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A PROOFS AND ADDITIONAL ANALYSIS

A.1 DERIVING THE LOWER BOUND (PROOF OF LEMMA 1)

We first formulate the sampling procedure on starting states s0, waypoints sw, goals sg and the cor-
responding time horizon variable t1 and t2. Then we derive a lower bound on the target log density
of Eq. 2. We then show that optimizing the lower bound through an EM procedure is equivalent to
breaking the goal-reaching task into a sequence of easier sub-problems. Finally, we wrapped up this
section with a practical algorithm.

Data Generation Process. The generative model for which inference corresponds to our planning
procedure can be formulated as follows. The episode starts by sampling an initial state s0 ⇠ p0(s0).
Then it samples a geometric random variable t1 ⇠ Geom(1� �) and roll out the policy ⇡(a | s, sg)
for exactly t1 steps, starting from state s0. We define sw to be the state where we end up (i.e.,
sw , st1 ). Thus, sw is sampled sw ⇠ p

⇡(·|·,sg)
GEOM (st+ | s0). We then sample another geometric

random variable t2 ⇠ Geom(1� �) and roll out the policy ⇡(a | s, sg) for exactly t1 steps, starting
from state sw. We define sg to be the state where we end up (i.e., sg , st1+t2 ). Thus, sg is sampled
sg ⇠ p

⇡(·|·,sg)
Geom (st+ | sw). Note that the time index of the final state sg is a sample from a negative

binomial distribution: t1 + t2
d
= NB(p = 1� �, n = 2). We can equivalently express the sampling

of sg as sg ⇠ p
⇡(·|·,sg)
NegBinom(st+ | s0).

Inference process. Under the formulation of the data generation process above, we then aim to
answer the following question in the inference procedure: what intermediate states would a policy
visit if it eventually reached the goal state sg? Formally, we will estimate a distribution q(sw |

s0, sg) ⇡ p(sw | s0, sg).

We learn q(sw | s0, sg) by optimizing a evidence lower bound on our main objective (Eq. 2).

log p
⇡(·|·,sg)
NEGBINOM(st+ = sg | s0) (5)

= log

Z
p
⇡(·|·,sg)
GEOM (st+ = sg | sw)p

⇡(·|·,sg)
GEOM (sw | s0)dsw (6)

= log

Z
p
⇡(·|·,sg)
GEOM (st+ = sg | sw)p

⇡(·|·,sg)
GEOM (sw | s0)

q(sw | sg, s0)

q(sw | sg, s0)
dsw (7)

�

Z
q(sw | sg, s0)

⇣
log p

⇡(·|·,sg)
GEOM (st+ = sg | sw)+ (8)

log p
⇡(·|·,sg)
GEOM (sw | s0)� log q(sw | sg, s0)

⌘
dsw (9)

, L(⇡, q(sw | sg, s0)). (10)

Note that sg is conditionally independent of s0 given sw, so the p⇡(st+ = sg | sw) terms on the
RHS need not be conditioned on s0. The evidence lower bound, L, depends on two quantities: the
goal-conditioned policy and the distribution over waypoints. The objective for the goal-conditioned
policy is to maximize the probabilities of reaching the waypoint and reaching the final state. The
objective for the waypoint distribution is to select waypoints sw that satisfy two important properties:
the current policy should have a high probability of successfully navigating from the initial state to
the waypoint and from the waypoint to the final goal. Note that the optimal choice for the waypoint
distribution automatically depends on the current capabilities of the goal-conditioned policy.

Before optimizing the lower bound, we introduce a subtle modification to the lower bound:

L2(⇡, q(sw | sg, s0)) ,
Z

q(sw | sg, s0)
⇣
log p

⇡(·|·,sg)
GEOM (st+ = sg | sw)+ (11)

log p⇡(·|·,sw)
GEOM (sw | s0)� log q(sw | sg, s0)

⌘
dsw. (12)

The difference, highlighted in orange, is that the probability of reaching the waypoint is computed
for a goal-conditioned policy that is commanded to reach that waypoint, rather than the final goal.
We show that this new objective is also an evidence lower bound on the same goal-reaching objective
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(Eq. 2), but modified such that the sequence of commanded goals is treated as an additional latent
variable.

