
Additional notations. In the appendix, we use the following additional notations. For an integer
d ≥ 1, and a vector v ∈ Rd, the support supp(v) = {j ∈ [d] : vj ̸= 0} denotes the indices of
non-zero entries. For an event A on a probability space (Ω, B, P ) (which is usually self-understood
from the context), we denote by I(A), 1{A}, or 1(A) its indicator function, such that I(A)(ω) = 1
if ω ∈ A, and zero otherwise. We denote by Φ the cumulative distribution function of the standard
normal random variable. For two scalars a, b ∈ R, we write a ∧ b = min(a, b).

A Properties of Uniform Hashing

Algorithm 2 Encoding-Decoding via Uniform Hashing
input: cluster Ct with n ≥ 1 users having data Xt,j , j = 1, . . . , n
for j = 1, . . . , n do

Generate a uniformly random hash function ht,j : [d]→ [2b] using shared randomness
Encode message Y t,j = ht,j(Xt,j) and send it to the server ▷ Encoding

end for
for k = 1, . . . , d do

Count N t
k(Y

t,[n]) ← |{j ∈ [n] : ht,j(k) = Y t,j}| ▷ Decoding
Estimate qbtk ← N t

k/n
end for
output: b̂t

Recall that for all t ∈ [T ] and k ∈ [d], btk =
pt
k(2

b−1)+1
2b

∈
[

1
2b
, 1
]
.

Proposition 1 (Properties of Hashed Estimates). For each t ∈ [T ], suppose qbt is computed in cluster
Ct as in Algorithm 2 with i.i.d datapoints Xt,j ∼ Cat(pt), ∀ j ∈ [n]. Then, it holds that

1. qb1, . . . , qbT ∈ [0, 1] are independent;

2. for any t ∈ [T ] and k ∈ [d], N t
k ∼ Binom(n, btk);

3. supp(pt − p⋆) = supp(bt − b⋆) and p⋆k = 1 (or 0) is equivalent to b⋆k = 1 (or 1
2b

,
respectively).

Proof. Property 1 holds because b̂1, . . . , b̂T are obtained by cluster-wise encoding-decoding of
independent datapoints. To see property 2, we have for any j ∈ [n] and k ∈ [d] that

P(ht,j(k) = Y t,j) = P(k = Xt,j) + P(k ̸= Xt,j and ht,j(k) = ht,j(Xt,j))

= ptk + (1− ptk) ·
1

2b
= btk ∈

[
1

2b
, 1

]
.

Thus, I(ht,j(k) = Y t,j) is a Bernoulli variable with success probability btk. Since each datapoint
is encoded with an independent hash function, N t

k has a binomial distribution with n trials and
parameter btk. Property 3 directly follows from bt − b⋆ = (pt − p⋆)(2b − 1)/2b and as b > 0.

Proposition 2 (Property of Debiasing). For any y,y⋆ ∈ Rd, let x = Proj[0,1](
2by−1
2b−1

) and

x⋆ = Proj[0,1](
2by⋆−1
2b−1

). Then it holds that for q = 1, 2, E[∥x − x⋆∥qq] = O(E[∥y − y⋆∥qq]).
In particular, we have for q = 1, 2 and any t ∈ [T ], E[∥p̂t − pt∥qq] = O(E[∥b̂t − bt∥qq]), where

p̂t = Proj[0,1](
2bb̂t−1
2b−1

) is the final per-cluster estimate obtained in Algorithm 1.

Proof. Using the inequality that |Proj[0,1](x)− Proj[0,1](y)| ≤ |x− y| for any x, y ∈ R, we have

E[∥x− x⋆∥qq] =
∑
k∈[d]

E
[∣∣∣∣Proj[0,1](2byk − 1

2b − 1

)
− Proj[0,1]

(
2by⋆k − 1

2b − 1

)∣∣∣∣q]

≤
∑
k∈[d]

E
[∣∣∣∣2b(yk − y⋆k)

2b − 1

∣∣∣∣q] = ( 2b

2b − 1

)q

E[∥y − y⋆∥qq] = O(E[∥y − y⋆|qq]).
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In the last step, we used that 2b/(2b − 1) ≤ 2 for all b ≥ 1, and thus the O(·) only depends on
universal constants.

B General Lemmas

In this section, we state some general lemmas that will be used in the analysis.

Lemma 2 (Berry-Esseen Theorem; [55]). Assume that Z1, . . . , Zn are i.i.d. copies of a random
variable Z with mean µ, variance σ2 > 0, and such that E

[
|Z − µ|3

]
<∞. Then,

sup
x∈R

∣∣∣∣P{√nZ̄ − µ

σ
≤ x

}
− Φ(x)

∣∣∣∣ ≤ 0.4748
γ(Z)√

n
.

where Z̄ = 1
n

∑n
i=1 Zi and γ(Z) = E[|Z − µ|3]/σ3 is the absolute skewness of Z.

Lemma 3 (Hoeffding’s Inequality; [55]). Let Z1, . . . , Zn ∈ [l, r], l < r, be independent random
variables and let Z̄ = 1

n

∑n
j=1 Zj . Then for any δ ≥ 0,

max{P(Z̄ − E[Z̄] > δ),P(Z̄ − E[Z̄] < −δ)} ≤ exp

(
− 2nδ2

(r − l)2

)
.

Lemma 4 (Bernstein’s Inequality; [54]). Let Z1, . . . , Zn be i.i.d. copies of a random variable Z
with |Z − E[Z]| ≤ M , M > 0 and Var(Z1) = σ2 > 0, and let Z̄ = 1

n

∑n
j=1 Zj . Then for any

δ ≥ 0,

P(|Z̄ − E[Z̄]| > δ) ≤ 2 exp

(
− nδ2

2(σ2 +Mδ)

)
≤ 2 exp

(
−n

4
min

{
δ2

σ2
,
δ

M

})
. (6)

The second inequality above directly follows from 1
a+b ≥

1
2 min{ 1a ,

1
b} for any a, b > 0. Note

that (6) also allows σ = 0 because P(|Z̄ − E[Z̄]| > δ) = 0 and min
{
δ2/σ2 ≜ +∞, δ/M

}
= δ

M .
Therefore, we use this lemma for all σ ≥ 0 below.

B.1 Analysis Framework

For each t ∈ [T ], we denote by

Kt
α = {k ∈ [d] : (qb⋆k −qbtk)

2 ≤ αqbtk/n} (7)

the set of entries in which the central estimate [b̂⋆]k is adapted to cluster Ct. In this language, the
final estimates can be expressed as b̂tk = qb⋆k1{k ∈ Kt

α} + qbtk1{k /∈ Kt
α} for t ∈ [T ]. Therefore, it

holds that, for q = 1, 2,

E[∥b̂t − bt∥qq] =
∑
k∈[d]

E[1{k ∈ Kt
α}|qb⋆k − btk|q] +

∑
k∈[d]

E[1{k /∈ Kt
α}|qbtk − btk|q]. (8)

Let It ≜ {k ∈ [d] : btk = b⋆k, i.e., ptk = p⋆k} be set of entries at which the t-th cluster’s distribution
pt aligns with the central distribution p⋆. We next bound the two terms from (8) in Lemmas 5 and 6.
These do not need the independence of qb⋆ and qbt, and hence do not require sample splitting despite
the division between stages.

