A. Normann. The Utah Intracortical Elec-
trode Array: A recording structure for potential brain-computer interfaces. Flectroencephalography and
Clinical Neurophysiology, 102(3):228-239, March 1997. ISSN 0013-4694. doi: 10.1016/S0013-4694(96)
95176-0. URL https://www.sciencedirect.com/science/article/pii/S0013469496951760.

Oliver Riibel, Andrew Tritt, Ryan Ly, Benjamin K Dichter, Satrajit Ghosh, Lawrence Niu, Pamela
Baker, Ivan Soltesz, Lydia Ng, Karel Svoboda, Loren Frank, and Kristofer E Bouchard. The Neurodata
Without Borders ecosystem for neurophysiological data science. eLife, 11:€78362, October 2022. ISSN
2050-084X. doi: 10.7554/eLife.78362. URL https://doi.org/10.7554/eLife.78362. Publisher: eLife
Sciences Publications, Ltd.

David Sussillo and Omri Barak. Opening the black box: low-dimensional dynamics in high-dimensional
recurrent neural networks. Neural Computation, 25(3):626-649, March 2013. ISSN 1530-888X. doi:
10.1162/NECO_a_00409.

Matthew D. Golub and David Sussillo. Fixedpointfinder: A tensorflow toolbox for identifying and
characterizing fixed points in recurrent neural networks. Journal of Open Source Software, 3(31):1003,
2018. doi: 10.21105/joss.01003. URL https://doi.org/10.21105/joss.01003.

Mohammad Reza Keshtkaran, Andrew R. Sedler, Raeed H. Chowdhury, Raghav Tandon, Diya Basrai,
Sarah L. Nguyen, Hansem Sohn, Mehrdad Jazayeri, Lee E. Miller, and Chethan Pandarinath. A large-
scale neural network training framework for generalized estimation of single-trial population dynamics.
Nature Methods, 19(12):1572-1577, December 2022. ISSN 1548-7105. doi: 10.1038/s41592-022-01675-0.
URLhttps://www.nature.com/articles/s41592-022-01675-0. Number: 12 Publisher: Nature Pub-
lishing Group.

https://www.sciencedirect.com/science/article/pii/0375960180903424
http://arxiv.org/abs/2212.03771
http://arxiv.org/abs/2212.03771
http://arxiv.org/abs/2110.05266
http://arxiv.org/abs/2109.04463
https://www.nature.com/articles/s41592-018-0109-9
https://www.nature.com/articles/s41592-018-0109-9
https://www.sciencedirect.com/science/article/pii/S0013469496951760
https://doi.org/10.7554/eLife.78362
https://doi.org/10.21105/joss.01003
https://www.nature.com/articles/s41592-022-01675-0

[12]

Francis R. Willett, Donald T. Avansino, Leigh R. Hochberg, Jaimie M. Henderson, and Krishna V.
Shenoy. High-performance brain-to-text communication via handwriting. Nature, 593(7858):249-254,
May 2021. ISSN 0028-0836. doi: 10.1038/s41586-021-03506-2. URL https://www.ncbi.nlm.nih.gov/
pmc/articles/PMC8163299/.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang,
Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie
Bai, and Soumith Chintala. PyTorch: An Imperative Style, High-Performance Deep Learning Library.
Technical Report arXiv:1912.01703, arXiv, December 2019. URL http://arxiv.org/abs/1912.01703.
arXiv:1912.01703 [cs, stat] type: article.

Richard Liaw, Eric Liang, Robert Nishihara, Philipp Moritz, Joseph E Gonzalez, and Ion Stoica. Tune:
A research platform for distributed model selection and training. arXiv preprint arXiv:1807.05118,
2018.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12:
2825-2830, 2011.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8163299/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8163299/
http://arxiv.org/abs/1912.01703

	Datasets
	Simulated neural data
	Latent trajectories
	Embedding low-dimensional trajectories on a nonlinear manifold

	Real neural data

	Model training
	Simulated neural data
	Real neural data

	Approximate injectivity of Flow readout
	Fixed point finding and characterization
	Compute resources
	Metrics
	Synthetic data metrics
	Rate reconstruction (Rate R2)
	Latent state reconstruction (State R2)
	Activation function comparison

	Neural Latents Benchmark metrics
	Co-smoothing bits-per-spike (co-bps)
	Velocity decoding R2

	Open-source packages used

