
Data-Efficient Structured Pruning via
Submodular Optimization

Marwa El Halabi∗
Samsung - SAIT AI Lab, Montreal

Suraj Srinivas†
Harvard University

Simon Lacoste-Julien
Mila, Université de Montreal

Samsung - SAIT AI Lab, Montreal
Canada CIFAR AI Chair

Abstract

Structured pruning is an effective approach for compressing large pre-trained
neural networks without significantly affecting their performance. However, most
current structured pruning methods do not provide any performance guarantees,
and often require fine-tuning, which makes them inapplicable in the limited-data
regime. We propose a principled data-efficient structured pruning method
based on submodular optimization. In particular, for a given layer, we select
neurons/channels to prune and corresponding new weights for the next layer, that
minimize the change in the next layer’s input induced by pruning. We show that
this selection problem is a weakly submodular maximization problem, thus it
can be provably approximated using an efficient greedy algorithm. Our method
is guaranteed to have an exponentially decreasing error between the original model
and the pruned model outputs w.r.t the pruned size, under reasonable assumptions.
It is also one of the few methods in the literature that uses only a limited-number of
training data and no labels. Our experimental results demonstrate that our method
outperforms state-of-the-art methods in the limited-data regime.

1 Introduction

As modern neural networks (NN) grow increasingly large, with some models reaching billions of
parameters [McGuffie and Newhouse, 2020], they require an increasingly large amount of memory,
power, hardware, and inference time, which makes it necessary to compress them. This is especially
important for models deployed on resource-constrained devices like mobile phones and smart speakers,
and for latency-critical applications such as self-driving cars.

Several approaches exist to compress NNs. Some methods approximate model weights using
quantization and hashing [Gong et al., 2014, Courbariaux et al., 2015], or low-rank approximation
and tensor factorization [Denil et al., 2013, Lebedev et al., 2015, Su et al., 2018]. In another
class of methods called knowledge distillation, a small network is trained to mimic a much larger
network [Bucila et al., 2006, Hinton et al., 2015]. Other methods employ sparsity and group-sparsity
regularisation during training, to induce sparse weights [Collins and Kohli, 2014, Voita et al., 2019].

In this work, we follow the network pruning approach, where the redundant units (weights, neurons
or filters/channels) of a pre-trained NN are removed; see [Kuzmin et al., 2019, Blalock et al., 2020,

∗work done partially at MIT, CSAIL.
†work done partially at Idiap Research Institute, Switzerland.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

Hoefler et al., 2021] for recent surveys. We also focus on the limited-data regime, where only few
training data is available and data labels are unavailable. The advantage of pruning approaches is
that, unlike weights approximation-based methods, they preserve the network structure, allowing
retraining after compression, and unlike training-based approaches, they do not require training from
scratch, which is costly and requires large training data. It is also possible to combine different
compression approaches to compound their benefits, see e.g., [Kuzmin et al., 2019, Section 4.3.4].

Existing pruning methods fall into two main categories: unstructured pruning methods which prune
individual weights leading to irregular sparsity patterns, and structured pruning methods which prune
regular regions of weights, such as neurons, channels, or attention heads. Structured pruning methods
are generally preferable as the resulting pruned models can work with off-the-shelf hardware or
kernels, as opposed to models pruned with unstructured pruning which require specialized ones.

The majority of existing structured pruning methods are heuristics that do not offer any theoretical
guarantees. Moreover, most pruning methods are inapplicable in the limited-data regime, as they rely
on fine-tuning with large training data for at least a few epochs to recover some of the accuracy lost
with pruning. Mariet and Sra [2015] proposed a “reweighting" procedure applicable to any pruning
method, which optimize the remaining weights of the next layer to minimize the change in the input
to the next layer. Their empirical results on pruning single linear layers suggest that reweighting
can provide a similar boost to performance as fine-tuning, without the need for data labels.

Our contributions We propose a principled data-efficient structured pruning method based on
submodular optimization. In each layer, our method simultaneously selects neurons to prune and new
weights for the next layer, that minimize the change in the next layer’s input induced by pruning. The
optimization with respect to the weights, for a fixed selection of neurons, is the same one used for
reweighting in [Mariet and Sra, 2015]. The resulting subset selection problem is intractable, but we
show that it can be formulated as a weakly submodular maximization problem (see Definition 2.1).
We can thus use the standard greedy algorithm to obtain a (1− e−γ)-approximation to the optimal
solution, where γ is non-zero if we use sufficient training data. We further adapt our method to prune
any regular regions of weights; we focus in particular on pruning channels in convolution layers. To
prune multiple layers in the network, we apply our method to each layer independently or sequentially.

We show that the error induced by pruning with our method on the model output decays with an
O(e−γk) rate w.r.t the number k of neurons/channels kept, under reasonable assumptions. Our
method uses only limited training data and no labels. Similar to [Mariet and Sra, 2015], we observe
that reweighting provides a significant boost in performance not only to our method, but also to other
baselines we consider. However unlike [Mariet and Sra, 2015], we only use a small fraction of the
training data, around∼ 1% in our experiments. Our experimental results demonstrate that our method
outperforms state-of-the-art pruning methods, even when reweighting is applied to them too, in the
limited-data regime, and it is among the best performing methods in the standard setting.

Related work A large variety of structured pruning approaches has been proposed in the
literature, based on different selection schemes and algorithms to solve them. Some works prune
neurons/channels individually based on some importance score [He et al., 2014, Li et al., 2017,
Liebenwein et al., 2020, Mussay et al., 2020, 2021, Molchanov et al., 2017, Srinivas and Babu, 2015].
Such methods are efficient and easy to implement, but they fail to capture higher-order interactions
between the pruned parameters. Most do not provide any performance guarantee. One exception
are the sampling-based methods of [Liebenwein et al., 2020, Mussay et al., 2020, 2021], who show
an O(1/k) error rate, under some assumptions on the model activations.

Closer to our approach are methods that aim to prune neurons/channels that minimize the change
induced by pruning in the output of the layer being pruned, or its input to the next layer [Luo et al.,
2017, He et al., 2017, Zhuang et al., 2018, Ye et al., 2020b]. These criteria yield an intractable
combinatorial problem. Existing methods either use a heuristic greedy algorithm to solve it [Luo
et al., 2017, Zhuang et al., 2018], or they solve instead its `1-relaxation using alternating minimization
[He et al., 2017], or a greedy algorithm with Frank-Wolfe like updates [Ye et al., 2020b]. Among
these works only [Ye et al., 2020b] provides theoretical guarantees, showing an O(e−ck) error rate.
Their method is more expensive than ours, and only optimize the scaling of the next layer weights
instead of the weights themselves. A global variant of this method is proposed in Ye et al. [2020a,b],
which aim to prune neurons/channels that directly minimize the loss of the pruned network. A similar
greedy algorithm with Frank-Wolfe like updates is used to solve the `1-relaxation of the selection
problem. This method has an O(1/k2) error rate and is very expensive, as it requires a full forward

2

pass through the network at each iteration. See Appendix A for a more detailed comparison of our
method with those of [Ye et al., 2020a,b].

Mariet and Sra [2015] depart from the usual strategy of pruning parameters whose removal influences
the network the least. They instead select a subset of diverse neurons to keep in each layer by sampling
from a Determinantal Point Process, then they apply their reweighting procedure. Their experimental
results show that the advantage of their method is mostly due to reweighting (see Figure 4 therein).

2 Preliminaries

We begin by introducing our notation and some relevant background from submodular optimization.

Notation: Given a ground set V = {1, 2, · · · , d} and a set function F : 2V → R+, we denote
the marginal gain of adding a set I ⊆ V to another set S ⊆ V by F (I | S) = F (S ∪ I) − F (S),
which quantifies the change in value when adding I to S. The cardinality of a set S is written as |S|.
Given a vector x ∈ Rd, we denote its support set by supp(x) = {i ∈ V |xi 6= 0}, and its `2-norm
by ‖x‖2. Given a matrix X ∈ Rd′×d, we denote its i-th column by Xi, and its Frobenius norm by
‖X‖F . Given a set S ⊆ V , XS is the matrix with columns Xi for all i ∈ S, and 0 otherwise, and 1S
is the indicator vector of S, with [1S]i = 1 for all i ∈ S, and 0 otherwise.

Algorithm 1 GREEDY

1: Input: Ground set V , set function F : 2V → R+, budget k ∈ N+

2: S ← ∅
3: while |S| < k do
4: i∗ ← arg maxi∈V \S F (i | S)

5: S ← S ∪ {i∗}
6: end while
7: Output: S

Weakly submodular maximization: A set function F is submodular if it has diminishing marginal
gains: F (i | S) ≥ F (i | T) for all S ⊆ T , i ∈ V \ T . We say that F is normalized if F (∅) = 0, and
non-decreasing if F (S) ≤ F (T) for all S ⊆ T .
Given a non-decreasing submodular function F , selecting a set S ⊆ V with cardinality |S| ≤ k
that maximize F (S) can be done efficiently using the GREEDY algorithm (Alg. 1). The returned
solution is guaranteed to satisfy F (Ŝ) ≥ (1 − 1/e) max|S|≤k F (S) [Nemhauser et al., 1978]. In
general though maximizing a non-submodular function over a cardinality constraint is NP-Hard
[Natarajan, 1995]. However, Das and Kempe [2011] introduced a notion of weak submodularity
which is sufficient to obtain a constant factor approximation with the GREEDY algorithm.
Definition 2.1. Given a set function F : 2V → R, U ⊆ V, k ∈ N+, we say that F is γU,k-weakly
submodular, with γU,k > 0 if

γU,kF (S|L) ≤
∑
i∈S

F (i|L),

for every two disjoint sets L, S ⊆ V , such that L ⊆ U, |S| ≤ k.

The parameter γU,k is called the submodularity ratio of F . It characterizes how close a set function
is to being submodular. If F is non-decreasing then γU,k ∈ [0, 1], and F is submodular if and only
if γU,k = 1 for all U ⊆ V, k ∈ N+. Given a non-decreasing γŜ,k-weakly submodular function F , the
Greedy algorithm is guaranteed to return a solution Ŝ satisfying F (Ŝ) ≥ (1−e−γŜ,k) max|S|≤k F (S)
[Elenberg et al., 2016, Das and Kempe, 2011]. Hence, the closer F is to being submodular, the better
is the approximation guarantee.

3 Reweighted input change pruning

In this section, we introduce our approach for pruning neurons in a single layer. Given a large pre-
trained NN, n training data samples, and a layer `with n` neurons, our goal is to select a small number

3

k out of the n` neurons to keep, and prune the rest, in a way that influences the network the least. One
way to achieve this is by minimizing the change in input to the next layer `+ 1, induced by pruning.
However, simply throwing away the activations from the dropped neurons is wasteful. Instead, we
optimize the weights of the next layer to reconstruct the inputs from the remaining neurons.

Formally, let A` ∈ Rn×n` be the activation matrix of layer ` with columns a`1, · · · , a`n`
, where

a`i ∈ Rn is the vector of activations of the ith neuron in layer ` for each training input, and let
W `+1 ∈ Rn`×n`+1 be the weight matrix of layer ` + 1 with columns w`+1

1 , · · · , w`+1
n`+1

, where
w`+1
i ∈ Rn` is the vector of weights connecting the ith neuron in layer `+ 1 to the neurons in layer

`. When a neuron is pruned in layer `, the corresponding column of weights in W ` and row in W `+1

are removed. Pruning n` − k neurons in layer ` reduces the number of parameters and computation
cost by (n` − k)/n` for both layer ` and `+ 1.

Let V` = {1, · · · , n`}. Given a set S ⊆ V`, we denote by A`S the matrix with columns a`i for all
i ∈ S, and 0 otherwise. That is, A`S is the activation matrix of layer ` after pruning. We choose a set
of neurons S ⊆ V` to keep and new weights W̃ `+1 ∈ Rn`×n`+1 that minimize:

min
|S|≤k,W̃ `+1∈Rn`×n`+1

‖A`W `+1 −A`SW̃ `+1‖2F (1)

Note that A`W `+1 are the original inputs of layer l + 1, and A`SW̃
`+1 are the inputs after pruning

and reweighting, i.e., replacing the weights W `+1 of layer `+ 1 with the new weights W̃ `+1.

3.1 Greedy selection

Solving Problem (1) exactly is NP-Hard [Natarajan, 1995]. However, we show below that it can be
formulated as a weakly submodular maximization problem, hence it can be efficiently approximated.
Let

F (S) = ‖A`W `+1‖2F − min
W̃ `+1

‖A`W `+1 −A`SW̃ `+1‖2F , (2)

then Problem (1) is equivalent to max|S|≤k F (S).
Proposition 3.1. Given U ⊆ V, k ∈ N+, F is a normalized non-decreasing γU,k-weakly submodular
function, with

γU,k ≥
min‖z‖2=1,‖z‖0≤|U |+k ‖A`z‖22
max‖z‖2=1,‖z‖0≤|U |+1 ‖A`z‖22

.