Lemma 5. For any t ∈ [T ], α ≥ 1 and η ∈ (0, 1], with Kt
α from (7), we have, for q = 1, 2

∑
k∈[d]

E[1{k ∈ Kt
α}|qb⋆k − btk|q] = O

E[∥qb⋆Iη∩It − b⋆Iη∩It∥qq] +
∑

k/∈Iη∩It

(
αbtk
n

)q/2
 .

Proof. We first take q = 1. For any k ∈ [d], clearly

E[1{k ∈ Kt
α}|qb⋆k − btk|] ≤ E[|qb⋆k − btk|]. (9)
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We use this bound for k ∈ Iη ∩ It. For k /∈ Iη ∩ It, we instead bound

E[1{k ∈ Kt
α}|qb⋆k − btk|] ≤ E[1{k ∈ Kt

α}|qb⋆k −qbtk|] + E[1{k ∈ Kt
α}|qbtk − btk|].

If k ∈ Kt
α, it holds by definition that |qb⋆k −qbtk| ≤

√
αqbtk/n, thus we further have

E[1{k ∈ Kt
α}|qb⋆k − btk|] ≤E

[
1{k ∈ Kt

α}
√

αqbtk/n

]
+ E[1{k ∈ Kt

α}|qbtk − btk|]

≤E
[√

αqbtk/n

]
+ E[|qbtk − btk|]. (10)

By Jensen’s inequality and since nqbtk ∼ Binom(n, btk), we have

E
[√

qbtk

]
≤
√
E[qbtk] =

√
btk (11)

and

E[|qbtk − btk|] ≤
√
E[(qbtk − btk)

2] =

√
btk(1− btk)

n
≤
√

btk
n
. (12)

Plugging (11) and (12) into (10), we find

E[1{k ∈ Kt
α}|qb⋆k − btk|] ≤(

√
α+ 1)

√
btk
n

= O

(√
αbtk
n

)
. (13)

Summing up (9) over all entries in Iη ∩ It and summing up (13) over all entries not in Iη ∩ It leads
to the claim for q = 1 in Lemma 5. The case q = 2 follows by a similar argument.

Lemma 6. For any t ∈ [T ], α ≥ 1 and η ∈ (0, 1], with Kt
α from (7), we have, for q = 1, 2∑

k∈[d]

E[1{k /∈ Kt
α}|qbtk − btk|q]

=O

 ∑
k∈Iη∩It

P(k /∈ Kt
α) ∧

(
btk(1− btk)

n

)q/2

+
∑

k/∈Iη∩It

(
btk
n

)q/2
 .

Proof. For q = 1, note that

E[1{k /∈ Kt
α}|qbtk − btk|] ≤ P(k /∈ Kt

α) (14)

and
E[1{k /∈ Kt

α}|qbtk − btk|] ≤ E[|qbtk − btk|]. (15)
Combining (14), (15) with the first inequality in (12) for k ∈ Iη ∩ It, and using the last inequality
in (12) for k /∈ Iη ∩ It leads to the claim with q = 1. We can similarly obtain the bound with
q = 2.

Combing Lemma 5 and 6 with (8), we find the following proposition:
Proposition 3. For any α ≥ 1, and q = 1, 2, it holds that

E[∥b̂t − bt∥qq] = O

 ∑
k/∈Iη∩It

(
αbtk
n

)q/2

+
∑

k∈Iη∩It

P(k /∈ Kt
α) ∧

(
btk(1− btk)

n

)q/2

+ E[∥qb⋆Iη∩It − b⋆Iη∩It∥qq]

 .

Proposition 3 does not rely on how qb⋆ is obtained. The next part is devoted to proving that when qb⋆

is obtained via a certain robust estimate, the bounds in Proposition 3 are small for certain values of α
and η.
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C Median-Based Method

In this section, we provide the proofs for the median-based SHIFT method. We first re-state the
detailed version of some key results that apply to both the ℓ2 and ℓ1 errors.

Below, we use σk =
√
b⋆k(1− b⋆k) to denote the standard deviation of the Bernoulli variable with

success probability b⋆k = p⋆k+(1−p⋆k)/2
b. We also recall that Bk is defined as the set of clusters with

distributions mismatched with the central distribution at the k-th entry, i.e., Bk = {t ∈ [T ] : ptk ̸= p⋆k},
and Iη is defined as the η-well-aligned entries, i.e., Iη = {k ∈ [d] : |Bk| < ηT}.

Lemma 7 (Detailed statement of Lemma 1). Suppose qb⋆ = median
(
{qbt}t∈[T ]

)
. Then for any

0 < η ≤ 1
5 , k ∈ Iη , and q = 1, 2, it holds that

E[|qb⋆k − b⋆k|q] = Õ

((
|Bk|σk

T
√
n

)q

+

(
σk√
Tn

)q

+

(
1

n

)q)
.

Let us define, for q = 1, 2,

E(q) ≜ E(q;n, d, b, T ) :=
d

(2bTn)q/2
+

d

nq
.

Proposition 4. Suppose qb⋆ = median
(
{qbt}t∈[T ]

)
. Then for any 0 < η ≤ 1

5 and q = 1, 2, it holds
that

E[∥qb⋆Iη
− b⋆Iη

∥qq] = Õ

∑
k∈Iη

(
|Bk|σk

T
√
n

)q

+ E(q)

 .

We omit the proofs of Proposition 4 and Theorem 6 (below), as Proposition 4 is a direct corollary
of Lemma 7 by using

∑
k∈[d] σ

q
k = O(d/2bq/2) for q = 1, 2, and Theorem 6 follows from the same

analysis as Theorem 5.

Theorem 5 (Detailed statement of Theorem 1). Suppose n ≥ 2b+6 ln(n) and α ≥ 2(8+
√
8 ln(n))2

with α = O(ln(n)). Then for the median-based SHIFT method, for any 0 < η ≤ 1
5 , q = 1, 2, and

t ∈ [T ],

E
[
∥p̂t − pt∥qq

]
= Õ

 ∑
k/∈Iη∩It

(
btk
n

)q/2

+
∑

k∈Iη∩It

(
|Bk|2b⋆k
T 2n

)q/2

+ E(q)

 .

Furthermore, by setting η = Θ(1) with η ≤ 1
5 , we have

E
[
∥qpt − pt∥qq

]
= Õ

(
s1−q/2

(
max{2b, s}

2bn

)q/2

+ E(q).

)

Theorem 6 (Detailed statement of Theorem 2). Suppose n ≥ ñ ≥ 2b+6 ln(ñ) and α ≥ 2(8 +√
8 ln(ñ))2 with α = O(ln(ñ)). Then the median-based SHIFT method for predicting the distribution

of the new cluster with ñ users achieves, for q = 1, 2,

E
[
∥qpT+1 − pT+1∥qq

]
= Õ

(
s1−q/2

(
max{2b, s}

2bñ

)q/2

+ E(q).