Assume that the initial state s0 and the goal state sg are given. As before, we want to find a policy
that maximizes the probability of reaching sg . However, we now consider jointly optimizing over
both the policy and the sequence of goals we command for that policy. We use s(t)c to denote the
goal commanded at time t. We can write this optimization problem as follows:

max
⇡,s(1:1)

c

F(⇡, s(1:1)
c ) , log p⇡(·|·,s

(1:1)
c )(st+ = sg | s0). (13)

Applying Jensen’s inequality, we obtain a lower bound that looks similar to before:

F(⇡, s(1:1)
c ) � Eq(sw|sg,s0)

h
log p

⇡(·|·,s(1:1)
c )

GEOM (st+ = sg | sw) + log p
⇡(·|·,s(1:1)

c )
GEOM (sw | s0)� log q(sw | sg, s0)

i

(14)

= Eq(sw|sg,s0)

h
log p

⇡(·|·,s(tw+1:1)
c )

GEOM (st+ = sg | sw) + log p
⇡(·|·,s(1:tw)

c )
GEOM (sw | s0)� log q(sw | sg, s0)

i
.

(15)

In the second line, we introduce tw as the time when the waypoint is reached. This allows us to
clarify that the probability of reaching the waypoint only depends on the commanded goals through
time tw, s(1:tw)

c . This lower bound holds for any choice of the commanded waypoints, s(1:1)
c .

Directly optimizing for the sequence of waypoints is challenging for two reasons. First, it requires
estimating the probability of commanding one goal but reaching any other state. Second, if we
command one goal when trying to reach a different goal, then the goal conditioned policy may not
learn to associate the commanded goal with the desired outcome. For both these reasons, we choose
to not optimize the lower bound with respect to the commanded goals, but rather manually specify
the commanded goals as follows:

s(1:tw)
c = sw, s

(tw+1:1)
c = sg. (16)

Thus, we have recovered the objective in Eq. 12. As our lower bound holds for any choice of
commanded waypoint, it also holds for this choice.

A.2 THE OPTIMAL WAYPOINT DISTRIBUTION (PROOF OF LEMMA 2

This section proves Lemma 2.

Proof. Recall that our goal is to solve the following maximization problem:

max
q(sw|sg,s0)

Eq(sw|sg,s0)

h
log p

⇡(·|·,sg)
GEOM (st+ = sg | sw) + log p⇡(·|·,sw)

GEOM (sw | s0)� log q(sw | sg, s0)
i
.

(17)

Note that the waypoint distribution must integrate to one. The Lagrangian can be written as

Eq(sw|sg,s0)

h
log p

⇡(·|·,sg)
GEOM (st+ = sg | sw) + log p⇡(·|·,sw)

GEOM (sw | s0)� log q(sw | sg, s0)
i
+ (18)

�

✓Z
q(sw | s0, sg)dsw � 1

◆
, (19)

where � is a Lagrange multiplier. We then take the derivative with respect to q(sw | sg, s0):

d

dq(sw | s0, sg)
=

�q(sw | s0, sg)

q(sw | s0, sg)
+ log p

⇡(·|·,sg)
GEOM (st+ = sg | sw)+ (20)

log p
⇡(·|·,sg)
GEOM (sw | s0)� log q(sw | sg, s0) + � (21)

= �1 + log p
⇡(·|·,sg)
GEOM (st+ = sg | sw) + log p⇡(·|·,sw)

GEOM (sw | s0)� (22)
log q(sw | sg, s0) + �. (23)

We then set this derivative equal to zero and solve for q(sw | sg, s0):

q(sw | sg, s0) = e��1p
⇡(·|·,sg)
GEOM (st+ = sg | sw)p

⇡(·|·,sw)
GEOM (sw | s0).
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Figure 8: C-Planning Curriculum: Illustration of planning over waypoints distribution p(sw). Goal-
conditioned RL directly commands the agent to the final goal. C-planning first samples an intermediate way-
point sw from p(sw), directs the agent to that waypoint, and then commands the final goal after the agent has
reached the waypoint. Note that the p(sw) is proportional to the state density of the current policy, so the high
probability region will expand from starting state s0 to the goal state sg , as the agent explores the environment.