The proof of Proposition 3.1 follows by writing F as the sum of n`+1 sparse linear regression
problems F (S) =

∑n`+1

m=1 ‖A`w`+1
m ‖22−minsupp(w̃m)⊆S ‖A`w`+1

m −A`w̃m‖22, and from the relation
established in [Elenberg et al., 2016, Das and Kempe, 2011] between weak submodularity and sparse
eigenvalues of the covariance matrix (see Appendix B.1).

We use the GREEDY algorithm to select a set Ŝ ⊆ V` of k neurons to keep in layer `. As discussed in
Section 2, the returned solution is guaranteed to satisfy

F (Ŝ) ≥ (1− e−γŜ,k) max
|S|≤k

F (S) (3)

Computing the lower bound on the submodularity ratio γŜ,k in Proposition 3.1 is NP-Hard [Das and
Kempe, 2011]. It is non-zero if any min{2k, n`} columns of A` are linearly independent. If the
number of training data is larger than the number of neurons, i.e., n > n`, this is likely to be satisfied.
We verify that this is indeed the case in our experiments in Appendix E. We also discuss the tightness
of the lower bound in Appendix F.

We show in Appendix D that F satisfies an even stronger notion of approximate submodularity than
weak submodularity, which implies a better approximation guarantee for GREEDY than the one
provided in Eq. (3). Though, this requires a stronger assumption: any k+ 1 columns of A` should be
linearly independent and all rows of W `+1 should be linearly independent. In particular, we would
need that n` ≤ n`+1, which is not always satisfied.

In Section 6, we show that the approximation guarantee of Greedy implies an exponentially decreasing
bound on the layerwise error, and on the final output error under a mild assumption.

4

3.2 Reweighting

For a fixed S ⊆ V`, the reweighted input change ‖A`W `+1 −A`SW̃ `+1‖2F is minimized by setting

W̃ `+1 = xS(A`)W `+1, (4)

where xS(A`) ∈ Rn`×n` is the matrix with columns xS(a`j) such that

xS(a`j) ∈ arg min
supp(x)⊆S

‖a`j −Ax‖22 for all j ∈ V`. (5)

Note that the new weights are given by w̃`+1
im = w`+1

im +
∑
j 6∈S [xS(A`)]ijw

`+1
jm for all i ∈ S, and

w̃`+1
im = 0 for all i 6∈ S,m ∈ V`+1. Namely, the new weights merge the weights from the dropped neu-

rons into the kept ones. This is the same reweighting procedure introduced in [Mariet and Sra, 2015].
But instead of applying it only at the end to the selected neurons Ŝ, it is implicitly done at each iteration
of our pruning method, as it is required to evaluate F . We discuss next how this can be done efficiently.

3.3 Cost

Each iteration of GREEDY requires O(n`) function evaluations of F . Computing F (S) from scratch
needsO(k ·(n` ·n`+1 +n ·(n`+n`+1)) time, so a naive implementation of GREEDY is too expensive.
The following Proposition outlines how we can efficiently evaluate F (S + i) given that F (S) was
computed in the previous iteration.
Proposition 3.2. Given S ⊆ V` such that |S| ≤ k, i 6∈ S, let projS(a`j) = A`Sx

S(a`j) be the
projection of a`j onto the column space of A`S , RS(a`i) = a`i − projS(a`i) and projRS(a`i)(a

`
j) ∈

arg minz=RS(a`i)γ,γ∈R ‖a`j − z‖22 the corresponding residual and the projection of a`j onto it. We can
write

F (i|S) =

n`+1∑
m=1

‖projRS(a`i)(A
`
V \S)w`+1

m ‖22,

where projRS(ai)(A
`
V \S) is the matrix with columns projRS(ai)(a

`
j) for all j 6∈ S, 0 otherwise.

Assuming F (S),projS(a`j) and xS(a`j) for all j 6∈ S were computed in the previous iteration, we
can compute F (S + i),projS+i(a

`
j) and xS+i(a`j) for all j 6∈ (S + i) in

O(n` · (n`+1 + n+ k)) time.
The optimal weights in Eq. (4) can then be computed in O(k · n` · n`+1) time, at the end of GREEDY.

The proof is given in Appendix B.2, and relies on using optimality conditions to construct the least
squares solution xS+i(a`j) from xS(a`j).
In total GREEDY’s runtime is then O(k · (n`)2 · (n`+1 +n+ k)). In other words, our pruning method
costs as much as O(k) forward passes in layer `+ 1 with a batch of size n (assuming n`+1 = O(n`)).
Using a faster variant of GREEDY, called STOCHASTIC-GREEDY [Mirzasoleiman et al., 2015],
further reduces the cost to O(log(1/ε) · (n`)2 · (n`+1 +n+k)), or equivalently O(log(1/ε)) forward
passes in layer ` + 1 with a batch of size n, while maintaining almost the same approximation
guarantee (1− e−γŜ,k − ε) in expectation. 3

Note also that computing the solutions for different budgets k′ ≤ k can be done at the cost of one by
running GREEDY with budget k. Our method is more expensive than methods which prune neurons
individually [He et al., 2014, Li et al., 2017, Liebenwein et al., 2020, Mussay et al., 2020, 2021,
Molchanov et al., 2017, Srinivas and Babu, 2015], but much less expensive than a loss-based method
like [Ye et al., 2020a,b], which requires O(k) forward passes in the full network, for each layer.

4 Pruning regular regions of neurons

In this section, we discuss how to adapt our approach to pruning regular regions of neurons. This
is easily achieved by mapping any set of regular regions to the corresponding set of neurons, then
applying the same method in Section 3. In particular, we focus on pruning channels in CNNs.

3Mirzasoleiman et al. [2015] only consider submodular functions, but it is straighforward to extend their
result to weakly submodular functions Appendix B.3.

5

Given a layer ` with n` output channels, let X` ∈ Rn·p`×n`×rh×rw be its activations for each output
channel and training input, where p` is number of patches obtained by applying a filter of size rh×rw,
and let F `+1 ∈ Rn`+1×n`×rh×rw be the weights of layer ` + 1, corresponding to n` filters of size
rh×rw for each of its output channels. When an output channel is pruned in layer `, the corresponding
weights in F ` and F `+1 are removed. Pruning n` − k output channels in layer ` reduces the number
of parameters and computation cost by (n` − k)/n` for both layer ` and `+ 1. If layer ` is followed
by a batch norm layer, the weights therein corresponding to the pruned channels are also removed.

We arrange the activations X`
c ∈ Rn·p`×rh·rw of each channel c into rhrw columns of

A` ∈ Rn·p`×n`·rh·rw , i.e., A` = [X`
1, · · · , X`

n`
]. Similarly, we arrange the weights F `+1

c ∈
Rn`+1×rh×rw of each channel c into rh · rw rows of W `+1 ∈ Rn`·rh·rw×n`+1 , i.e., (W `+1)> =
[(F `1)>, · · · , (F `n`

)>]. Recall that V` = {1, · · · , n`}, and let V ′` = {1, · · · , rhrwn`}. We define
a function M : 2V` → 2V

′
` which maps every channel c to its corresponding rhrw columns in

A`. Let G(S) = F (M(S)), with F defined in Eq. (2), then minimizing the reweighted input
change ‖A`W `+1−A`M(S)W̃

`+1‖2F with a budget k is equivalent to max|S|≤kG(S). The following
proposition shows that this remains a weakly submodular maximization problem.
Proposition 4.1. GivenU ⊆ V`, k ∈ N+,G is a normalized non-decreasing γU,k-weakly submodular
function, with

γU,k ≥
min‖z‖2=1,‖z‖0≤rhrw(|U |+k) ‖A`z‖22
max‖z‖2=1,‖z‖0≤rhrw(|U |+1) ‖A`z‖22

.

Proof sketch. G is γU,k-weakly submodular iff F satisfies γU,kF (M(S)|M(L)) ≤∑
i∈S F (M(i)|M(L)), for every two disjoint sets L, S ⊆ V`, such that L ⊆ U, |S| ≤ k.

The proof follows by extending the relation established in [Elenberg et al., 2016, Das and Kempe,
2011] between weak submodularity and sparse eigenvalues of the covariance matrix to this case.

As before, we use the GREEDY algorithm, with function G, to select a set Ŝ ⊆ V` of k channels to
keep in layer `. We get the same approximation guaranteeG(Ŝ) ≥ (1−e−γŜ,k) max|S|≤kG(S). The
submodularity ratio γŜ,k is non-zero if any min{2k, n`}rhrw columns ofA` are linearly independent.
In our experiments, we observe that in certain layers linear independence only holds for k very
small, e.g., k ≤ 0.01n`. This is due to the correlation between patches which overlap. To remedy
this, we experimented with using only rhrw random patches from each image, instead of using all
patches. This indeed raises the rank of A`, but certain layers have a very small feature map size so
that even the small number of random patches have significant overlap, resulting in still a very small
range where linear independence holds, e.g., k ≤ 0.08n` (see Appendix E for more details). The
results obtained with random patches were worst than the ones with all patches, we thus omit them.
Note that our lower bounds on γŜ,k are not necessarily tight (see Appendix F). Hence, having linear
dependence does not necessarily imply that γŜ,k = 0; our method still performs well in these cases.

For a fixed S ⊆ V`, the optimal weights are again given by W̃ `+1 = xM(S)(A`)W `+1. The cost of
running GREEDY and reweighting is the same as before (see Appendix B.2).

5 Pruning multiple layers

In this section, we explain how to apply our pruning method to prune multiple layers of a NN.

5.1 Reweighted input change pruning variants

We consider three variants of our method: LAYERINCHANGE, SEQINCHANGE, and ASYMIN-
CHANGE. In LAYERINCHANGE, we prune each layer independently, i.e., we apply exactly the
method in Section 3 or 4, according to the layer’s type. This is the fastest variant; it has the same cost
as pruning a single layer, as each layer can be pruned in parallel, and it only requires one forward
pass to get the activations of all layers. However, it does not take into account the effect of pruning
one layer on subsequent layers.

In SEQINCHANGE, we prune each layer sequentially, starting from the earliest layer to the latest
one. For each layer `, we apply our method with A` replaced by the updated activations B` after

6

having pruned previous layers, i.e., we solve min|S|≤k,W̃ `+1∈Rn`×n`+1 ‖B`W `+1 − B`SW̃ `+1‖2F .
In ASYMINCHANGE, we also prune each layer sequentially, but to avoid the accumulation of
error, we use an asymmetric formulation of the reweighted input change, where instead of approx-
imating the updated input B`W `+1, we approximate the original input A`W `+1, i.e., we solve
min|S|≤k,W̃ `+1∈Rn`×n`+1 ‖A`W `+1 −B`SW̃ `+1‖2F . This problem is still a weakly submodular max-
imization problem, with the same submodularity ratio given in Propositions 3.1 and 4.1, with A`
replaced by B` therein (see Appendix B.1). Hence, the same approximation guarantee as in the
symmetric formulation holds here. Moreover, a better approximation guarantee can again be obtained
under stronger assumptions (see Appendix D). The cost of running GREEDY with the asymmetric
formulation and reweighting is also the same as before (see Appendix B.2).

In Section 6, we show that the sequential variants of our method both have an exponential error rate,
which is faster for the asymmetric variant. We evaluate all three variants in our experiments. As
expected, ASYMINCHANGE usually performs the best, and LAYERINCHANGE the worst.

5.2 Per-layer budget selection

Another important design choice is how much to prune in each layer, given a desired global compres-
sion ratio (see Appendix I for the effect of this choice on performance). In our experiments, we use
the budget selection method introduced in [Kuzmin et al., 2019, Section 3.4.1], which can be applied
to any layerwise pruning method, thus enabling us to have a fair comparison.

Given a network with L layers to prune, let c = original size
pruned size be the desired compression ratio. We want

to select for each layer `, the number of neurons/channels k` = α`n` to keep, with α` chosen from
a fixed set of possible values, e.g., α` ∈ {0.05, 0.1, · · · , 1}. We define a layerwise accuracy metric
P`(k`) as the accuracy obtained after pruning layer `, with a budget k`, while other layers are kept
intact, evaluated on a verification set. We set aside a subset of the training set to use as a verification
set. Let Porig be the original model accuracy, Corig the original model size, and C(k1, · · · , kL) the
pruned model size. We select the per-layer budgets that minimize the per-layer accuracy drop while
satisfying the required compression ratio:

min
k1,··· ,kL

{τ : ∀` ∈ [L], P`(k`) ≥ Porig − τ, C(k1, · · · , kL) ≤ Corig/c}. (6)

We can solve the selection problem (6) using binary search, if the layerwise accuracy P`(k`) is a non-
decreasing function of k`. Empirically, this is not always the case, the general trend is non-decreasing,
but some fluctuations occur. In such cases, we use interpolation to ensure monotonicity.