)

C.1 Proof of Lemma 7

We first consider T ≤ 20 ln(n). In this case, by Bernstein’s inequality (Lemma 4) with M = 1, we
have for any t ∈ [T ]\Bk that for any δ ≥ 0,

P
(
|qbtk − b⋆k| > δ

)
≤ 2e−

n
4 min{δ2/σ2

k,δ}. (16)
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Taking δ = max{σk

√
8 ln(n)/n, 8 ln(n)/n} in (16), we find

P

(
|qbtk − b⋆k| > max

{
σk

√
8 ln(n)

n
,
8 ln(n)

n

})
≤ 2

n2
. (17)

Since |[T ]\Bk| > T
2 for any k ∈ Iη with η ≤ 1

5 , we have, since qb⋆k = median
(
{qbtk}t∈[T ]

)
, that there

are t−, t+ ∈ [T ]\Bk with qbt
′

k ≤ qb⋆k ≤ qbt
′

k . Hence, |qb⋆k − b⋆k| ≤ max
t∈[T ]\Bk

|qbtk − b⋆k|.

Recall that for any random variable 0 ≤ X ≤ 1 and any δ ≥ 0, E[X] ≤ δ + P(X ≥ δ). Therefore,
by taking the union bound of (17) over k ∈ [T ]\Bk, and by the assumption that T ≤ 20 ln(n), we
have

E[|qb⋆k − b⋆k|] ≤ E[ max
k∈[T ]\Bk

|qbtk − b⋆k|] ≤ σk

√
8 ln(n)

n
+

8 ln(n)

n
+

2T

n2

=O

(
σk

√
ln(n)

n
+

ln(n)

n

)
= O

(
σk

ln(n)√
Tn

+
ln(n)

n

)
= Õ

(
σk√
Tn

+
1

n

)
. (18)

Similarly, we have

E[(qb⋆k − b⋆k)
2] ≤ σ2

k

8 ln(n)

n
+

64 ln(n)2

n2
+

2T

n2
= Õ

(
σ2
k

Tn
+

1

n2

)
. (19)

For each k ∈ [d] with b⋆k ̸= 1 (recall that b⋆k ≥ 1/2b by definition), let γk = (1 − 2b⋆k(1 −
b⋆k))/

√
b⋆k(1− b⋆k), and let F̃k(x) := 1

T−|Bk|
∑

t∈[T ]\Bk
1(qbtk ≤ x) be the empirical distribution

function of {qbtk : btk = b⋆k}. Let ε ∈ (0, 1/2) and Cε =
√
2π exp((Φ−1(1 − ε))2/2). For δ ≥ 0,

define, recalling ηT > |Bk| for all k ∈ Iη ,

Gk,T,δ =
|Bk|
T

+
10−8

Tn
+

√
δ

T − |Bk|

where the term 10−8

Tn is used to overcome some challenges due to the discreteness of empirical
distributions, and can be replaced with other suitably small terms (see the proof of Lemma 9). Further,
define

G′
k,T,δ = Gk,T,δ + 0.4748

γk√
n
.

To prove Lemma 1 for T > 20 ln(n), we need the following additional lemmas:
Lemma 8. For any δ ≥ 0 such that

G′
k,T,δ ≤

1

2
− ε, (20)

it holds with probability at least 1− 4e−2δ that

F̃k

(
b⋆k + Cε

σk√
n
G′

k,T,δ

)
≥ 1

2
+
|Bk|
T

+
10−8

Tn

and

F̃k

(
b⋆k − Cε

σk√
n
G′

k,T,δ

)
≤ 1

2
− |Bk|

T
− 10−8

Tn
.

Proof. The proof essentially follows Lemma 1 of [58]. We provide the proof for the sake of being
self-contained.

Let Zt
k = (qbtk − btk)/

√
Var(qbtk) be a standardized version of qbtk for each t ∈ [T ] and k ∈ [d], with

b⋆k ̸= 1. Let Φ̃k(z) = 1
T−|Bk|

∑
t∈[T ]\Bk

1(Zt
k ≤ z) be the empirical distribution of {Zt

k : t ∈
[T ]\Bk}. The distribution of Zt

k is identical t ∈ [T ]\Bk, and we denote by Φk their common cdf.
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By definition, E[Φ̃k(z)] = Φk(z) for any z ∈ R. Let z1 > 0 > z2 be such that Φ(z1) = 1
2 +G′

k,T,δ

and Φ(z2) =
1
2 −G′

k,T,δ , which exist due to (20). Then, by Lemma 2, we have

Φk(z1) ≥
1

2
+Gk,T,δ and Φk(z2) ≤

1

2
−Gk,T,δ. (21)

Further, by the Hoeffding’s inequality, we have for any δ ≥ 0 and z ∈ R,∣∣∣Φ̃k(z)− Φk(z)
∣∣∣ ≤√ δ

T − |Bk|
(22)

with probability at least 1 − 2e−2δ. Then, by a union bound of (22) for z = z1, z2, and by (21), it
holds with probability at least 1− 4e−2δ that

Φ̃k(z1) ≥
1

2
+
|Bk|
T

+
10−8

Tn
and Φ̃k(z2) ≤

1

2
− |Bk|

T
− 10−8

Tn
. (23)

Finally, we bound the values of z1 and z2. By the mean value theorem, there exists ξ ∈ [0, z1] such
that

G′
k,T,δ = z1Φ

′(ξ) =
z1√
2π

e−
ξ2

2 ≥ z1√
2π

e−
z21
2 . (24)

By (20) and the definition of z1, we have z1 ≤ Φ−1(1− ε), and thus, by (24), we have

z1 ≤
√
2πG′

k,T,δ exp

(
1

2
(Φ−1(1− ε))2

)
. (25)

Similarly, we have

z1 ≥ −
√
2πG′

k,T,δ exp

(
1

2
(Φ−1(1− ε))2

)
. (26)

Since for all z, Φ̃k(z) = F̃k(σkz/
√
n+ b⋆k), plugging (25) and (26) into (23), we find the conclusion

of this lemma.

This leads to our next result.
Lemma 9. For any k ∈ [d] such that condition (20) holds, we have with probability at least 1−4e−2δ

that ∣∣∣qbtk − btk

∣∣∣ ≤ Cε
σk√
n
G′

k,T,δ +
0.4748Cε

n
. (27)

Proof. Let F̂k be the empirical distribution function of {qbtk : t ∈ [T ]}, such that for all x ∈ R,
F̂k(x) :=

1
T

∑
t∈[T ] 1(

qbtk ≤ x). We have

|F̂k(x)− F̃k(x)| =

∣∣∣∣∣∣ 1T
∑
t∈[T ]

1(qbtk ≤ x)− 1

T − |Bk|
∑

t∈[T ]\Bk

1(qbtk ≤ x)

∣∣∣∣∣∣
=

∣∣∣∣∣∣ 1T
∑
t∈Bk

1(qbtk ≤ x)− |Bk|
T (T − |Bk|)

∑
t∈[T ]\Bk

1(qbtk ≤ x)

∣∣∣∣∣∣
≤ max

{
1

T
· |Bk|,

|Bk|
T (T − |Bk|)

· (T − |Bk|)
}

=
|Bk|
T

. (28)