Finally, we determine the value of � such that q(sw | s0, sg) integrates to one. We can then express
the optimal waypoint distribution as follows:

q⇤(sw | sg, s0) =
p
⇡(·|·,sg)
GEOM (sg | sw)p

⇡(·|·,sw)
GEOM (sw | s0)

R
p
⇡(·|·,sg)
GEOM (sg | s0w)p

⇡(·|·,sw)
GEOM (s0w | s0)ds0w

.

A.3 ESTIMATING IMPORTANCE WEIGHTS (PROOF OF LEMMA 3)

This section proves Lemma 3.

Proof. Define the normalizing constant as follows

Z(s0, sg) =
b(sg)R

p
⇡(·|·,sg)
GEOM (sg | s0w)p

⇡(·|·,sw)
GEOM (s0w | s0)ds0w

.

Substituting Z(s0, sg) into the RHS of Eq. 4 and simplifying the result, we show that it equals the
LHS of Eq. 4:

C✓(sw, sg)

1� C✓(sw, sg)

C✓(s0, sw)

1� C✓(s0, sw)
Z(s0, sg) (24)

=
C✓(sw, sg)

1� C✓(sw, sg)

C✓(s0, sw)

1� C✓(s0, sw)

b(sg)R
p
⇡(·|·,sg)
GEOM (sg | s0w)p

⇡(·|·,sw)
GEOM (s0w | s0)ds0w

(25)

=
p
⇡(·|·,sg)
GEOM (st+ = sg | sw)

���b(sg)

p⇡(·|·,sw)
GEOM (st+ = sw | s0)

b(sw)
���b(sg)R

p
⇡(·|·,sg)
GEOM (sg | s0w)p

⇡(·|·,sw)
GEOM (s0w | s0)ds0w

(26)

=
p
⇡(·|·,sg)
GEOM (st+ = sg | sw)p

⇡(·|·,sw)
GEOM (st+ = sw | s0)

R
p
⇡(·|·,sg)
GEOM (sg | s0w)p

⇡(·|·,sw)
GEOM (s0w | s0)ds0w

1

b(sw)
(27)

=
q(sw | s0, sg)

b(sw)
. (28)

B ADDITIONAL EXPERIMENTS

B.1 AN ORACLE EXPERIMENT
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Figure 9: Oracle experiment with the optimal generative model: Goal-conditioned RL learns the task much
faster if we can sample the waypoints from the expert policy’s marginal state distribution (C-Planning Optimal).
Compared to planning with optimal state density distribution, planning using a learned classifier (C-Planning)
shows comparable performance.

Wall

Goal Goal

Start Start
(a) Optimal state distributon for 
Push

(b) Optimal state distributon for 
PushWall

Figure 10: (Left)An agent must navigate from the
start state to the goal state. The heatmap vi-
sualizes the marginal state distribution of the op-
timal policy.

We run an experiment to confirm the well-
known result [21] that the optimal initial state
distribution for learning a task is the state dis-
tribution of that task’s optimal policy. Intu-
itively, if we could sample exactly from the
state distribution of the optimal policy, then
an RL agent could learn to reach goals more
quickly. This is not surprising as it resembles
behavioral cloning of the optimal policy. In this
oracle experiment, it is assumed we are given
the access to an optimal policy. We achieve this
by following the sampling procedure from Al-
gorithm. 1, but replace the classifier C with that
learned from the optimal policy C⇤. We then
perform RL to reach waypoints and then the fi-
nal goal. Results in Fig. 9 show that using the optimal policy as the initial state distribution results in
faster learning than using the original state distribution. We also visualize the state density distribu-
tion of the optimal policy to provide more qualitative intuition on how the algorithm works. Please
refer to Appendix B.2 for more details.

In addition, we are also interested in measuring how well does planning through a learned model (C-
Planning) performs if we don’t have access to the optimal generative model. Results in Fig. 9 also
show that C-Planning achieves performance comparable to planning via optimal generative model
in the Push and the Push-Wall environment.