Alternatively, another simple strategy is to prune each layer until the perlayer error (the reweighted
input change in our case) reaches some threshold ε, and vary ε to obtain the desired compression
ratio, as done in [Zhuang et al., 2018, Ye et al., 2020a].

6 Error convergence rate

In this section, we provide the error rate of our proposed method. The omitted proofs are given in
Appendix C. We first show that the change in input to the next layer induced by pruning with our
method, with both the symmetric and asymmetric formulation, decays with exponentially fast rate.

Proposition 6.1. Let Ŝ be the output of the GREEDY algorithm and Ŵ `+1 the corresponding optimal
weights (Eq. (4)), then

‖A`W `+1 −A`
Ŝ
Ŵ `+1‖2F ≤ e

−γŜ,n`
k/n`‖A`W `+1‖2F ,

and

‖A`W `+1−B`
Ŝ
Ŵ `+1‖2F ≤ e

−γŜ,n`
k/n`‖A`W `+1‖2F+(1−e−γŜ,n`

k/n`) min
W̃ `+1∈Rn`×n`+1

‖A`W `+1−B`W̃ `+1‖2F

This follows by extending the approximation guarantee of GREEDY in [Elenberg et al., 2016, Das
and Kempe, 2011] to F (Ŝ) ≥ (1 − e−γŜ,n`

k/n`) max|S|≤n`
F (S). Note that this bounds uses the

submodularity ratio γŜ,n`
, for which the lower bound in Proposition 3.1 is non-zero only if all

columns of A` are linearly independent, which is more restrictive. Though as discussed earlier, this

7

bound is not necessarily tight. We can further extend this exponential layerwise error rate to an
exponentially rate on the final output error, if we assume as in [Ye et al., 2020b] that the function
corresponding to all layers coming after layer ` is Lipschitz continuous.

Corollary 6.2. Let y ∈ Rn be the original model output, yŜ ∈ Rn the output after layer ` is
pruned using our method, and H the function corresponding to all layers coming after layer `, i.e.,
y = H(A`W `+1), yŜ = H(A`

Ŝ
Ŵ `+1). If H is Lipschitz continuous with constant ‖H‖Lip, then

‖y − yŜ‖22 ≤ e
−γŜ,n`

k/n`‖H‖2Lip‖A`W `+1‖2F .

Proof. Since H is Lipschitz continuous, we have ‖y − yŜ‖22 ≤ ‖H‖2Lip‖A`W `+1 − A`
Ŝ
Ŵ `+1‖2F .

The claim then follows from Proposition 6.1.

This matches the exponential convergence rate achieved by the local imitation method in [Ye et al.,
2020b, Theorem 1], albeit with a different constant. Under the same assumption, we can show that
pruning multiple layers with the sequential variants of our method, SEQINCHANGE and ASYMIN-
CHANGE, also admits an exponential convergence rate:

Corollary 6.3. Let y ∈ Rn be the original model output, yŜ` , yS̃` ∈ Rn the outputs after layers 1 to
` are sequentially pruned using SEQINCHANGE and ASYMINCHANGE, respectively, and H` the
function corresponding to all (unpruned) layers coming after layer `. If every function H` is Lipschitz
continuous with constant ‖H`‖Lip, then

‖y − yŜL‖22 ≤
L∑
`=1

e
−γŜ`,n`

k`/n`‖H`‖2Lip‖A`W `+1‖2F ,

and
‖y − yS̃L‖22 ≤

L∑
`=1

L∏
`′=`+1

(1− e−γS̃`′ ,n`′
k`′/n`′)e

−γS̃`,n`
k`/n`‖H`‖2Lip‖A`W `+1‖2F .

The result is obtained by iteratively applying Proposition 6.1 to the error incurred after each layer
is pruned. The rate of SEQINCHANGE matches the exponential convergence rate achieved by the
local imitation method in [Ye et al., 2020b, Theorem 6]. The bound on ASYMINCHANGE is stronger,
confirming that the asymmetric formulation indeed reduces the accumulation of errors.

7 Empirical Evaluation

In this section, we examine the performance of our proposed pruning method in the limited-data
regime. To that end, we focus on one-shot pruning, in which a pre-trained model is compressed
in a single step, without any fine-tuning. We study the effect of fine-tuning with both limited and
sufficient data in Appendix H. We compare the three variants of our method, LAYERINCHANGE,
SEQINCHANGE, and ASYMINCHANGE, with the following baselines:

• LAYERGREEDYFS [Ye et al., 2020a]: for each layer, first removes all neurons/channels in that
layer, then gradually adds back the neuron/channel that yields the largest decrease of the loss, evalu-
ated on one batch of training data. Layers are pruned sequentially from the input to the output layer.
• LAYERSAMPLING [Liebenwein et al., 2020]: samples neurons/channels, in each layer, with
probabilities proportional to sensitivities based on (activations × weights), and prunes the rest.
• ACTGRAD [Molchanov et al., 2017]: prunes neurons/channels with the lowest (activations ×
gradients), averaged over the training data, with layerwise `2-normalization.
• LAYERACTGRAD: prunes neurons/channels with the lowest (activations × gradients), averaged
over the training data, in each layer. This is the layerwise variant of ACTGRAD.
• LAYERWEIGHTNORM [Li et al., 2017]: prunes neurons/channels with the lowest output
weights `1-norm, in each layer.
• RANDOM: prunes randomly selected neurons/channels globally across layers in the network.
• LAYERRANDOM: prunes randomly selected neurons/channels in each layer.

8

We also considered the global variant of LAYERWEIGHTNORM proposed in [He et al., 2014], but we
exclude it from plots, as it is always the worst performing method. We evaluate the performance of
these methods on the LeNet model [LeCun et al., 1989] on the MNIST dataset [Lecun et al., 1998],
and on the ResNet56 [He et al., 2016] and the VGG11 [Simonyan and Zisserman, 2015] models
on the CIFAR-10 dataset [Krizhevsky et al., 2009]. To ensure a fair comparison, all experiments
are based on our own implementation of all the compared methods. To compute the gradients and
activations used for pruning in LAYERSAMPLING, ACTGRAD, LAYERACTGRAD, and our method’s
variants, we use four batches of 128 training images, i.e., n = 512, which corresponds to∼ 1% of the
training data in MNIST and CIFAR10. We consider two variants of the method proposed in [Ye et al.,
2020a]: a limited-data variant LAYERGREEDYFS which only uses the same four batches of data used
in our method, and a full-data variant LAYERGREEDYFS-fd with access to the full training data.

We report top-1 accuracy results evaluated on the validation set, as we vary the compression ratio
(original size

pruned size). Unless otherwise specified, we use the per-layer budget selection method described in Sec-
tion 5.2 for all the layerwise pruning methods, except for LAYERSAMPLING for which we use its own
budget selection strategy provided in [Liebenwein et al., 2020]. We use a subset of the training set, of
the same size as the validation set, as a verification set for the budget selection method. To disentangle
the benefit of using our pruning method from the benefit of reweighting (Section 3.2), we report results
with reweighting applied to all pruning methods, or none of them. Though, we will focus our analysis
on the more interesting results with reweighting, with the plots without reweighting mostly serving as
a demonstration of the benefit of reweighting. Results are averaged over five random runs, with stan-
dard deviations plotted as error bars. We report the speedup (original number of FLOPs

pruned number of FLOPs) and pruning time
values in Appendix J. For additional details on the experimental set-up, see Appendix G. The code
for reproducing all experiments is available at https://github.com/marwash25/subpruning.

LeNet on MNIST We pre-train LeNet model on MNIST achieving 97.75% top-1 accuracy. We
prune all layers except the last classifier layer. Results are presented in Figure 1 (left). All three vari-
ants of our method consistently outperform other baselines, even when reweighting is applied to them,
with ASYMINCHANGE doing the best and LAYERINCHANGE the worst. We observe that reweighting
significantly improves the performance of all methods except LAYERGREEDYFS variants.

ResNet56 on CIFAR-10 We use the ResNet56 model pre-trained on CIFAR-10 provided in
ShrinkBench [Blalock et al., 2020], which achieves 92.27% top-1 accuracy. We prune all layers
except the last layer in each residual branch, the last layer before each residual branch, and the last
classifier layer. Results are presented in Figure 1 (middle). The sequential variants of our method
perform the best. Their performance is closely matched by LAYERWEIGHTNORM and ACTGRAD
(with reweighting) for most compression ratios, except very large ones. LAYERINCHANGE performs
significantly worst here than the sequential variants of our method. This is likely due to the larger
number of layers pruned in ResNet56 compared to LeNet (27 vs 4 layers), which increases the effect
of pruning earlier layers on subsequent ones. Here also reweighting improves the performance of
all methods except the LAYERGREEDYFS variants.

VGG11 on CIFAR-10 We pre-train VGG11 model on CIFAR-10 obtaining 90.11% top-1 accuracy.
We prune all layers except the last features layer and the last classifier layer. Results are presented
in Figure 1 (right). The three variants of our method perform the best. Their performance is matched
by ACTGRAD and LAYERWEIGHTNORM (with reweighting). LAYERINCHANGE performs similarly
to the sequential variants of our method here, even slightly better at compression ratio 32, probably
because the number of layers being pruned is again relatively small (9 layers). As before, reweighting
benefits all methods except the LAYERGREEDYFS variants.

Discussion We summarize our observations from the empirical results:

• Our proposed pruning method outperforms state-of-the-art structured pruning methods in various
one shot pruning settings. As expected, ASYMINCHANGE is the best performing variant of our
method, and LAYERINCHANGE the worst, with its performance deteriorating with deeper models.
Our results also illustrate the robustness of our method, as it reliably yields the best results in
various settings, while other baselines perform well in some settings but not in others.
• Reweighting significantly improves performance for all methods, except LAYERGREEDYFS
and LAYERGREEDYFS-fd. We suspect that reweighting does not help in this case because this

9

https://github.com/marwash25/subpruning

Figure 1: Top-1 Accuracy of different pruning methods applied to LeNet on MNIST (left), ResNet56
on CIFAR10 (middle), and VGG11 on CIFAR10 (right), for several compression ratios (in log-scale),
with (top) and without (bottom) reweighting. We include the three reweighted variants of our method
in the bottom plots (faded) for reference.

method already scales the next layer weights, and it takes into account this scaling when selecting
neurons/channels to keep, so replacing it with reweighting can hurt performance.

• The choice of how much to prune in each layer given a global budget can have a drastic effect on
performance, as illustrated in Appendix I.

• Fine-tuning with full-training data boosts performance more than reweighting, while fine-tuning
with limited data helps less, as illustrated in Appendix H. Reweighting still helps when fine-tuning
with limited-data, except for LAYERGREEDYFS variants, but it can actually deteriorate perfor-
mance when fine-tuning with full-data. Our method still outperforms other baselines after fine-
tuning with limited-data, and is among the best performing methods even in the full-data setting.

8 Conclusion

We proposed a data-efficient structured pruning method, based on submodular optimization. By
casting the layerwise subset selection problem as a weakly submodular optimization problem, we are
able to use the GREEDY algorithm to provably approximate it. Empirically, our method consistently
outperforms existing structured pruning methods on different network architectures and datasets.

Acknowledgments and Disclosure of Funding

We thank Stefanie Jegelka, Debadeepta Dey, Jose Gallego-Posada for their helpful discussions,
and Yan Zhang, Boris Knyazev for their help with running experiments. We also acknowledge
the MIT SuperCloud and Lincoln Laboratory Supercomputing Center (supercloud.mit.edu),
Compute Canada (www.computecanada.ca), Calcul Quebec (www.calculquebec.ca), WestGrid
(www.westgrid.ca), ACENET (ace-net.ca), the Mila IDT team, Idiap Research Institute and
the Machine Learning Research Group at the University of Guelph, for providing HPC resources
that have contributed to the research results reported within this paper. This research was partially
supported by the Canada CIFAR AI Chair Program. Simon Lacoste-Julien is a CIFAR Associate
Fellow in the Learning Machines & Brains program.