Define F̃−
k (x) := 1

T−|Bk|
∑

t∈[T ]\Bk
1(qbtk < x) ≤ F̃k(x). Then by (28) and Lemma 8, we have,

with probability at least 1− 4e−2δ that

F̂k

(
b⋆k + Cε

σk√
n
G′

k,T,δ

)
≥ 1

2
+

10−8

Tn
and F̂−

k

(
b⋆k − Cε

σk√
n
G′

k,T,δ

)
≤ 1

2
− 10−8

Tn
. (29)
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Let qb
(j)
k , ∀ j ∈ [T ] be the j-th smallest element in {qbtk : t ∈ [T ]}. Recalling the definition

of the median, if T is odd, then qb⋆k = qb
((T+1)/2)
k . Therefore, b⋆k + Cε

σk√
n
G′

k,T,δ < qb⋆k implies

F̂k

(
b⋆k + Cε

σk√
n
G′

k,T,δ

)
≤ 1

2−
1
2T and b⋆k−Cε

σk√
n
G′

k,T,δ > qb⋆k implies F̂−
k

(
b⋆k − Cε

σk√
n
G′

k,T,δ

)
≥

1
2 + 1

2T , leading to a contradiction with (29).

On the other hand, if T is even, qb⋆k = (qb
(T/2)
k +qb

(T/2+1)
k )/2. Therefore, b⋆k + Cε

σk√
n
G′

k,T,δ < qb⋆k im-

plies F̂k

(
b⋆k + Cε

σk√
n
G′

k,T,δ

)
≤ 1

2 and b⋆k−Cε
σk√
n
G′

k,T,δ > qb⋆k implies F̂−
k

(
b⋆k − Cε

σk√
n
G′

k,T,δ

)
≥

1
2 , which is also contradictory to (29).

To summarize, it holds that
|qb⋆k − b⋆k| ≤ Cε

σk√
n
G′

k,T,δ

with probability at least 1− 4e−2δ .

If T ≤ 20 ln(n), Lemma 7 follows directly from (18) and (19). Now, given Lemma 8 and Lemma 9,
we turn to prove Lemma 7 with T ≥ 20 ln(n). We first check condition (20). Since |Bk| ≤ ηT for
any k ∈ Iη , η ≤ 1

5 , and γkσk ≤ 1, we have for each k ∈ Iη that

G′
k,T,δ ≤ η +

10−8

Tn
+

√
5δ

4T
+

0.4748√
nσk

.

When T ≥ 20 ln(n), for any k ∈ [d] such that σk ≥ 20√
n(1−2η)

, taking δ = ln(n) above, we have

G′
k,T,δ ≤ η + 10−8 +

1

4
+ 0.4748

1− 2η

20
≤ 1

2
− 0.035755.

Therefore, condition (20) in Lemma 9 is satisfied with ε = 0.035755, for which we can check that
Cε ≤ 13. Thus, for any δ ≤ ln(n),

P
(
|qb⋆k − b⋆k| ≥ 13

σk√
n
Gk,T,δ +

13

n

)
≤ 4e−2δ. (30)

Therefore, by (30), we have, using that for any random variable 0 ≤ X ≤ 1 and any 0 ≤ r ≤ 1,
E[X] ≤ r + P(X ≥ r), and that for δ = (lnn)/2, one has 4e−2δ = 4/n, we find

E[|qb⋆k − b⋆k|] ≤ 13
σk√
n
Gk,T,(lnn)/2 +

17

n
= Õ

(
σk√
n

|Bk|
T

+
σk√
nT

+
1

n

)
. (31)

Similarly, by the Cauchy-Schwarz inequality, we also have

E[(qb⋆k − b⋆k)
2] =O

(
σ2
k

n

(
|Bk|2

T 2
+

ln(n)

T − |Bk|

)
+

1

n2
+ e−2 ln(n)

)
=Õ

(
σ2
k

n

|Bk|2

T 2
+

σ2
k

nT
+

1

n2

)
. (32)

On the other hand, for any k ∈ [d]\Bk such that σk < 20√
n(1−2η)

, by Bernstein’s inequality and a
union bound, we have

P
(

max
k∈[T ]\Bk

|qbtk − b⋆k| > δ

)
≤ 2(T − |Bk|)e−

n
4 min{δ2/σ2

k,δ} ≤ 2Te−
n
4 min{n(1−2η)2δ2

400 ,δ}. (33)

Since |[T ]\Bk| > T
2 , we have as before that |qb⋆k − b⋆k| ≤ max

t∈[T ]\Bk

|qbtk − b⋆k|. Taking δ =

4max{ln(Tn2), 10
√
ln(Tn2)}/n in (33), with the same steps as above, we find

E[|qb⋆k − b⋆k|] ≤E[ max
k∈[T ]\Bk

|qbtk − b⋆k|] ≤ δ + 2Te−
n
4 min{ (1−2η)2nδ2

400 ,δ}

≤
4max{ln(Tn2), 10

√
ln(Tn2)}+ 2

n
= Õ

(
1

n

)
(34)
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and

E[(qb⋆k − b⋆k)
2] ≤ δ2 + 2Te−

n
4 min{ (1−2η)2nδ2

400 ,δ} = Õ

(
1

n2

)
. (35)

To summarize, combining (31), (32) with (34),(35), we complete the proof when T > 20 ln(n).

Furthermore, by using
∑

k∈[d] σ
q
k = O(d/2bq/2) for q = 1, 2, we directly reach Proposition 4.

C.2 Proof of Theorem 5

We first consider the case where T ≤ 20 ln(n). By definition, b̂tk is either equal to qbtk or qb⋆k, and the

latter happens only when k ∈ Kt
α, i.e., |qb⋆k −qbtk| ≤

√
αqbtk/n. In this case, we have

|̂btk − btk| = |qb⋆k − btk| ≤ |qbtk − btk|+ |qb⋆k −qbtk| ≤ |qbtk − btk|+

√
αqbtk
n

.

Therefore, we have |̂btk − btk| ≤ |qbtk − btk|+
√

αqbtk/n for all k ∈ [d]. This leads to

E[∥b̂t − bt∥1] ≤E[∥qbt − bt∥1] +
√

α

n

∑
k∈[d]

E
[√

qbtk

]

≤E[∥qbt − bt∥1] +
√

α

n

∑
k∈[d]

√
E[qbtk], (36)

where (36) holds by Jensen’s inequality. By further using the Cauchy–Schwarz inequality, we have

E[∥qbt − bt∥1] ≤
√
dE[∥qbt − bt∥22] = O

(
d√
2bn

)
(37)

and ∑
k∈[d]

√
E[qbtk] =

∑
k∈[d]

√
btk ≤

√
d
∑
k∈[d]

btk = O

(
d√
2b

)
. (38)

Plugging (37) and (38) into (36), we find

E[∥qbt − bt∥1] = Õ

(
d√
2bn

)
= Õ

(
d√
2bTn

)
.

We can similarly prove

E[∥qbt − bt∥22] = Õ

(
d

2bn

)
= Õ

(
d

2bTn

)
.