B.2 VISUALIZATION OF STATE DENSITY MAP OF OPTIMAL POLICY

We conduct this experiment on a 2D navigation task shown in Fig. 9 (left), where we have also
visualized the original initial state distribution, the state distribution of an optimal policy, and the
goal state. To conduct this experiment, we apply a state-of-the-art goal-conditioned RL algorithm
(C-learning) in the two settings with different initial state distributions. For fair evaluation, we
evaluate the policies learned in both settings using the original initial state distribution. The results
shown in Fig. 9 (right) show that starting from the optimal initial state distribution results in 2.4x
faster learning.

B.3 ABLATIONS TO HER, SKEWFIT AND SORB (C-PLANNING)

We perform additional experiments, comparing C-Planning with HER [2], SkewFit [34] and
SoRB [10] on C-Planning. HER barely works on only simple experiments (e.g., Reach) but fails
on harder ones. Similar results are also been observed in the C-Learning [11] paper. We implement
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Figure 11: Ablation with HER, SkewFit and SoRB: Comparison of C-Planning to more baselines like HER,
SkewFit and SoRB. HER only shows good performance on easy task like Reach but fails on harder ones.
SkewFit shows a little better performance in Reach task but is a little worse in Push and Push-Wall. Additional
ablation study on SoRB(C-Planning) shows small benefits are gained by adding SoRB at test time.

Figure 12: Ablation on the Planning Horizon and Experiments on Ant-Maze: (left) Albation study of the
planning horion. A Larger planning horizon will sometimes help the performance of tasks, but the improvement
is not consistent. (right) Experiments on small scale Ant-Maze. RIS manage to reach the goal quickly in Ant-
Small environment but fails in the Ant-Mid.

a version of SkewFit algorithm on top of our framework. The only change it did is SkewFit sam-
ples swaypoints according to the inverse of a state density model. We see that SkewFit has better
performance in Reach task but fails in PushWall task. We also compare C-Planning with SoRB(C-
Planning) which does SoRB at test time. Results show that SoRB(C-Planning) performs as well as
C-Planning at test time.

B.4 ABLATIONS ON PLANNING HORIZON

We perform an ablation study on the planning horizon (number of waypoints used when doing
sampling). We implement this in a way of iterative planning: take horizon of 4 for example, we first
planning the middle point sw2 via starting point and goal of (s0, sg); then planning sw1 via starting
point and goal (s0, sw2). Results show that planning for a more fine-grained fashion (larger number
of waypoints) is not always helping. In the Fig. 12 left, in Reach task, planning over more waypoints
helps but it decreases the performance in Push task. Note that here the number of waypoints is used
for planning, while in Fig. 5 the number of waypoints is how many waypoints to reach before
changing to the final goal. These two are different quantities.

B.5 ADDITIONAL EXPERIMENTS ON ANT-MAZE

We performance an additional experiments in the Ant-Maze environment. We design a very simple
environment: command the ant to a specific goal position with a short (Ant-Small) or a long (Ant-
Mid) distance. The distance between starting point and goal is 2.5 and 7.5 repectively for Ant-Small
and Ant-Mid. The only two modifications we did comparing to the original RIS [5] is change the
maximum time horizon to 300 (RIS uses max time steps of 600) and reset the agent to a fixed area
(RIS resets the position of the agent uniformly). In Fig. 12 right, RIS achieves better performance in
Ant-Small environment while fails in Ant-Mid environment. Note that C-Planning doesn’t use any
termination function and reward function while RIS heavily relies on them.
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C EXPERIMENTAL DETAILS

In this section, We provide the essential hyperparameters for reproducing our experiments in this
section. We also introduce the hyperparameters used in baselines and provide a detailed description
of environmental design.

C.1 IMPLEMENTATION DETAILS

We introduce the hyperparameters used in C-Planning. Note that in C-Learning, only a classifier on
(st, st+,at) is needed. In C-Planning, in order to sample waypoints from the distribution, an ad-
ditional classifier on (st, st+) is needed. We also introduce two hyperparameters: Maximum Steps
Reaching Goal (Ng in Alg.1) forces the agent to change the intermediate goal if the original goal
hasn’t been reached for some steps; Distance Threshold Reaching Goal (✏d in Alg.1) for determing
whether a goal is reached or not. The rest are the standard hyperparameters for SAC algorithm and
we list here for reference.