10

supercloud.mit.edu
www.computecanada.ca
www.calculquebec.ca
www.westgrid.ca
ace-net.ca

References
A. A. Bian, J. M. Buhmann, A. Krause, and S. Tschiatschek. Guarantees for greedy maximization of

non-submodular functions with applications. In Proceedings of the 34th International Conference
on Machine Learning-Volume 70, pages 498–507. JMLR. org, 2017. (Cited on 22)

D. Blalock, J. J. G. Ortiz, J. Frankle, and J. Guttag. What is the state of neural network pruning?
arXiv preprint arXiv:2003.03033, 2020. (Cited on 1, 9, 26)

C. Bucila, R. Caruana, and A. Niculescu-Mizil. Model compression. In Proceedings of the 12th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’06, page
535–541, New York, NY, USA, 2006. Association for Computing Machinery. ISBN 1595933395.
doi: 10.1145/1150402.1150464. URL https://doi.org/10.1145/1150402.1150464. (Cited
on 1)

S. Buschjäger, P.-J. Honysz, and K. Morik. Very fast streaming submodular function maximization,
2020. (Cited on 26)

M. D. Collins and P. Kohli. Memory bounded deep convolutional networks. arXiv preprint
arXiv:1412.1442, 2014. (Cited on 1)

M. Courbariaux, Y. Bengio, and J.-P. David. Binaryconnect: Training deep neural networks with
binary weights during propagations. In Advances in neural information processing systems, pages
3123–3131, 2015. (Cited on 1)

A. Das and D. Kempe. Submodular meets spectral: Greedy algorithms for subset selection, sparse
approximation and dictionary selection. arXiv preprint arXiv:1102.3975, 2011. (Cited on 3, 4, 6,
7, 21, 24)

M. Denil, B. Shakibi, L. Dinh, M. A. Ranzato, and N. de Freitas. Predicting parameters
in deep learning. In C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K. Q.
Weinberger, editors, Advances in Neural Information Processing Systems, volume 26. Cur-
ran Associates, Inc., 2013. URL https://proceedings.neurips.cc/paper/2013/file/
7fec306d1e665bc9c748b5d2b99a6e97-Paper.pdf. (Cited on 1)

M. El Halabi, F. Bach, and V. Cevher. Combinatorial penalties: Structure preserved by convex
relaxations. Proceedings of the 21st International Conference on Artificial Intelligence and
Statistics, 2018. (Cited on 22)

E. R. Elenberg, R. Khanna, A. G. Dimakis, and S. Negahban. Restricted strong convexity implies
weak submodularity. arXiv preprint arXiv:1612.00804, 2016. (Cited on 3, 4, 6, 7, 16, 21)

Y. Gong, L. Liu, M. Yang, and L. Bourdev. Compressing deep convolutional networks using vector
quantization. arXiv preprint arXiv:1412.6115, 2014. (Cited on 1)

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pages 770–778, 2016. (Cited
on 9)

T. He, Y. Fan, Y. Qian, T. Tan, and K. Yu. Reshaping deep neural network for fast decoding by
node-pruning. In 2014 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pages 245–249. IEEE, 2014. (Cited on 2, 5, 9)

Y. He, X. Zhang, and J. Sun. Channel pruning for accelerating very deep neural networks. In
Proceedings of the IEEE international conference on computer vision, pages 1389–1397, 2017.
(Cited on 2)

G. Hinton, O. Vinyals, and J. Dean. Distilling the knowledge in a neural network. Neural Information
Processing Systems (NeurIPS) Workshops, 2015. (Cited on 1)

T. Hoefler, D. Alistarh, T. Ben-Nun, N. Dryden, and A. Peste. Sparsity in deep learning: Pruning and
growth for efficient inference and training in neural networks. arXiv preprint arXiv:2102.00554,
2021. (Cited on 2)

11

https://doi.org/10.1145/1150402.1150464
https://proceedings.neurips.cc/paper/2013/file/7fec306d1e665bc9c748b5d2b99a6e97-Paper.pdf
https://proceedings.neurips.cc/paper/2013/file/7fec306d1e665bc9c748b5d2b99a6e97-Paper.pdf

A. Krizhevsky, G. Hinton, et al. Learning multiple layers of features from tiny images. 2009. (Cited
on 9)

A. Kuzmin, M. Nagel, S. Pitre, S. Pendyam, T. Blankevoort, and M. Welling. Taxonomy and evalua-
tion of structured compression of convolutional neural networks. arXiv preprint arXiv:1912.09802,
2019. (Cited on 1, 2, 7)

V. Lebedev, Y. Ganin, M. Rakhuba, I. V. Oseledets, and V. S. Lempitsky. Speeding-up convolutional
neural networks using fine-tuned cp-decomposition. In International Conference on Learning
Representations, 2015. (Cited on 1)

Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel.
Backpropagation applied to handwritten zip code recognition. Neural computation, 1(4):541–551,
1989. (Cited on 9)

Y. Lecun, C. Cortes, and C. Burges. The mnist databaseof handwritten digits, 1998. (Cited on 9)

B. Lehmann, D. Lehmann, and N. Nisan. Combinatorial auctions with decreasing marginal utilities.
Games and Economic Behavior, 55(2):270–296, 2006. (Cited on 22)

H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf. Pruning filters for efficient convnets. In 5th
International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26,
2017, Conference Track Proceedings. OpenReview.net, 2017. URL https://openreview.net/
forum?id=rJqFGTslg. (Cited on 2, 5, 8)

W. Li, M. Feldman, E. Kazemi, and A. Karbasi. Submodular maximization in clean linear time, 2022.
URL https://arxiv.org/abs/2006.09327. (Cited on 15, 30)

L. Liebenwein, C. Baykal, H. Lang, D. Feldman, and D. Rus. Provable filter pruning for efficient
neural networks. In International Conference on Learning Representations, 2020. URL https:
//openreview.net/forum?id=BJxkOlSYDH. (Cited on 2, 5, 8, 9, 26)

J.-H. Luo, J. Wu, and W. Lin. Thinet: A filter level pruning method for deep neural network
compression. In Proceedings of the IEEE international conference on computer vision, pages
5058–5066, 2017. (Cited on 2)

Z. Mariet and S. Sra. Diversity networks: Neural network compression using determinantal point
processes. arXiv preprint arXiv:1511.05077, 2015. (Cited on 2, 3, 5)

K. McGuffie and A. Newhouse. The radicalization risks of gpt-3 and advanced neural language
models. arXiv preprint arXiv:2009.06807, 2020. (Cited on 1)

B. Mirzasoleiman, A. Badanidiyuru, A. Karbasi, J. Vondrák, and A. Krause. Lazier than lazy greedy.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 29, 2015. (Cited on 5,
20)

P. Molchanov, S. Tyree, T. Karras, T. Aila, and J. Kautz. Pruning convolutional neural networks for
resource efficient inference. ICLR, 2017. (Cited on 2, 5, 8)

B. Mussay, M. Osadchy, V. Braverman, S. Zhou, and D. Feldman. Data-independent neural pruning
via coresets. In International Conference on Learning Representations, 2020. URL https:
//openreview.net/forum?id=H1gmHaEKwB. (Cited on 2, 5)

B. Mussay, D. Feldman, S. Zhou, V. Braverman, and M. Osadchy. Data-independent structured
pruning of neural networks via coresets. IEEE Transactions on Neural Networks and Learning
Systems, pages 1–13, 2021. doi: 10.1109/TNNLS.2021.3088587. (Cited on 2, 5)

B. K. Natarajan. Sparse approximate solutions to linear systems. SIAM journal on computing, 24(2):
227–234, 1995. (Cited on 3, 4)

G. Nemhauser, L. Wolsey, and M. Fisher. An analysis of approximations for maximizing submodular
set functions — I. Mathematical Programming, 14(1):265–294, 1978. (Cited on 3)

A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison, L. Antiga,
and A. Lerer. Automatic differentiation in pytorch. 2017. (Cited on 26)

12

https://openreview.net/forum?id=rJqFGTslg
https://openreview.net/forum?id=rJqFGTslg
https://arxiv.org/abs/2006.09327
https://openreview.net/forum?id=BJxkOlSYDH
https://openreview.net/forum?id=BJxkOlSYDH
https://openreview.net/forum?id=H1gmHaEKwB
https://openreview.net/forum?id=H1gmHaEKwB

H. Phan. huyvnphan/pytorch_cifar10, Jan. 2021. URL https://doi.org/10.5281/zenodo.
4431043. (Cited on 26)

K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition.
In Y. Bengio and Y. LeCun, editors, 3rd International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015. URL
http://arxiv.org/abs/1409.1556. (Cited on 9)

S. Srinivas and R. V. Babu. Data-free parameter pruning for deep neural networks. In Proceedings of
the British Machine Vision Conference (BMVC), pages 31.1–31.12. BMVA Press, September 2015.
(Cited on 2, 5)

J. Su, J. Li, B. Bhattacharjee, and F. Huang. Tensorial neural networks: Generalization of neural
networks and application to model compression. arXiv preprint arXiv:1805.10352, 2018. (Cited
on 1)

M. Sviridenko, J. Vondrák, and J. Ward. Optimal approximation for submodular and supermodular
optimization with bounded curvature. Mathematics of Operations Research, 42(4):1197–1218,
2017. (Cited on 22, 23, 24)

E. Voita, D. Talbot, F. Moiseev, R. Sennrich, and I. Titov. Analyzing multi-head self-attention:
Specialized heads do the heavy lifting, the rest can be pruned. In Proceedings of the 57th Annual
Meeting of the Association for Computational Linguistics, pages 5797–5808, 2019. (Cited on 1)

M. Ye, C. Gong, L. Nie, D. Zhou, A. Klivans, and Q. Liu. Good subnetworks provably exist: Pruning
via greedy forward selection. ICML, 2020a. (Cited on 2, 3, 5, 7, 8, 9, 15, 26)

M. Ye, L. Wu, and Q. Liu. Greedy optimization provably wins the lottery: Logarithmic number of
winning tickets is enough. Advances in Neural Information Processing Systems, 33:16409–16420,
2020b. (Cited on 2, 3, 5, 8, 15)

Z. Zhuang, M. Tan, B. Zhuang, J. Liu, Y. Guo, Q. Wu, J. Huang, and J. Zhu. Discrimination-aware
channel pruning for deep neural networks. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman,
N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural Information Processing Systems,
volume 31. Curran Associates, Inc., 2018. URL https://proceedings.neurips.cc/paper/
2018/file/55a7cf9c71f1c9c495413f934dd1a158-Paper.pdf. (Cited on 2, 7)

Checklist

1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes] We specify that our focus is on
the limited-data regime in both the abstract and introduction. See also the discussions
on lines 143-151 and 207-213 on when our approximation guarantee is non-zero, and
on lines 173-181 on the cost of our method.

(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes] See Appendix B

3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main exper-
imental results (either in the supplemental material or as a URL)? [Yes] We include
the code with instructions on how to reproduce all our experimental results in the
supplemental material.

13

https://doi.org/10.5281/zenodo.4431043
https://doi.org/10.5281/zenodo.4431043
http://arxiv.org/abs/1409.1556
https://proceedings.neurips.cc/paper/2018/file/55a7cf9c71f1c9c495413f934dd1a158-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/55a7cf9c71f1c9c495413f934dd1a158-Paper.pdf

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See Section 7 and Appendix G

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See Appendix G

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] See Appendix G
(b) Did you mention the license of the assets? [Yes] The license of the assets we used are

included in the code we provide.
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]

We include our code in the supplemental material.
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

14

A Additional details on related work

In this section, we give a more detailed comparison of our method with that of [Ye et al., 2020a,b].

Ye et al. [2020a] select neurons/channels to keep in a given layer that minimize the loss of the pruned
network. More precisely, they are solving

min
α≥0,

∑
i αi=1

n∑
i=1

[(f `α(xi)− yi)2],

where (xi, yi) are data points, f `α(x) is the output of the model where neurons in layer ` corresponding
to αi = 0 are pruned and the weights of the next layer are scaled by αin`, i.e., A`W `+1 is replaced
by n`A`Diag(α)W `+1 where Diag(α) is the diagonal matrix with α as its diagonal. This is similar
to the `1-relaxation of the selection problem (1) we solve, in the special case of a two layer network
with a single output, and instead of optimizing the weights of the next layer like we do, they optimize
how much to scale them, i.e., in this case their selection problem reduces to

min
α≥0,

∑
i αi=1

‖A`w`+1 − n`A`Diag(α)w`+1‖22.

They use a greedy algorithm with Frank-Wolfe like updates to approximate it (see [Ye et al., 2020a,
Section 12.1] for the relation between their greedy algorithm and Frank-Wolfe algorithm). This
method is very expensive as it requires O(kn`) forward passes in the full network, to prune each
layer. The provided theoretical guarantees only holds for two layer networks, and are with respect
to an `1-relaxation of the selection problem. Empirically, our method significantly outperforms the
method of [Ye et al., 2020a] in all settings we consider.

Ye et al. [2020b] propose two pruning method: Greedy Global imitation and Greedy Local imitation.
Greedy Global imitation is the same method from [Ye et al., 2020a] but with an additional approxi-
mation technique which reduces the cost of pruning one layer from O(kn`) to O(k) forward passes
through the full network. This is still more expensive than the cost of our method which is equivalent
to O(1/ε) forward passes through only the layer being pruned, if using the fast Greedy algorithm
from [Li et al., 2022] (see Section 3.3). Greedy Local imitation is closer to our approach, as it selects
neurons/channels to keep in a given layer that minimize the change in the input to the next layer, but
it also solves an `1-relaxation of the selection problem and only optimize the scaling of the next layer
weights instead of the weights directly, i.e., it solves

min
α≥0,

∑
i αi=1

‖A`w`+1 − n`A`Diag(α)w`+1‖22.