Next we prove the case where T ≥ 20 ln(n) = Ω(ln(n)). We first consider the estimation errors
over k ∈ Iη ∩ It such that σk ≥ 20√

n(1−2η)
. Let Etk := {qbtk ≥ 1

2b
t
k and |qb⋆k − b⋆k| ≤ 8

√
b⋆k/n}. If

n ≥ 2b+6 ln(n) and 0 < η ≤ 1/5, then since b⋆k ≥ 1
2b

for any k ∈ [d], we have

13
σk√
n
Gk,T,lnn +

13

n
= 13

σk√
n

(
|Bk|
T

+
10−8

Tn
+

√
ln(n)

T − |Bk|

)
+

13

n

≤13 σk√
n

(
|Bk|
T

+
10−8

Tn
+

√
5 ln(n)

4T

)
+

13

n
≤ 13

σk√
n

(
1

5
+ 10−8 +

1

4

)
+

13√
n2b+6 ln(n)

≤13 σk√
n

(
1

5
+ 10−8 +

1

4

)
+

13
√
b⋆k√

n64 ln(n)
≤ 8

√
b⋆k
n
.

Hence, by (30), it holds that

P

(
|qb⋆k − b⋆k| ≥ 8

√
b⋆k
n

)
≤ 4

n2
. (39)
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By Bernstein’s inequality and as b⋆k ≥ 1
2b

, we have

P
(
|qbtk − btk| >

btk
2

)
≤ 2e

−n
4 min{ btk

4(1−bt
k
)
,
btk
2 }
≤ 2e−

nbtk
16 ≤ 2e−

n

16·2b ≤ 2

n2
, (40)

where the last inequality holds because n ≥ 2b+6 ln(n). Combining (40) with (39), we find

P((Etk)c) ≤ 6
n2 . By definition, k /∈ Kt

α implies |qb⋆k − qbtk| >
√
αqbtk/n. On the event Etk, this

further implies |qb⋆k − qbtk| >
√
αbtk/2n. Combined with (39) and that b⋆k = btk for any k ∈ It, we

have on the event Etk∣∣∣qbtk − btk

∣∣∣ = ∣∣∣qbtk − b⋆k

∣∣∣ ≥ ∣∣∣qbtk −qb⋆k

∣∣∣− ∣∣∣qb⋆k − b⋆k

∣∣∣ >√btk
n

(√
α

2
− 8

)
. (41)

Let ζ ≜
√
α/2 − 8 ≥

√
8 ln(n) and F t

k :=
{∣∣∣̂btk − btk

∣∣∣ ≥ ζ
√
btk/n

}
. By Bernstein’s inequality,

and using n ≥ 2b+6 ln(n), we have

P(F t
k) ≤ 2e

−n
4 min{ ζ2

n(1−bt
k
)
,ζ

√
bt
k
n }
≤ 2e

−min{ ζ2

4 , ζ4
√

n

2b
} ≤ 2

n2
. (42)

Combining (41) with (42), we find that for any k ∈ Iη ∩ It with σk ≥ 20√
n(1−2η)

, it holds that

P(k /∈ Kt
α) ≤ P((Etk)c) + P(Etk ∩ {k /∈ Kt

α}) ≤ P((Etk)c) + P(Ek ∩ F t
k)

≤P((Etk)c) + P(F t
k) ≤

8

n2
.

On the other hand for any k ∈ Iη ∩ It with σk < 20√
n(1−2η)

, we have√
btk(1− btk)

n
=

√
b⋆k(1− b⋆k)

n
=

σk√
n
= O

(
1

n

)
.

Therefore, we have for all k ∈ Iη ∩ It, and q = 1, 2

min

{
P(k /∈ Kt

α),

(
btk(1− btk)

n

)q/2
}

= O

(
1

nq

)
. (43)

Since α = O(ln(n)), by (43) and Proposition 3, we obtain

E[∥b̂t − bt∥1] = Õ

 ∑
k/∈Iη∩It

√
btk
n

+ E[∥qb⋆Iη∩It − b⋆Iη∩It∥1] +
d

n

 . (44)

Combining (44) with Proposition 4 and using that σk ≤
√
b⋆k =

√
btk for any k ∈ It, we have

E[∥b̂t − bt∥1] = Õ

 ∑
k/∈Iη∩It

√
btk
n

+
∑

k∈Iη∩It

|Bk|
T

√
btk
n

+ E(1)

 . (45)

Since |(It)c| = ∥pt − p⋆∥0 ≤ s, by the Cauchy-Schwarz inequality, we have∑
k/∈Iη∩It

√
btk
n
≤
∑
k/∈Iη

√
btk
n

+
∑
k/∈It

√
btk
n
≤
∑
k/∈Iη

√
btk
n

+

√
s
∑

k/∈It btk
n

≤
∑
k/∈Iη

√
btk
n

+

√
s
∑

k/∈It((2b − 1)ptk + 1)

2bn
≤
∑
k/∈Iη

√
btk
n

+

√
s(2b − 1 + s)

2bn
. (46)

Plugging (46) into (44), we further obtain

E[∥b̂t − bt∥1] = Õ

∑
k/∈Iη

√
btk
n

+
∑
k∈Iη

|Bk|
T

√
btk
n

+

√
smax{2b, s}

2bn
+ E(1)

 . (47)
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Similarly, we can reach the following ℓ2 counterpart:

E[∥b̂t − bt∥22] = Õ

∑
k/∈Iη

btk
n

+
∑
k∈Iη

|Bk|2

T 2

btk
n

+
max{2b, s}

2bn
+ E(2)

 . (48)

Note that
∑

k∈[d] |Bk|/T ≤ s and for any set I with |I| = ⌈ sη ⌉,∑
k∈I

√
btk
n
≤
√
|I|
∑

k∈I((2
b − 1)ptk + 1)

2bn
= O

(√
s/ηmax{2b, s/η}

2bn

)
.

Now, recalling the definition of Iη, we apply Lemma 10 in (47) with (rk, xk) = (
√

btk/n, |Bk|/T )
for all k ∈ [d], to find

E[∥b̂t − bt∥1] = Õ

(√
s/ηmax{2b, s/η}

2bn
+ E(1)

)
.

Therefore, for any η = Θ(1) with η ≤ 1
5 , we finally have

E[∥b̂t − bt∥1] = Õ

(√
smax{2b, s}

2bn
+ E(1)

)
.

Similarly, by combining (48) with Lemma 10, we have for any η = Θ(1) with η ≤ 1
5 ,

E[∥b̂t − bt∥22] = Õ

(
max{2b, s}

2bn
+ E(2)

)
.

The result directly follows Proposition 2.
Lemma 10. Given η ∈ (0, 1], rk ≥ 0 for all k ∈ [d], and for q = 1, 2, consider the func-
tions fq : {x ∈ Rd : 0 ≤ xk ≤ 1, ∀ k ∈ [d] and

∑
k∈[d] xk ≤ s} → R, fq(x1, . . . , xd) :=∑

k∈[d] r
q
k(1{xk ≥ η}+ xq

k1{xk < η}). Then it holds that

max
x1,...,xd

fq(x1 . . . , xd) ≤
⌈s/η⌉∑
k=1

rq(k), (49)

where r(1) ≥ · · · ≥ r(d) is the non-decreasing rearrangement of {r1, . . . , rd}.