Table 1: Hyperparameters used for C-Planning in all the environments in MetaWorld.

Hyperparameter Value

Actor lr 0.0003
Action-State Critic lr 0.0003
State Critic lr 0.00003
Actor Network Size (256, 256, 256)
Critic Network Size (256, 256, 256)
Maximum Steps Reaching Goal 20
Distance Threshold Reaching Goal 0.05
Actor Loss Weight 1.0
Critic Loss Weight 0.5
Discount 0.99
Target Update Tau 0.005
Target Update Period 1
Number Waypoints 5
Goal Relabel Next 0.3
Goal Relabel Future 0.2

Note that we use a slightly different hyperparameters for 2D maze environment and we list below,
all the other hyperparameters remains the same. Note that we follow the goal relabeling changes by
C-Learning [11].

Table 2: Hyperparameters used for C-Planning in all the environments in 2D navigation maze.

Hyperparameter Value

Distance Threshold Reaching Goal 1.0
Number Waypoints 8
Goal Relabel Next 0.5
Goal Relabel Future 0.0

C.2 ENVIRONMENTS

We follow the envioronment design of [11] with only one noticeable difference: in the original
environments of C-Learning, for the ease of training, the author set the initial position of objects to
be relatively near the arm so the arm can easily push the object, getting a better learning signal. We
intentionally set the initial state of object to be far away from the arm. This significantly increase
the diffuculty of learning. We’ll release these environment with the code.
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Table 3: Max number of time steps used for each environment.

Max Time Steps

Spiral 9x9 200
Spiral 11x11 200
Maze 11x11 200
Sawyer Push 50
Sawyer Reach 50
Sawyer Push-Wall 50
Obstacle-Drawer-Close 150
Obstacle-Drawer-Open 150
Sawyer Push-Two 150

C.3 BASELINES

We also provide the hyperparameters associated with the baselines. The two baselines we care about:
C-Learning and RIS. We summarize their hyperparameters in the table:

Table 4: Hyperparameters used for C-Learning in all the environments in MetaWorld.

Hyperparameter Value

Actor lr 0.0003
Action-State Critic lr 0.0003
Actor Network Size (256, 256, 256)
Critic Network Size (256, 256, 256)
Actor Loss Weight 1.0
Critic Loss Weight 0.5
Discount 0.99
Target Update Tau 0.005
Target Update Period 1
Goal Relabel Next 0.3
Goal Relabel Future 0.2

Table 5: Hyperparameters used for RIS in all the environments in MetaWorld.

Hyperparameter Value

epsilon 0.0001
Replay Buffer Goals 0.5
Distance Threshold 0.05
Alpha 0.1
Lambda 0.1
H lr 0.0001
Q lr 0.001
Pi lr 0.0001
Encoder lr 0.0001

D VISUALIZATION OF THE LEARNED POLICY

In order to more intuitively visualize the behavior of the learned policy and emphasize the impor-
tance of the difficulty of the learning task, we plot the visualization of our learned policy for several
snap shots in an episode for environment of Push-Two and Obstacle-Drawer-Open. We see
that our method successfully guide the agent to learn the behavior of push the green object first, the
push the object; And first open the drawer then push the object to the desired location. We would
like to emphasize that prior baselines all fail to demonstrate such behavior without any offline data,
expert demonstration and reward shaping. The successfully learning of such behavior enables the
robot to do more complex tasks without any human intervention.
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Figure 13: Visualization of the trained policy for the Push-Two environment. Our method suc-
cessfully trains the agent to manipulate the two object in the sequential manner without any offline
data, expert demonstration and reward shaping. Prior baselines all fail to demonstrate such behavior.

Figure 14: Visualization of the trained policy for the Obstacle-Drawer-Open environment.
Our method successfully trains the agent to first close the drawer and then push the object to the
desired location. We emphasize that such behavior is hard to obtain and most of the prior methods
only manage to close the drawer.
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