A similar greedy algorithm with Frank-Wolfe like updates as in [Ye et al., 2020a] is used. Although
the selection problem solved is simpler than ours, the cost of pruning one layer is still more expensive
than ours: O(kn`n`+1n) vs O((n`)

2(n`+1 + n + k)/ε). Ye et al. [2020b] also provide bounds
on the difference between the output of the original network and the pruned one, with exponential
convergence rate for Greedy Local imitation, and O(1/k2) rate for the Greedy Global imitation.
Similar guarantees with exponential convergence rate hold for our method (see Section 6). Empirically,
the results in [Ye et al., 2020b] show that their global method typically outperforms their local one. So
we expect our method to also outperform their local method, since it outperforms their global method.

B Missing proofs

Recall that F (S) = ‖A`W `+1‖2F − minW̃ `+1∈Rn`×n`+1 ‖A`W `+1 − A`SW̃
`+1‖2F , and G(S) =

F (M(S)), where M maps each channel to its corresponding columns in A`. We denote by F̃ (S)

the objective corresponding to the asymmetric formulation introduced in Section 5.1, i.e., F̃ (S) =

‖A`W `+1‖2F − minW̃ `+1∈Rn`×n`+1 ‖A`W `+1 − B`SW̃
`+1‖2F , and similarly G̃(S) = F̃ (M(S)),

where M maps each channel to its corresponding columns in A`.

We introduce some notation that will be used throughout the Appendix. Given any matrix D and
vector y, we denote by xS(y) ∈ arg minsupp(x)⊆S

1
2‖y − Dx‖

2
2 the vector of optimal regression

coefficients, and by projS(y) = DxS(y), RS(y) = y − projS(y) the corresponding projection and
residual.

15

B.1 Submodularity ratio bounds: Proof of Proposition 3.1 and 4.1 and their extension to the
asymmetric formulation

In this section, we prove that F,G, and their asymmetric variants F̃ , G̃ are all non-decreasing weakly
submodular functions. We start by reviewing the definition of restricted smoothness (RSM) and
restricted strong convexity(RSC).

Definition B.1 (RSM/RSC). Given a differentiable function ` : Rd → R and Ω ⊂ Rd × Rd, ` is
µΩ-RSC and νΩ-RSM if µΩ

2 ‖x−y‖
2
2 ≤ `(y)− `(x)−〈∇`(x), y−x〉 ≤ νΩ

2 ‖x−y‖
2
2, ∀(x, y) ∈ Ω.

If ` is RSC/RSM on Ω = {(x, y) : ‖x‖0 ≤ k, ‖y‖0 ≤ k, ‖x − y‖0 ≤ k}, we denote by µk, νk the
corresponding RSC and RSM parameters.

Proposition 3.1. Given U ⊆ V, k ∈ N+, F is a normalized non-decreasing γU,k-weakly submodular
function, with

γU,k ≥
min‖z‖2=1,‖z‖0≤|U |+k ‖A`z‖22
max‖z‖2=1,‖z‖0≤|U |+1 ‖A`z‖22

.

Proof. We can write F (S) =
∑n`+1

m=1 Fm(S) := `m(0) − minsupp(w̃m)⊆S `m(w̃m), where
`m(w̃m) = ‖A`w`+1

m −A`w̃m‖22. The function Fm(S) is then γU,k-weakly submodular with γU,k ≥
µ|U|+k

ν|U|+1
[Elenberg et al., 2016], where µ|U |+k and ν|U |+1 are the RSC and RSM parameters of `m,

given by µ|U |+k = min‖z‖2=1,‖z‖0≤|U |+k ‖A`z‖22, and ν|U |+1 = max‖z‖2=1,‖z‖0≤|U |+1 ‖A`z‖22. It
follows then that F is also γU,k-weakly submodular. It is easy to check that F is also normalized and
non-decreasing.

Proposition 4.1. GivenU ⊆ V`, k ∈ N+,G is a normalized non-decreasing γU,k-weakly submodular
function, with

γU,k ≥
min‖z‖2=1,‖z‖0≤rhrw(|U |+k) ‖A`z‖22
max‖z‖2=1,‖z‖0≤rhrw(|U |+1) ‖A`z‖22

.

Proof. By definition, G is γU,k-weakly submodular iff F satisfies

γU,kF (M(S)|M(L)) ≤
∑
i∈S

F (M(i)|M(L)),

for every two disjoint sets L, S ⊆ V`, such that L ⊆ U, |S| ≤ k. We extend the relation established
in [Elenberg et al., 2016] between weak submodularity and RSC/RSM parameters to this case.

Let S′ = M(S), L′ = M(L), I ′ = M(i), and k′ = rhrwk. As before, we can write
G(S) = F (S′) =

∑n`+1

m=1 Fm(S′) := `m(0) − minsupp(w̃m)⊆S′ `m(w̃m), where `m(w̃m) =

‖A`w`+1
m − A`w̃m‖22. We denote by µk and νk the RSC and RSM parameters of `m, given by

µk = min‖z‖2=1,‖z‖0≤k ‖A`z‖22, and νk = max‖z‖2=1,‖z‖0≤k ‖A`z‖22. To simplify notation, we
use xS := xS(A`w`+1

m).

For every two disjoint sets L, S ⊆ V`, such that L ⊆ U, |S| ≤ k, we have:

0 ≤ Fm(S′|L′) = `m(xL
′
)− `m(xS

′∪L′)

≤ −〈∇`m(xL
′
), xS

′∪L′ − xL
′
〉 −

µ|L′|+k′

2
‖xS

′∪L′ − xL
′
‖22

≤ max
supp(x)⊆S′∪L′

−〈∇`m(xL
′
), x− xL

′
〉 −

µ|L′|+k′

2
‖x− xL

′
‖22

16

By setting x = xL
′ − [∇`m(xL′)]S′

µ|L′|+k′
, we get G(S′|L′) ≤ ‖[∇`m(xL′)]S′‖

2
2

2µ|L′|+k′
.

Given any i ∈ S, I ′ = M(i), we have

Fm(I ′|L′) = `m(xL
′
)− `m(xI

′∪L′)

≥ `m(xL
′
)− `m(xL

′
− [∇`m(xL

′
)]I′

ν|L′|+|I′|
)

≥ 〈∇`m(xL
′
),

[∇`m(xL
′
)]I

ν|L′|+|I′|
〉 −

ν|L′|+k′

2
‖ [∇`m(xL

′
)]I

ν|L′|+|I′|
‖22

=
‖[∇`m(xL

′
)]I′‖22

2ν|L′|+|I′|

Hence,

G(S|L) ≤
n`+1∑
m=1

‖[∇`m(xL
′
)]S′‖22

2µ|L′|+k′
=

∑
i∈S,I′=M(i)

‖[∇`m(xL
′
)]I′‖22

2µ|L′|+k′

=
∑

i∈S,I′=M(i)

ν|L′|+|I′|

µ|L′|+k′

‖[∇`m(xL
′
)]I′‖22

2ν|L′|+|I′|
=
ν|L′|+k′

µ|L′|+k′

∑
i∈S

G(i|L).

We thus have γU,k ≥
µ|U′|+k′

ν|U′|+|I′|
.

Both Proposition 3.1 and Proposition 4.1 apply also to the asymmetric variants, using exactly the
same proofs.

Proposition B.2. Given U ⊆ V, k ∈ N+, F̃ is a normalized non-decreasing γU,k-weakly submodular
function, with

γU,k ≥
min‖z‖2=1,‖z‖0≤|U |+k ‖B`z‖22
max‖z‖2=1,‖z‖0≤|U |+1 ‖B`z‖22

.

Proposition B.3. Given U ⊆ V`, k ∈ N+, G is a normalized non-decreasing γU,k-weakly submodu-
lar function, with

γU,k ≥
min‖z‖2=1,‖z‖0≤rhrw(|U |+k) ‖A`z‖22
max‖z‖2=1,‖z‖0≤rhrw(|U |+1) ‖A`z‖22

.

B.2 Cost bound: Proof of Proposition 3.2 and its extension to other variants

In this section, we investigate the cost of applying GREEDY with F,G and their asymmetric variants
F̃ , G̃. To that end, we need the following key lemmas showing how to update the least squares
solutions and the function values after adding one or more elements.
Lemma B.4. Given a matrix D, vector y, and a vector of optimal regression coefficients xS(y) ∈
arg minsupp(x)⊆S

1
2‖y −Dx‖

2
2, we have for all S ⊆ V, i 6∈ S:

xS∪i(y) = (xS(y)− xS(di)γ
S,i(y)) + γS,i(y)1i ∈ arg min

supp(x)⊆S∪i

1

2
‖y −Dx‖22,

where γS,i(y) ∈ arg minγ∈R
1
2‖y − R

S(di)γ‖22. Hence, projS∪i(y) = projS(y) + projRS(di)(y),
where projRS(di)(y) = RS(di)γ

S,i(y).

Similarly, for I ⊆ V \ S, let RS(DI) be the matrix with columns RS(di), xS(DI) the matrix with
columns xS(di), and γS,I(y) ∈ arg minγ∈R|I|

1
2‖y −R

S(DI)γ‖22, then

xS∪I(y) = (xS(y)− xS(DI)γ
S,I(y)) + eIγ

S,I(y) ∈ arg min
supp(x)⊆S∪I

1

2
‖y −Dx‖22,

where eI ∈ R|V |×|I| is the matrix with [eI]i,i = 1 for all i ∈ I , and 0 elsewhere. Hence,
projS∪I(y) = projS(y) + projRS(DI)(y), where projRS(DI)(y) = RS(DI)γ

S,I(y).

17

Proof. By optimality conditions, we have:

D>S (DSx
S(y)− y) = 0 (7)

D>S (DSx
S(di)− di) = 0⇒ −D>SRS(di) = 0 (8)

RS(di)
>(RS(di)γ

S,i(y)− y) = 0 (9)

We prove that x̂S∪i(y) = (xS(y)− xS(di)γ
S,i(y)) + γS,i(y)1i satisfies the optimality conditions

on xS∪i(y), hence x̂S∪i(y) = xS∪i(y).

We have DS∪ix̂
S∪i(y) = DSx

S(y) +RS(di)γ
S,i(y), then

D>S (DS∪ix̂
S∪i(y)− y) = D>S (DSx

S(y)− y) +D>SR
S(di)γ

S,i(y) = 0

and
d>i (DS∪ix̂

S∪i(y)− y) = (RS(di) +DSx
S(di))

>(DSx
S(y) +RS(di)γ

S,i(y)− y)

= RS(di)
>DSx

S(y) +RS(di)
>(RS(di)γ

S,i(y)− y)

+ (DSx
S(di))

>(DSx
S(y)− y) + (DSx

S(di))
>RS(di)γ

S,i(y)

= 0

The proof for the case where we add multiple indices at once follows similarly.

Lemma B.5. For all S ⊆ V`, i 6∈ S, let RS(b`i) = b`i − projS(b`i), projRS(b`i)(y) = RS(b`i)γ
S,i(y)

with γS,i(y) ∈ arg minγ∈R ‖y −RS(b`i)γ‖22. We can write the marginal gain of adding i to S w.r.t
F̃ as:

F̃ (i|S) =

n`+1∑
m=1

‖projRS(b`i)(A
`)w`+1

m ‖22,

where projRS(b`i)(A
`) is the matrix with columns projRS(b`i)(a

`
j) for all j ∈ V`. Similarly, for

all S ⊆ V`, I ⊆ V` \ S, let RS(B`I) = B`I − projS(B`I), projRS(B`
I)(y) = RS(B`I)γ

S,I(y) with

γS,I(y) ∈ arg minγ∈R|I| ‖y −RS(B`I)γ‖22. We can write the marginal gain of adding I to S w.r.t F̃
as:

F̃ (I|S) =

n`+1∑
m=1

‖projRS(B`
I)(A

`)w`+1
m ‖22,

where projRS(B`
I)(A

`) is the matrix with columns projRS(B`
I)(a

`
j) for all j ∈ V`.