Proof. We only prove the result for f1, and the result for function f2 follows similarly. Note
that rk(1{xk ≥ η} + xk1{rk ≥ η}) is increasing with respect to rk and xk. To consider the
maximum of the sum in f , by the rearrangement inequality, without loss of generality, we can
assume r1 ≥ r2 ≥ · · · ≥ rd ≥ 0 and 1 ≥ x1 ≥ x2 ≥ · · · ≥ xd ≥ 0. In this case, we claim
that the maximum is attained at x1 = · · · = x⌊s/η⌋ = η, x⌊s/η⌋+1 = s − η⌊s/η⌋, and xk = 0 for
all k > ⌊s/η⌋ + 1. Further, the maximum is

∑⌊s/η⌋
k=1 rk + r⌊s/η⌋+1(s − η⌊s/η⌋)2, which is upper

bounded by the right-hand side of (49). We now use the exchange argument to prove the claim.

Step 1: If there is some k such that xk > η ≥ xk+1, then defining x′ by letting (x′
k, x

′
k+1) =

(η, xk + xk+1 − η) while for other j, x′
j = xj , increases the value of f . Therefore, the

maximum is attained by x such that for some j, x1 = · · · = xj = η > xj+1 ≥ · · · ≥ xd.

Step 2: If there is some k such that η > xk ≥ xk+1 > 0, then defining x′ by letting (x′
k, x

′
k+1) =

(min{η, xk + xk+1},max{0, xk + xk+1 − η}) while for other j, x′
j = xj , increases the

value of f . Therefore, combined with Step 1, the maximum is attained by x such that for
some j, x1 = · · · = xj = η > xj+1 ≥ 0 and xk = 0 for all k > j + 1. Thus most one
element lies in (0, η).

Combining Step 1 and Step 2 above, we complete the proof of the claim, which further leads to
(49).
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D Trimmed-Mean-Based Method

In this section, we study the trimmed-mean-based estimator. Fix ω ∈ (0, 1/2). Specifically, for
each k ∈ [d], let Uk be the subset of {[qpt]t∈[T ]} obtained by removing the largest and smallest ωT
elements3. Then, the trimmed-mean-based method can be expressed as

qb⋆k =
1

|Uk|
∑
t∈Uk

qbtk. (50)

We also write qb⋆ = trmean
(
{qbt}t∈[T ], ω

)
. For any chosen trimming proportion 0 ≤ η ≤ ω ≤ 1

5 ,
we control the estimation error of each η-well aligned entry. Intuitively, this is small because there are
at most a fraction of η elements from heterogeneous distributions. These are trimmed if they behave
as outliers, and otherwise kept in Uk. The error control for a single entry k ∈ Iη is in Lemma 11.

Lemma 11. Suppose qb⋆ = trmean
(
{qbt}t∈[T ], ω

)
such that 0 ≤ ω ≤ 1

5 . Then for each k ∈ Iη with
0 < η ≤ ω and any q = 1, 2, it holds that

E[|qb⋆k − b⋆k|q] = Õ

((
ω2 b

⋆
k

n

)q/2

+

(
b⋆k
Tn

)q/2

+
1

(Tn)q
+
(ω
n

)q)
. (51)

Proof. To prove Lemma 11, we need the following lemma.

Lemma 12. For each k ∈ Iη with 0 < η ≤ ω ≤ 1
5 , and any εk, δk ≥ 0, it holds with probability at

least 1− 2e
− (T−|Bk|)n

4 min{ ε2k
σ2
k

,εk} − 2(T − |Bk|)e
−n

4 min{ δ2k
σ2
k

,δk}
that

|qb⋆k − b⋆k| ≤
εk + 3ωδk
1− 2ω

.

Proof of Lemma 12. By Bernstein’s inequality and the union bound, we have for any εk, δk > 0 that

P

∣∣∣∣∣∣ 1

T − |Bk|
∑

t∈[T ]\Bk

qbtk − b⋆k

∣∣∣∣∣∣ > εk

 ≤ 2e
− (T−|Bk|)n

4 min{ ε2k
σ2
k

,εk}

and

P
(

max
t∈[T ]\Bk

|qbtk − b⋆k| > δk

)
≤ 2(T − |Bk|)e

−n
4 min{ δ2k

σ2
k

,δk}
.

By the definition of qb⋆k, we have

|qb⋆k − b⋆k| =
1

T (1− 2ω)

∣∣∣∣∣∑
t∈Uk

qbtk − b⋆k

∣∣∣∣∣
=

1

T (1− 2ω)

∣∣∣∣∣∣
∑

t∈[T ]\Bk

(qbtk − b⋆k)−
∑

t∈[T ]\(Bk∪Uk)

(qbtk − b⋆k) +
∑

t∈Bk∩Uk

(qbtk − b⋆k)

∣∣∣∣∣∣
≤ 1

T (1− 2ω)

∣∣∣∣∣∣
∑

t∈[T ]\Bk

qbtk − b⋆k

∣∣∣∣∣∣+
∣∣∣∣∣∣
∑

i/∈Bk∪Uk

qbtk − b⋆k

∣∣∣∣∣∣+
∣∣∣∣∣ ∑
t∈Bk∩Uk

qbtk − b⋆k

∣∣∣∣∣
 .

It is clear that∣∣∣∣∣∣
∑

t∈[T ]\(Bk∪Uk)

(qbtk − b⋆k)

∣∣∣∣∣∣ ≤ |[T ]\Uk| max
t∈[T ]\Bk

|qbtk − b⋆k| = 2ωT max
t∈[T ]\Bk

|qbtk − b⋆k|.

3To be precise, one can either trim ⌈ωT ⌉ or ⌊ωT ⌋ elements. From now on, we write ωT for conciseness
without further notice.
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Then we claim that
∣∣∣∑t∈Bk∩Uk

qbtk − b⋆k

∣∣∣ ≤ |Bk|maxt∈[T ]\Bk
|qbtk − b⋆k|. Let Qk,l and Qk,r be the

indices of the trimmed elements on the left side and right side, respectively, i.e., the smallest and
largest ωT elements among {qbtk}t∈[T ]. If Bk ∩ Uk ̸= ∅, then |Uk\Bk| < T (1 − 2ω). Furthermore,
we have |Qk,l ∪ (Uk\Bk)| = |Qk,r ∪ (Uk\Bk)| = ωT + |Uk\Bk| < T (1 − ω) ≤ |[T ]\Bk|, which
leads to ([T ]\Bk) ∩Qk,l ̸= ∅ and (T\Bk) ∩Qk,r ̸= ∅. In conclusion, we have maxt∈Uk

|qbtk − b⋆k| ≤
maxt∈[T ]\Bk

|qbtk − b⋆k|, which completes the proof of the claim. Therefore, we have

|qb⋆k − b⋆k| ≤
1

T (1− 2ω)

∣∣∣∣∣∣
∑

t∈[T ]\Bk

|qbtk − b⋆k|

∣∣∣∣∣∣+ (2ωT + |Bk|) max
t∈[T ]\Bk

|qbtk − b⋆k|

 ≤ εk + 3ωδk
1− 2ω

with probability at least 1− 2e
− (T−|Bk|)n

4 min{ ε2k
σ2
k

,εk} − 2(T − |Bk|)e
−n

4 min{ δ2k
σ2
k

,δk}
.

Given Lemma 12, by setting

εk = max

{
4σk

√
ln(T 2n2)√

(T − |Bk|)n
,
8 ln(T 2n2)

(T − |Bk|)n

}
= Õ

(
σk√
Tn

+
1

Tn

)
and

δk = max

{
4σk

√
ln(T 2(T − |Bk|)n2)√

n
,
4 ln(T 2(T − |Bk|)n2)

n

}
= Õ

(
σk√
n
+

1

n

)
,

using that 1/(1− 2ω) ≤ 5
3 , and recalling σk ≤

√
b⋆k, we have with probability at least 1− 4

T 2n2 that

|qb⋆k − b⋆k| ≤
εk + 3ωδk
1− 2ω

≤5ω

3
max

{
4
√
b⋆k ln(T

3n2)
√
n

,
4 ln(T 3n2)

n

}
+

5

3
max

{
4
√
b⋆k ln(T

2n2)√
(T − |Bk|)n

,
4 ln(T 2n2)

(T − |Bk|)n

}
(52)

=Õ

(
ω

√
b⋆k
n

+
ω

n
+

σk√
Tn

+
1

Tn

)
,

which implies

E[|qb⋆k − b⋆k|] =Õ

(
ω

√
b⋆k
n

+
ω

n
+

σk√
Tn

+
1

Tn
+

1

T 2n2

)

=Õ

(
ω

√
b⋆k
n

+

√
b⋆k
Tn

+
1

Tn
+

ω

n

)
.

Similarly, we can obtain

E[(qb⋆k − b⋆k)
2] =Õ

(
ω2b⋆k
n

+
ω2

n2
+

σ2
k

Tn
+

1

T 2n2
+

1

T 2n2

)
=Õ

(
ω2 b

⋆
k

n
+

b⋆k
Tn

+
1

T 2n2
+

ω2

n2

)
.

Given these results, we readily establish the following bound on the total error over all η-well-aligned
entries.
Proposition 5. Suppose qb⋆ = trmean

(
{qbt}t∈[T ], ω

)
such that 0 ≤ ω ≤ 1/5. Then for each k ∈ Iη

with 0 < η ≤ ω and any q = 1, 2, it holds that

E[∥qb⋆Iη
− b⋆Iη

∥qq] = Õ

(
d

(
ω2

2bn

)q/2

+
d

(2bTn)q/2
+

d

(Tn)q
+ d

(ω
n

)q)
.
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By setting α = Θ(ln(Tn)), we find the following result.

Theorem 7. Suppose n ≥ 2b+5 ln(Tn) and α ≥ 2(8 +
√
8 ln(Tn))2 with α = O(ln(Tn)). Then

for the trimmed-mean-based SHIFT method, for any 0 < ω ≤ 1
5 , t ∈ [T ] and q = 1, 2,

E
[
∥p̂t − pt∥qq

]
= Õ

(( s
ω

)1−q/2
(
max{2b, s/ω}

2bn

)q/2

+ d

(
ω2

2bn

)q/2

+
d

(2bTn)q/2

)
.

Proof. To apply Proposition 3, we need to bound
∑

k∈Iη∩It min{P(k /∈ Kt
α),
√
btk(1− btk)/n} and∑

k∈Iη∩It min{P(k /∈ Kt
α), b

t
k(1− btk)/n}.

Let Etk := {qbtk ≥ 1
2b

t
k and |qb⋆k − b⋆k| ≤ 8

√
b⋆k ln(T

3n2)/n}. For each entry k ∈ Iη ∩ It, since

n ≥ 2b ln(T 3n2) and b⋆k ≤ 1
2b

, we have 1
n ≤

√
b⋆k

n ln(T 3n2) . By (52), we have with probability at least

1− 4
T 2n2 that

|qbtk − btk| ≤
5ω

3
max

{
4
√

b⋆k ln(T
3n2)

√
n

,
4 ln(T 3n2)

n

}
+

5

3
max

{
4
√
b⋆k ln(T

2n2)√
(T − |Bk|)n

,
4 ln(T 2n2)

(T − |Bk|)n

}

≤4

3

√
b⋆k ln(T

3n2)

n
+

20

3

√
b⋆k ln(T

2n2)

(T − |Bk|)n
≤ 8

√
b⋆k ln(T

3n2)

n
. (53)

By Bernstein’s inequality and as b⋆k ≥ 1
2b

, we have

P
(
|qbtk − btk| >

btk
2

)
≤ 2e

−n
4 min{ btk

4(1−bt
k
)
,
btk
2 }
≤ 2e−

nbtk
16 ≤ 2e−

n

16·2b ≤ 2

T 2n2
, (54)

where the last inequality is because n ≥ 2b+5 ln(Tn). Combining (53) with (54), we find P((Etk)c) ≤
6

T 2n2 . Now following the argument from (41)-(43), we can obtain that for all k ∈ Iη ∩ It,

P(k /∈ Kt
α) = O

(
1

T 2n2

)
.

Since α = O(ln(Tn)), by applying (43) to Proposition 3 with η = ω and using Proposition 5 with
n = Ω(2b), we find

E[∥b̂t − bt∥1] = Õ

 ∑
k/∈Iω∩It

√
btk
n

+
dω√
2bn

+
d√
2bTn

 (55)

and

E[∥b̂t − bt∥22] = Õ

 ∑
k/∈Iω∩It

btk
n

+
dω

2bn
+

d

2bTn

 .

Note that |(Iω ∩ It)c| ≤ |Icω|+ |(It)c| ≤ s/ω + s = O(s/ω) and

∑
k/∈Iω∩It

√
btk
n
≤

√√√√|(Iω ∩ It)c| ∑
k/∈Iω∩It

btk
n

=

√
|(Iω ∩ It)c|max{2b, |(Iω ∩ It)c|}

2bn

=

√
s/ωmax{2b, s/ω}

2bn
. (56)

Plugging (56) into (55) and using E[∥p̂t − pt∥1] = O(E[∥b̂t − bt∥1]), we find the conclusion in
terms of the ℓ1 error. The results in terms of the ℓ2 error can be obtained similarly.
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E Lower Bounds

In this section, we provide the proofs for the minimax lower bounds for estimating distributions under
our heterogeneity model. We first re-state the detailed version the lower bounds that apply to both the
ℓ2 and ℓ1 errors.
Theorem 8 (Detailed statement of Theorem 3). For any—possibly interactive—estimation method,
and for any t ∈ [T ] and q = 1, 2, we have

inf
(W t′,[n])t′∈[T ]

p̂t

sup
p⋆∈Pd

{pt′ :t′∈[T ]}⊆Bs(p
⋆)

E[∥p̂t − pt∥qq] = Ω

(
s1−q/2

(
max{2b, s}

2bn

)q/2

+
d

(2bTn)q/2

)
.