Proof. We prove the claim for the case where we add several elements. The case where we add
a single element then follows as a special case. For a fixed S ⊆ V`, the reweighted asymmetric
input change ‖A`W `+1 − B`SW̃

`+1‖2F is minimized by setting W̃ `+1 = xS(A`)W `+1, where
xS(A`) ∈ Rn`×n` is the matrix with columns xS(a`j) such that

xS(a`j) ∈ arg min
supp(x)⊆S

‖a`j −B`x‖22 for all j ∈ V`. (10)

Plugging W̃ `+1 into the expression of F̃ (S) yields F̃ (S) = ‖A`W `+1‖2F − ‖(A` −
projS(A`))W `+1‖2F , where projS(A`) = B`Sx

S(A`). For every m ∈ {1, · · · , n`+1}, we have:

‖(projS∪I(A
`)−A`)w`+1

m ‖22 − ‖(projS(A`)−A`)w`+1
m ‖22

= ‖(projS(A`) + projRS(BI)(A
`)−A`)w`+1

m ‖22 − ‖(projS(A`)−A`)w`+1
m ‖22 (by Lemma B.4)

= ‖projRS(BI)(A
`)w`+1

m ‖22 − 2〈(A` − projS(A`))w`+1
m ,projRS(BI)(A

`)w`+1
m 〉

= ‖projRS(BI)(A
`)w`+1

m ‖22 − 2〈projRS(BI)(A
`)w`+1

m ,projRS(BI)(A
`)w`+1

m 〉

= −‖projRS(BI)(A
`)w`+1

m ‖22
where the second to last equality holds because y − projS(y)− projRS(BI)(y) and projRS(BI)(y

′)
are orthogonal by optimality conditions (see proof of Lemma B.4):

〈y−projS(y)−projRS(BI)(y),projRS(BI)(y
′)〉 = 〈y−BSxS(y)−RS(BI)γ

S,I(y), RS(BI)γ
S,I(y′)〉 = 0.

Hence, F̃ (I|S) =
∑n`+1

m=1 ‖projRS(BI)(A
`)w`+1

m ‖22. In particular, if I = {i}, F̃ (i|S) =∑n`+1

m=1 ‖projRS(b`i)(A
`)w`+1

m ‖22.

18

Lemma B.6. For all S ⊆ V`, i 6∈ S, let RS(a`i) = a`i − projS(a`i), projRS(a`i)(y) = RS(a`i)γ
S,i(y)

with γS,i(y) ∈ arg minγ∈R ‖y −RS(a`i)γ‖22. We can write the marginal gain of adding i to S w.r.t
F as:

F (i|S) =

n`+1∑
m=1

‖projRS(a`i)(A
`
V \S)w`+1

m ‖22,

where projRS(a`i)(A
`
V \S) is the matrix with columns projRS(a`i)(a

`
j) for all j ∈ V \ S, 0 other-

wise. Similarly, for all S ⊆ V`, I ⊆ V` \ S, let RS(A`I) = A`I − projS(A`I), projRS(A`
I)(y) =

RS(A`I)γ
S,I(y) with γS,I(y) ∈ arg minγ∈R|I| ‖y −RS(A`I)γ‖22. We can write the marginal gain of

adding I to S w.r.t F as:

F (I|S) =

n`+1∑
m=1

‖projRS(A`
I)(A

`
V \S)w`+1

m ‖22,

where projRS(A`
I)(A

`
V \S) is the matrix with columns projRS(A`

I)(a
`
j) for all j ∈ V \ S, 0 otherwise.

Proof. Setting B` = A` in Lemma B.5, we get F (I|S) =
∑n`+1

m=1 ‖projRS(A`
I)(A

`)w`+1
m ‖22.

Note that for all i ∈ I, j ∈ S, a`j and RS(a`i) are orthogonal, and hence
projRS(A`

I)(a
`
j) = 0, by optimality conditions (see proof of Lemma B.4). It follows then

that F (I|S) =
∑n`+1

m=1 ‖projRS(A`
I)(A

`
V \S)w`+1

m ‖22. In particular, if I = {i}, F (i|S) =∑n`+1

m=1 ‖projRS(a`i)(A
`
V \S)w`+1

m ‖22.

Proposition B.7. Given S ⊆ V` such that |S| ≤ k, i 6∈ S, let projS(a`j) = A`Sx
S(a`j). Assuming

F̃ (S),projS(b`j), x
S(b`j) for all j 6∈ S, and xS(a`j) for all j ∈ V`, were computed in the previous

iteration, we can compute F̃ (S + i),projS+i(b
`
j), x

S+i(b`j) for all j 6∈ (S + i), and xS+i(a`j) for all
j ∈ V`, in

O(n` · (n`+1 + n+ k)) time.

Computing the optimal weights in Eq. (4) at the end of GREEDY can then be done in O(k · n` · n`+1)
time.

Proof. By Lemma B.5, we can update the function value using

F̃ (i|S) =

n`+1∑
m=1

‖projRS(b`i)(A
`)w`+1

m ‖22 =

n`+1∑
m=1

(
∑
j∈V`

γS,i(a`j)w
`+1
jm

)2‖RS(b`i)‖22.

This requires O(n) to compute RS(b`i) and its norm, O(n` · n) to compute γS,i(a`j) =
RS(b`i)>a`j
‖RS(b`i)‖22

for all j ∈ V`, and an additional O(n` · n`+1) to finally evaluate F̃ (S + i). We also need
O(|Sc| · n) to update projS∪i(bj) = projS(bj) + projRS(b`i)(bj) (by Lemma B.4), using
projRS(b`i)(bj) = RS(b`i)γ

S,i(b`j) for all j ∈ V` \ S ∪ i, O(|Sc| · |S|) to update xS∪i(b`j) =

xS(b`j) + (1i − xS(bi))γ
S,i(b`j)) (by Lemma B.4) for all j ∈ V` \ S ∪ i, and O(n` · |S|) to

update xS∪i(a`j) = xS(a`j) + (1i − xS(bi))γ
S,i(a`j)) for all j ∈ V`. So in total, we need

O(n` · (n`+1 + n + k)). Computing the new weights W̃ `+1 = xS(A`)W `+1 at the end can be
done in O(n` · n`+1 · |S|) = O(n` · n`+1 · k).

Proposition 3.2. Given S ⊆ V` such that |S| ≤ k, i 6∈ S, let projS(a`j) = A`Sx
S(a`j) be the

projection of a`j onto the column space of A`S , RS(a`i) = a`i − projS(a`i) and projRS(a`i)(a
`
j) ∈

arg minz=RS(a`i)γ,γ∈R ‖a`j − z‖22 the corresponding residual and the projection of a`j onto it. We can
write

F (i|S) =

n`+1∑
m=1

‖projRS(a`i)(A
`
V \S)w`+1

m ‖22,

19

where projRS(ai)(A
`
V \S) is the matrix with columns projRS(ai)(a

`
j) for all j 6∈ S, 0 otherwise.

Assuming F (S),projS(a`j) and xS(a`j) for all j 6∈ S were computed in the previous iteration, we
can compute F (S + i),projS+i(a

`
j) and xS+i(a`j) for all j 6∈ (S + i) in

O(n` · (n`+1 + n+ k)) time.

The optimal weights in Eq. (4) can then be computed in O(k · n` · n`+1) time, at the end of GREEDY.

Proof. The proof follows from Lemma B.6 and B.4 in the same way as in Proposition B.7.

Proposition 3.2 and Proposition B.7 apply also to G and G̃ respectively, since |M(i)| = O(1).

B.3 Extension of STOCHASTIC-GREEDY to weakly submodular functions

In this section, we show that the guarantee of STOCHASTIC-GREEDY (Algorithm 2) easily extends to
weakly submodular functions.

Algorithm 2 STOCHASTIC-GREEDY

1: Input: Ground set V , set function F : 2V → R+, budget k ∈ N+

2: S ← ∅
3: while |S| < k do
4: R← a random subset obtained by sampling s random elements from V \ S.
5: i∗ ← arg maxi∈R F (i | S)
6: S ← S ∪ {i∗}
7: end while
8: Output: S

Proposition B.8. Let Ŝ be the solution returned by STOCHASTIC-GREEDY with s = n
k log(1

ε), and
let F be a non-negative monotone γŜ,k-weakly submodular function. Then

E[F (Ŝ)] ≥ (1− e−γŜ,k) max
|S|≤k

F (S)

Proof. Denote by St the solution at iteration t of STOCHASTIC-GREEDY, and S∗ an optimal solution.
The proof follows in the same way as in [Mirzasoleiman et al., 2015, Theorem 1]. In particular,
Lemma 2 therein, does not use submodularity, so it holds here too. It states that the expected gain of
STOCHASTIC-GREEDY in one step is at least 1−ε

k

∑
i∈S∗\St

F (i|St) for any t. Therefore,

E[F (St+1)− F (St) | St] ≥
1− ε
k

∑
i∈S∗\St

F (i|St)

≥ γŜ,k
1− ε
k

F (S∗ \ St|St)

≥ γŜ,k
1− ε
k

(F (S∗)− F (St))

By taking expectation over St and induction, we get

E[F (St)] ≥
(

1−
(
1− γŜ,k

1− ε
k

)k)
F (S∗)

≥
(
1− e−γŜ,k(1−ε))F (S∗)

≥
(
1− e−γŜ,k − ε

)
F (S∗)

20

C Error rates: Proof of Proposition 6.1 and 6.3

In this section, we provide the proofs of our method’s error rates.
Proposition 3.1. Given U ⊆ V, k ∈ N+, F is a normalized non-decreasing γU,k-weakly submodular
function, with

γU,k ≥
min‖z‖2=1,‖z‖0≤|U |+k ‖A`z‖22
max‖z‖2=1,‖z‖0≤|U |+1 ‖A`z‖22

.

Proof. This follows by extending the approximation guarantee in Eq. (3) to:

F (Ŝ) ≥ (1− e−γŜ,k∗k/k
∗
) max
|S|≤k∗

F (S),

by a slight adaption of the proof in [Elenberg et al., 2016, Das and Kempe, 2011]. In particular, taking
k∗ = n` yields:

F (Ŝ) = ‖A`W `+1‖2F − ‖A`W `+1 −A`
Ŝ
Ŵ `+1‖2F ≤ (1− e−γŜ,n`

k/n`)‖A`W `+1‖2F .
The first part of the claim follows by rearraging terms. Similarly, for the asymmetric formulation we
have:

F̃ (Ŝ) ≥ (1− e−γŜ,k∗k/k
∗
) max
|S|≤k∗

F̃ (S).

Taking k∗ = n` yields:

F̃ (Ŝ) = ‖A`W `+1‖2F − ‖A`W `+1 −B`
Ŝ
Ŵ `+1‖2F

≥ (1− e−γŜ,n`
k/n`)(‖A`W `+1‖2F − min

W̃ `+1∈Rn`×n`+1

‖A`W `+1 −B`W̃ `+1‖2F)

The second part of the claim follows by rearraging terms.

Corollary 6.3. Let y ∈ Rn be the original model output, yŜ` , yS̃` ∈ Rn the outputs after layers 1 to
` are sequentially pruned using SEQINCHANGE and ASYMINCHANGE, respectively, and H` the
function corresponding to all (unpruned) layers coming after layer `. If every function H` is Lipschitz
continuous with constant ‖H`‖Lip, then

‖y − yŜL‖22 ≤
L∑
`=1

e
−γŜ`,n`

k`/n`‖H`‖2Lip‖A`W `+1‖2F ,

and
‖y − yS̃L‖22 ≤

L∑
`=1

L∏
`′=`+1

(1− e−γS̃`′ ,n`′
k`′/n`′)e

−γS̃`,n`
k`/n`‖H`‖2Lip‖A`W `+1‖2F .

Proof. We start by proving the bound for SEQINCHANGE. Recall that B` are the updated activations
of layer ` after layers 1 to ` − 1 are pruned, and let Ŵ `+1 be the optimal weights corresponding
to Ŝ` (Eq. (4)). We can write y = H1(A1W 2) = H1(B1W 2) since A1 = B1, and yŜ` =

H`(B
`
Ŝ`
Ŵ `+1), yŜ`−1 = H`(B

`W `+1) for all ` ∈ [L]. Since H` is Lipschitz continuous for all
` ∈ [L], we have by the triangle inequality:

‖y − yŜL‖22 ≤
L∑
`=1

‖yŜ` − yŜ`−1‖2F

≤
L∑
`=1

‖H`(B
`
Ŝ`
Ŵ `+1)−H`(B

`W `+1)‖2F

≤
L∑
`=1

‖H`‖2Lip‖B`Ŝ`
Ŵ `+1 −B`W `+1‖2F

≤
L∑
`=1

e
−γŜ`,n`

k`/n`‖H`‖2Lip‖B`W `+1‖2F ,

21

where the last inequality follows from Proposition 6.1.

Next, we prove the bound for ASYMINCHANGE. Let W̃ `+1 be the optimal weights corresponding
to S̃` (Eq. (4)). We can write y = H`(A

`W `+1) and yS̃` = H`(B
`
S̃`
W̃ `+1) for all ` ∈ [L]. By

Proposition 6.1 and the Lipschitz continuity of HL, we have

‖y−yS̃L‖22 ≤ e
−γS̃L,nL

kL/nL‖HL‖2Lip‖ALWL+1‖2F+(1−e−γS̃L,nL
kL/nL)‖HL‖2Lip‖ALWL+1−BLWL+1‖2F

Let H`+1
` denote the function corresponding to all layers between the `th layer and the (`+ 1)th layer

(not necessarily consecutive in the network), then we can write ALWL+1 = HL
L−1(AL−1WL)

and BLWL+1 = HL
L−1(BL−1

S̃L−1
W̃L), and HL−1(Z) = HL(HL

L−1(Z)). It follows then that

‖HL−1‖Lip = ‖HL‖Lip‖HL
L−1‖Lip, and

‖y − yS̃L‖22 ≤ e
−γS̃L,nL

kL/nL‖HL‖2Lip‖ALWL+1‖2F + (1− e−γS̃L,nL
kL/nL)‖HL‖2Lip‖HL

L−1‖2Lip‖AL−1WL −BL−1

S̃L−1
W̃L‖2F

≤ e−γS̃L,nL
kL/nL‖HL‖2Lip‖ALWL+1‖2F + (1− e−γS̃L,nL

kL/nL)‖HL−1‖2Lip‖AL−1WL −BL−1

S̃L−1
W̃L‖2F

Repeatedly applying the same arguments yields the claim.