(57)
Theorem 9 (Detailed statement of Theorem. 4). For any—possibly interactive—estimation method,
and a new cluster CT+1, we have

inf
(W t′,[n])t′∈[T ]

WT+1,[ñ],p̂T+1

sup
p⋆∈Pd

{pt′ :t′∈[T+1]}⊆Bs(p
⋆)

E[∥p̂T+1 − pT+1∥qq]

=Ω

(
s1−q/2

(
max{2b, s}

2bñ

)q/2

+
d

(2bTn)q/2

)
.

We omit the proof of Theorem 9 since it follows from the same analysis as Theorem 8.

E.1 Proof of Theorem 8

As discussed in Section 4, we will prove (57) by considering two special cases of our sparse
heterogeneity model:

1. The homogeneous case where p1 = · · · = pT = p⋆ ∈ Pd.
2. The s/2-sparse case where ∥p⋆∥0 ≤ s/2 and ∥pt∥0 ≤ s/2 for all t ∈ [T ].

Therefore, it naturally holds that

inf
(W t′,[n])t′∈[T ]

p̂t

sup
p⋆∈Pd

{pt′ :t′∈[T ]}⊆Bs(p
⋆)

E[∥p̂t − pt∥qq] ≥ inf
(W t,[n])t∈[T ]

p̂⋆

sup
p⋆∈Pd

E[∥p̂⋆ − p⋆∥qq] (58)

and

inf
(W t′,[n])t′∈[T ]

p̂t

sup
p⋆∈Pd

{pt′ :t′∈[T ]}⊆Bs(p
⋆)

E[∥p̂t − pt∥qq] ≥ inf
(W t′,[n])t′∈[T ]

p̂t

sup
∥pt′∥0≤s/2
∀ t′∈[T ]

E[∥p̂t − pt∥qq]. (59)

For the first case, combining (58) with the existing lower bound result [6, Cor 7] and [26, Thm 2]
for the homogeneous setup, where all datapoints are generated by a single distribution, that for any
estimation method (possibly based on interactive encoding),

inf
(W t,[n])t∈[T ]

p̂⋆

sup
p⋆∈Pd

E[∥p̂⋆ − p⋆∥qq] = Ω

(
d

(2bTn)q/2

)
,

we prove that the lower bound is at least of the order of the second term in (57).

For the second case, without loss of generality, we assume s is even. This can be achieved by
considering s − 1 instead of s, if necessary. Recall that supp(·) denotes the indices of non-zero
entries of a vector. Fixing any t ∈ [T ], we further consider the scenario where

supp(pt) ∩
(
∪t′ ̸=tsupp(p

t′)
)
= ∅. (60)

One example where (60) holds is when supp(pt) ⊆ [s/2] and supp(pt′) ⊆ {s/2 + 1, . . . , d} for
all t′ ̸= t. If (60) holds, then the support of the datapoints generated by {pt′ : t′ ̸= t} does not
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Figure 3: Average ℓ2 estimation error in synthetic experiment using the truncated geometric dis-
tribution. (Left): Fixing s = 5, T = 30 and varying n. (Middle): Fixing s = 5, n = 100, 000
and varying T . (Right): Fixing T = 30, n = 100, 000 and varying s. The standard error bars are
obtained from 10 independent runs.

overlap with the support of those generated by pt, and hence former are not informative for estimating
pt. Therefore, by further combining (59) with the existing lower bound result [14, Thm 2] for the
s/2-sparse homogeneous setup, where all datapoints are generated by a single s/2-sparse distribution,
that for any estimation method (possibly based on interactive encoding),

inf
(W t,[n])

sup
∥pt∥0≤s/2

pt∈Pd

E[∥p̂t − pt∥qq] =Ω

(
(s/2)1−q/2

(
max{2b, s/2}

2bn

)q/2
)

=Ω

(
s1−q/2

(
max{2b, s}

2bn

)q/2
)
.

Thus, we have

inf
(W t′,[n])t′∈[T ]

p̂t

sup
p⋆∈Pd

{pt′ :t′∈[T ]}⊆Bs(p
⋆)

E[∥p̂t − pt∥qq] ≥ inf
(W t′,[n])t′∈[T ]

p̂t

sup
∥pt′∥0≤s/2
∀ t′∈[T ]

E[∥p̂t − pt∥qq]

≥ inf
(W t′,[n])t′∈[T ]

p̂t

sup
∥pt′∥0≤s/2, ∀ t′∈[T ]

(60) holds

E[∥p̂t − pt∥qq] = inf
(W t,[n])

sup
∥pt∥0≤s/2

pt∈Pd

E[∥p̂t − pt∥qq]

=Ω

(
s1−q/2

(
max{2b, s}

2bn

)q/2
)
.

This proves that the lower bound is at least of the order of the first term in (57). Overall, we conclude
the desired result.

F Supplementary Experiments

Truncated geometric distribution We consider the truncated geometric distribution with parameter
β ∈ (0, 1), p⋆ = 1−β

1−βd (1, β, . . . , β
d−1), as the central distribution and repeat the experiment in

Section 5.1. We use d = 300, β = 0.95, b = 2 and vary n, T, s. Figure 3 summarizes the results.
As in Section 5.1, we observe that our methods outperform the baseline methods in most cases,
especially when s is small. Also, we see the benefit of collaboration, i.e., decreasing trend of the error
as T increases, only in our methods.
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Figure 4: Effect of the hyperparameters α and ω. The top row shows results for the uniform
distribution and the bottom row shows the results for the truncated geometric distribution with
β = 0.8.

Hyperparmeter selection. We provide additional experiments using different hyperparameters
α and ω from discussed in Section 5.1. All other settings are identical to Section 5.1. We test
the hyperparameters (α, ω) = (2r ln(n), 0.1) for r ∈ {−5,−4, . . . , 4} and (α, ω) = (ln(n), ω) for
ω ∈ {0.05, 0.1, . . . , 0.25}. Figure 4 summarizes the results.

We find that setting the threshold α too small leads to replacing almost all coordinates of the central
estimate p̂⋆ with local ones. In the extreme case of α ≈ 0, our method is essentially returns the
local minimax estimates. On the other hand, we observe that the performance of our method is less
sensitive to the trimming proportion ω.

While the choice of α is crucial to the performance of our method, we argue that it is possible to
select a reasonably good α by checking the number of fine-tuned entries, i.e.,

1

T

T∑
t=1

∣∣∣∣∣∣
k ∈ [d] : |[b̂⋆]k − [b̂t]k| >

√
α[b̂t]k

n


∣∣∣∣∣∣ .

In Figure 5, we observe that more than half (d/2 = 150) of the entries are fine-tuned when r ∈
{−5,−4,−3}. These correspond to the three curves in the top left of Figure 4 that perform no better
than the baseline methods. In conclusion, by selecting α such that the number of fine-tuned entries
are small enough compared to d, it is possible to reproduce the results in Section 5.

30



0.1 0.5 1.0 1.5 2.0
n ×105

0

100

200

#
fin

e-
tu

ne
d

en
tr

ie
s

α = 2r ln(n)

r = −5

r = −4

r = −3

r = −2

r = −1

r = 0

r = 1

r = 2

r = 3

r = 4

Figure 5: Average number of fine-tuned entries for different values of α = 2r ln(n). We use the
trimmed mean with ω = 0.1 and the uniform distribution with d = 300. This corresponds to the top
left of Figure 4.
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