D Stronger notion of approximate submodularity

In this section, we show that F and F̃ satisfy stronger properties than the weak submodularity
discussed in Section 3.1, which lead to a stronger approximation guarantee for GREEDY. These
properties do not necessarily hold for G and G̃.

D.1 Additional preliminaries

We start by reviewing some preliminaries. Recall that a set function F is submodular if it has
diminishing marginal gains: F (i | S) ≥ F (i | T) for all S ⊆ T , i ∈ V \ T . If −F is submodular,
then F is said to be supermodular, i.e., F satisfies F (i | S) ≤ F (i | T), for all S ⊆ T , i ∈ V \ T .
When F is both submodular and supermodular, it is said to be modular.

Relaxed notions of submodularity/supermodularity, called weak DR-submodularity/supermodularity,
were introduced in [Lehmann et al., 2006] and [Bian et al., 2017], respectively.
Definition D.1 (Weak DR-sub/supermodularity). A set function F is αk-weakly DR-submodular,
with k ∈ N+, αk > 0, if

F (i|S) ≥ αkF (i|T), for all S ⊆ T, i ∈ V \ T, |T | ≤ k.

Similarly, F is βk-weakly DR-supermodular, with k ∈ N+, β > 0, if

F (i|T) ≥ βkF (i|S), for all S ⊆ T, i ∈ V \ T, |T | ≤ k.

We say that F is (αk, βk)-weakly DR-modular if it satisfies both properties.

The parameters αk, βk characterize how close a set function is to being submodular and supermodular,
respectively. If F is non-decreasing, then αk, βk ∈ [0, 1], F is submodular (supermodular) if and
only if αk = 1 (βk = 1) for all k ∈ N+, and modular if and only if both αk = βk = 1 for all
k ∈ N+. The notion of weak DR-submodularity is a stronger notion of approximate submodularity
than weak submodularity, as γS,k ≥ α|S|+k−1 for all S ⊆ V, k ∈ N+ [El Halabi et al., 2018, Prop.
8]. This implies that GREEDY achieves a (1 − e−α2k−1)-approximation when F is α2k−1-weakly
DR-submodular.

A stronger approximation guarantee can be obtained with the notion of total curvature introduced
in [Sviridenko et al., 2017], which is a stronger notion of approximate submodularity than weak
DR-modularity.
Definition D.2 (Total curvature). Given a set function F , we define its total curvature ck where
k ∈ N+, as

ck = 1− min
|S|≤k,|T |≤k,i∈V \T

F (i|S)

F (i|T)
.

22

Note that if F has total curvature ck, then F is (1 − ck, 1 − ck)-weakly DR-modular. Given a
non-decreasing function F with total curvature ck, the GREEDY algorithm is guaranteed to return a
solution F (Ŝ) ≥ (1− ck) max|S|≤k F (S) [Sviridenko et al., 2017, Theorem 6].

D.2 Approximate modularity of reweighted input change

The reweighted input change objective F is closely related to the column subset selection objective
(the latter is a special case of F where W `+1 is the identity matrix), whose total curvature was shown
to be related to the condition number of A` in [Sviridenko et al., 2017].

We show in Propositions D.3 and D.4 that the total curvatures of F̃ and F are related to the condition
number of A`W `+1.
Proposition D.3. Given k ∈ N+, F̃ is a normalized non-decreasing αk-weakly DR-submodular
function, with

αk ≥
min‖z‖2=1 ‖(A`W `+1)>z‖22
max‖z‖2=1 ‖(A`W `+1)>z‖22

.

Moreover, if any collection of k + 1 columns of B` are linearly independent, F̃ is also αk-weakly
DR-supermodular and has total curvature 1− αk.

Proof. We adapt the proof from [Sviridenko et al., 2017, Lemma 6]. For all S ⊆ V, i ∈ V \S, we have
F (i|S) =

∑n`+1

m=1 ‖projRS(b`i)(A
`)w`+1

m ‖22 by Lemma B.5. For all j 6∈ S, we have projRS(b`i)(a
`
j) =

RS(b`i)
RS(b`i)>a`j
‖RS(b`i)‖2 if ‖RS(b`i)‖ > 0, and 0 otherwise, by optimality conditions. Hence, we can write

for all i such that ‖RS(b`i)‖ > 0,

F̃ (i|S) =

n`+1∑
m=1

‖projRS(bi)(A
`)w`+1

m ‖22 =

n`+1∑
m=1

‖
∑
j∈V

w`+1
jm RS(b`i)

RS(b`i)
>a`j

‖RS(b`i)‖2
‖22 = ‖(A`W `+1)>

RS(b`i)

‖RS(b`i)‖
‖22

Hence,
min
‖z‖2=1

‖(A`W `+1)>z‖22 ≤ F̃ (i|S) ≤ max
‖z‖2=1

‖(A`W `+1)>z‖22

Let vj = xS(B`)ij for j ∈ S, vi = −1, and z = v/‖v‖2, then ‖v‖2 ≥ 1, and

‖RS(b`i)‖2 = ‖B`v‖22 ≥ ‖B`z‖22 ≥ min
‖z‖2≤1,‖z‖0≤|S|+1

‖B`z‖22

The bound on αk then follows by noting that ‖RS(b`i)‖ ≥ ‖RT (b`i)‖ for all S ⊆ T . The rest of the
proposition follows by noting that if any collection of k + 1 columns of B` are linearly independent,
then ‖RS(b`i)‖ ≥ min‖z‖2≤1,‖z‖0≤k+1 ‖B`z‖22 > 0 for any S such that |S| ≤ k.

As discussed in Section D.1, Proposition D.3 implies that GREEDY achieves a (1 − e−α2k−1)-
approximation with F̃ (S), where αk is non-zero if all rows of A`W `+1 are linearly independent.
If in addition any k + 1 columns of B` are linearly independent, then GREEDY achieves an αk-
approximation.
Proposition D.4. Given k ∈ N+, F is a normalized non-decreasing αk-weakly DR-submodular
function, with

αk ≥
max{min‖z‖2=1 ‖(A`W `+1)>z‖22,min‖z‖2=1 ‖(W `+1)>z‖22 min‖z‖2≤1,‖z‖0≤k+1 ‖A`z‖22}

max‖z‖2=1 ‖(A`W `+1)>z‖22
.

Moreover, if any collection of k + 1 columns of A` are linearly independent, F is also αk-weakly
DR-supermodular and has total curvature 1− αk.

Proof. Setting B` = A` in Lemma B.5, we get

αk ≥
min‖z‖2=1 ‖(A`W `+1)>z‖22
max‖z‖2=1 ‖(A`W `+1)>z‖22

23

To obtain the second lower bound, we note that by Lemma B.6 we can write for all S ⊆ V, i ∈ V \ S
such that ‖RS(a`i)‖ > 0,

F (i|S) =

n`+1∑
m=1

(
∑
j 6∈S

w`+1
jm

RS(a`i)
>a`j

‖RS(a`i)‖2
)2‖RS(a`i)‖22 = ‖(W `+1)>(A`V \S)>

RS(a`i)

‖RS(a`i)‖
‖22‖RS(a`i)‖22.

Note that γS,i(ai) =
RS(a`i)>a`i
‖RS(a`i)‖2 = 1 by optimality conditions (RS(a`i)

>a`i = RS(a`i)
>(RS(a`i) +

ASx
S(ai)) = ‖RS(a`i)‖22; see proof of Lemma B.4), hence ‖(A`V \S)>

RS(a`i)

‖RS(a`i)‖‖
2
2 ≥ 1 and

‖(W `+1)>(A`V \S)>
RS(a`i)

‖RS(a`i)‖‖
2
2 ≥ min‖z‖2=1,‖z‖0≤|V \S| ‖(W `+1)>z‖22. Let vj = xS(A`)ij for

j ∈ S, vi = −1, and z = v/‖v‖2, then ‖v‖2 ≥ 1, and

‖RS(a`i)‖2 = ‖A`v‖22 ≥ ‖A`z‖22 ≥ min
‖z‖2≤1,‖z‖0≤|S|+1

‖A`z‖22

We thus have F (i|S) ≥ min‖z‖2=1,‖z‖0≤|V \S| ‖(W `+1)>z‖22 min‖z‖2≤1,‖z‖0≤|S|+1 ‖A`z‖22.

The bound on αk then follows by noting that ‖RS(a`i)‖ ≥ ‖RT (a`i)‖ for all S ⊆ T . The rest of the
proposition follows by noting that if any collection of k + 1 columns of A` are linearly independent,
then ‖RS(a`i)‖ ≥ min‖z‖2≤1,‖z‖0≤k+1 ‖A`z‖22 > 0 for any S such that |S| ≤ k.

As discussed in Section D.1, Proposition D.3 implies that GREEDY achieves a (1 − e−α2k−1)-
approximation with F (S), where αk is non-zero if all rows of A`W `+1 are linearly independent.
Moreover, if any k + 1 columns of A` are linearly independent and all rows of W `+1 are linearly
independent, then GREEDY achieves an αk-approximation.

It is worth noting that if W `+1 is identity matrix, i.e., F is the column subset selection function, then
Proposition D.4 implies a stronger result than [Sviridenko et al., 2017, Lemma 6] for some cases. In
particular, we have

αk ≥
max{min‖z‖2≤1,‖z‖0≤k+1 ‖A`z‖22,min‖z‖2=1 ‖(A`)>z‖22}

max‖z‖2≤1 ‖(A`)>z‖22}
,

which implies that F is weakly DR-submodular if any k columns of A` are linearly independent, or
if all rows of A` are linearly independent.

E Empirical values of the submodularity ratio

As discussed in Section 3.1, computing the lower bounds on the submodularity ratio γU,k in Proposi-
tion 3.1 and 4.1 is NP-Hard [Das and Kempe, 2011] (min‖z‖2=1,‖z‖0≤|U |+k ‖A`z‖22 corresponds to
λmin(C, |U |+k) in their notation). One simple lower bound that can be obtained from the eigenvalue
interlacing theorem is γU,k ≥ λmin((A`)>A`)

λmax((A`)>A`)
. However, such bound is too loose as it is often equal to

zero. For this reason, we focus on when our lower bounds on γŜ,k are non-zero: the lower bounds
in Proposition 3.1 and 4.1 are non-zero if any min{2k, n`} and min{2k, n`}rhrw columns of A`
are linearly independent, respectively. We report in Table 1 an upper bound on k for which these
conditions hold, based on the rank of the activation matrix A`, in each pruned layer in the three
models we used in our experiments.

We observe that the upper bound is close to 0.5 for most linear layers, but is very small in some
convolution layers (e.g., features.15, 18, 22 in VGG11). As explained in Section 4, the linear
independence condition required for convolution layers (Proposition 4.1) only holds for very small k,
due to the correlation between patches which overlap. This can be avoided in most layers by sampling
rhrw random patches from each image (to ensure A` is a tall matrix), instead of using all patches.
We report in Table 2 the corresponding upper bounds on k in this setting for the VGG11 model.

The upper bounds are indeed larger than the ones obtained with all patches. However, some layers
(e.g., features.15, 18, 22) have a very small feature map size (respectively 4 × 4, 4 × 4, 2 × 2) so
that even the small number of random patches have significant overlap, resulting in still a very small
upper bound. Our experiments with random patches on VGG11 yielded worst results, so we chose

24

Table 1: Largest possible k for which our lower bounds on the submodularity ratio γŜ,k are non-zero,
when using all patches per image.

Dataset Model upper bound on k/n` (all patches, n = 512)

MNIST LeNet conv1: 0.37, conv2: 1, fc1: 0.46, fc2: 0.49
CIFAR10 VGG11 features.0: 0.22, features.4: 0.39, features.8: 0.25, features.11: 0.28, features.15: 0.06,

features.18: 0.03, features.22: 0.01, classifier.0: 1, classifier.3: 1
CIFAR10 ResNet56 layer1.0.conv1: 0.12, layer1.1.conv1: 0.15, layer1.2.conv1: 0.22, layer1.3.conv1: 0.22,

layer1.4.conv1: 0.30, layer1.5.conv1: 0.28, layer1.6.conv1: 0.44, layer1.7.conv1: 0.35,
layer1.8.conv1: 0.15, layer2.0.conv1: 0.48, layer2.1.conv1: 0.47, layer2.2.conv1: 0.48,
layer2.3.conv1: 0.47, layer2.4.conv1: 0.48, layer2.5.conv1: 0.47, layer2.6.conv1: 0.48,
layer2.7.conv1: 0.47, layer2.8.conv1: 0.48, layer3.0.conv1: 0.47, layer3.1.conv1: 0.49,
layer3.2.conv1: 0.46, layer3.3.conv1: 0.48, layer3.4.conv1: 0.48, layer3.5.conv1: 0.49,
layer3.6.conv1: 0.48, layer3.7.conv1: 0.48, layer3.8.conv1: 1

Table 2: Largest possible k for which our lower bounds on the submodularity ratio γŜ,k are non-zero,
in VGG11 on CIFAR10, when using rhrw random patches per image.

Dataset Model upper bound on k/n` (random patches, n = 512)

CIFAR10 VGG11 features.0: 0.38, features.4: 0.43, features.8: 0.29, features.11: 0.31, features.15: 0.15,
features.18: 0.08, features.22: 0.1, classifier.0: 1, classifier.3: 1

to use all patches. Note that our lower bounds on γŜ,k are not necessarily tight (see Appendix F).
Hence, if k is outside these ranges, our lower bound on γŜ,k is zero, but not necessarily γŜ,k itself;
indeed in our experiments our methods still perform well in these cases.

F Tightness of lower bounds on the submodularity ratio

In this section, we investigate how tight are the lower bounds on the submodularity ratio γU,k in
Propositions 3.1 and 4.1. One trivial example where these bounds are tight is when A` is the identity
matrix. In this case, both F and G are submodular, hence their corresponding γU,k = 1 for all U and
k, and the lower bounds in both Proposition 3.1 and 4.1 are also equal to one. We present below
another more interesting example where the bounds are tight.

Proposition F.1. Given any matrix A` whose columns have equal norm, there exists a matrix W `+1

such that the corresponding function F has γ∅,k =
min‖z‖2=1,‖z‖0≤k ‖A`z‖22
max‖z‖2=1,‖z‖0≤1 ‖A`z‖22

.

Proof. Given a set S, let vSmin, u
S
min be the right and left singular vectors of A`S corresponding to

the smallest singular value σSmin of A`S , i.e., A`Sv
S
min = σSminu

S
min and (A`S)>uSmin = σSminv

S
min. We

consider the case where all columns of A` have equal norm, which we denote by σ1
max, and W `+1

have all columns equal to cvSmin for some scalar c > 0. Then for all m, A`Sw
`+1
m = cσSminu

S
min and

the minimum of minsupp(x)⊆S ‖cσSminu
S
min −A`x‖22 is obtained at xS = cvSmin. We can thus write

F (S) =

n`+1∑
m=1

‖cσSminu
S
min‖22 − min

supp(x)⊆S
‖cσSminu

S
min −A`x‖22

=

n`+1∑
m=1

(cσSmin)2 − ‖cσSminu
S
min − cσminu

S
min‖22

= n`+1(cσSmin)2

25

On the other hand, for any i ∈ S, let y = cσSminu
S
min, the minimum of minsupp(x)⊆{i} ‖y −A`x‖22

is obtained at xi =
(a`i)>y

‖a`i‖22
. We have

F (i) =

n`+1∑
m=1

‖y‖22 − min
supp(x)⊆{i}

‖y −A`x‖22

=

n`+1∑
m=1

‖y‖22 − ‖y − a`i
(a`i)>y

‖a`i‖22
‖22

= n`+1
((a`i)

>y)2

‖a`i‖22
Hence, ∑

i∈S
F (i) = n`+1

∑
i∈S

((a`i)
>y)2

‖a`i‖22

= n`+1
‖(A`S)>y‖22

(σ1
max)2

= n`+1
c2(σSmin)4

(σ1
max)2

Then

γ∅,k ≤
∑
i∈S F (i)

F (S)
=

(σSmin)2

(σ1
max)2

=
min‖z‖2=1,supp(z)=S ‖A`z‖22
max‖z‖2=1,‖z‖0=1 ‖A`z‖22

.

If we choose S such that S ∈ arg min|S|≤k(σSmin)2, we get γ∅,k =
min‖z‖2=1,‖z‖0≤k ‖A`z‖22
max‖z‖2=1,‖z‖0≤1 ‖A`z‖22

by
Proposition 3.1.

Since F is a special case of G where M is the identity map, the above example applies to G too. On
the other hand, there are also cases where these bounds are not tight. In particular, there are cases
where the lower bound on α|U |+k−1 in Proposition D.4 is larger than the lower bound on γU,k in
Proposition 3.1, which implies that the latter is not tight since γU,k ≥ α|U |+k−1 (see Section D.1). For
example, if all rows ofA`W `+1 are linearly independent, but there exists 2k columns ofA` which are
linearly dependent, then the bound in Proposition 3.1 is zero while the one in Proposition D.4 is not.
These borderline cases are unlikely to occur in practice. Whether we can tighten these lower bounds
based on realistic assumptions on the weights and activations is an interesting future research question.

G Experimental setup

Our code uses Pytorch [Paszke et al., 2017] and builds on the open source ShrinkBench library
introduced in [Blalock et al., 2020]. We use the code from [Buschjäger et al., 2020] for GREEDY. Our
implementation of LAYERSAMPLING is adapted from the code provided in [Liebenwein et al., 2020].
We implemented the version of LAYERGREEDYFS implemented in the code of [Ye et al., 2020a],
which differs from the version described in the paper: added neurons/channels are not allowed to
be repeated. We use the implementation of LeNet and ResNet56 included in ShrinkBench [Blalock
et al., 2020], and a modified version of the implementation of VGG11 provided in [Phan, 2021],
where we changed the number of neurons in the first two layers to 128.

We conducted experiments on 3 different clusters with the following resources (per experiment):

• Cluster 1: 1 × NVidia A100 with 40G memory, 20 × AMD Milan 7413 @ 2.65 GHz /
AMD Rome 7532 @ 2.40 GHz

• Cluster 2: 1 × NVIDIA P100 Pascal with 12G/16G memory / NVIDIA V100 Volta with
32G memory, 20 × Intel CPU of various types

• Cluster 3: 1 × NVIDIA Quadro RTX 8000 with 48G memory / NVIDIA Tesla M40 with
24G memory / NVIDIA TITAN RTX with 24G memory, 6 × CPU of various types.

26

Pruning and fine-tuning with limited data was done on CPUs for all methods, a GPU was used only
when fine-tuning with full data.

All our experiments used the following setup:

Random seeds: 42, 43, 44, 45, 46

Pruning setup:

• Number of Batches: 4 (sampled at random from the training set)
• Batch size: 128
• Values used for compression ratio:

c ∈ {1, 2, 4, 8, 16, 32, 64, 128}

• Values used for per-layer fraction selection:

α` ∈ {0.01, 0.05, 0.075, 0.1, 0.15, 0.2, · · · , 0.95, 1.0}

• Verification set used for the budget selection method in Section 5.2: random subset of
training set of same size as validation set.

Training and fine-tuning setup for LeNet on MNIST:

• Batch size: 128
• Epochs for pre-training: 200
• Epochs for fine-tuning: 10
• Optimizer for pre-training: SGD with Nestrov momentum 0.9

• Optimizer for fine-tuning: Adam with β1 = 0.9 and β2 = 0.99

• Initial learning rate: 1× 10−3

• Learning rate schedule: Fixed

Training and fine-tuning setup for VGG11 on CIFAR10:

• Batch size: 128
• Epochs for pre-training: 200
• Epochs for fine-tuning: 20
• Optimizer for pre-training: Adam with β1 = 0.9 and β2 = 0.99

• Optimizer for fine-tuning: Adam with β1 = 0.9 and β2 = 0.99

• Initial learning rate: 1× 10−3

• Weight decay: 5× 10−4

• Learning rate schedule for pre-training: learning rate dropped by 0.1 at epochs 100 and 150

• Learning rate schedule for fine-tuning: learning rate dropped by 0.1 at epochs 10 and 15

The setup for fine-tuning ResNet56 on CIFAR10 is the same one used for VGG, as outlined above.

H Effect of fine-tuning

In this section, we study the effect of fine-tuning with both limited and sufficient data. To that end,
we report the top-1 accuracy results of all the pruning tasks considered in Section 7, after fine-tuning
with only four batches of training data, and after fine-tuning with the full training data in Figure
3. We fine-tune for 10 epochs in the MNIST experiment, and for 20 epochs in both CIFAR-10
experiments. We do not fine-tune at compression ratio 1 (i.e., when nothing is pruned).

Our method still outperforms other baselines after fine-tuning with limited-data, and is among the
best performing methods even in the full-data setting (if we consider the non-reweighted variants
for VGG11 model). As expected, fine-tuning with the full training data provides a significant boost

27

Figure 2: Top-1 Accuracy of different pruning methods, after fine-tuning with four batches of training
data, applied to LeNet on MNIST (left), ResNet56 on CIFAR10 (middle), and VGG11 on CIFAR10
(right), for several compression ratios (in log-scale), with (top) and without (bottom) reweighting.
We include the three reweighted variants of our method in the bottom plots (faded) for reference.

Figure 3: Top-1 Accuracy of different pruning methods, after fine-tuning with the full training
data, applied to LeNet on MNIST (left), ResNet56 on CIFAR10 (middle), and VGG11 on CIFAR10
(right), for several compression ratios (in log-scale), with (top) and without (bottom) reweighting.
We include the three reweighted variants of our method in the bottom plots (faded) for reference.

28

Figure 4: Top-1 Accuracy of different pruning methods on CIFAR10, after pruning the first and
second to last convolution layers in VGG11 model, with different fractions of remaining channels (in
log-scale), with (left) and without (right) reweighting, with (bottom) and without (top) fine-tuning,
with per-layer fractions selected using the selection method discussed in Section 5.2. We include the
three reweighted variants of our method in the plots without reweighting (faded) for reference.

in performance to all methods, even more than reweighting. Fine-tuning with limited data also
helps but significantly less. Reweighting still improves the performance of all methods, except
LAYERGREEDYFS and LAYERGREEDYFS-fd, even when fine-tuning with limited-data is used,
but it can actually deteriorate performance when fine-tuning with full-data is used (see Figure 3
left-bottom plot, the reweighted variants of our methods have lower accuracy than the non-reweighted
variants). We suspect that this could be due to overfitting to the very small training data used for
pruning. This only happens with VGG11 model, because it is larger than LeNet and ResNet56
models. We expect the performance of the reweighted variants of our method to improve if we use
more training data for pruning.

I Importance of per-layer budget selection

In this section, we study the effect of per-layer budget selection on accuracy. To that end, we use the
same pretrained VGG11 model from Section 7, and prune the first and second to last convolution
layers in it. Since the second to last layer in VGG11 (features.22) has little effect on accuracy when
pruned, we expect the choice of how the global budget is distributed on the two layers to have a
significant impact on performance. Figure 4 shows the top-1 accuracy for different fractions of
prunable channels kept, when the per-layer budget selection from Section 5.2 is used, while Figure
5 shows the results when equal fractions of channels kept are used in each layer. As expected, all
layerwise methods perform much more poorly with equal per-layer fractions, both with and without
fine-tuning. Though, the difference is less drastic when fine-tuning is used.

J Results with respect to other metrics

We report in Tables 3, 4 and 5, the top-1 accuracy, speedup ratio (original number of FLOPs
pruned number of FLOPs), and pruning

time values of the experiments presented in Section 7. We exclude the worst performing methods
RANDOM and LAYERRANDOM.

29

Figure 5: Top-1 Accuracy of different pruning methods on CIFAR10, after pruning the first and
second to last convolution layers in VGG11 model, with different fractions of remaining channels (in
log-scale), with (left) and without (right) reweighting, with (bottom) and without (top) fine-tuning,
with equal per-layer fractions. We include the three reweighted variants of our method in the plots
without reweighting (faded) for reference.

Note that for a given compression ratio speedup values vary significantly between different pruning
methods, because the number of weights and flops vary between layers, and pruning methods differ
in their per-layer budget allocations. The best performing methods in terms of compression are not
necessarily the best ones in terms of speedup. For example, ACTGRAD is among the best performing
methods in terms of compression on ResNet56-CIFAR10, but it is the worst one in terms of speedup.
In cases where we care more about speedup than compression, we can replace the constraint in the
per-layer budget selection problem (6) to be speedup instead of compression.

Since our goal in these experiments was to study performance in terms of accuracy vs compression
rate, we did not focus on optimizing our method’s implementation for computation time efficiency. For
example, our current implementation uses the classical Greedy algorithm. This can be significantly
sped-up by switching to the faster Greedy algorithm from Li et al. [2022].

30

Table 3: Top-1 Accuracy % (Acc1), speedup ratio (SR), and pruning time (in hrs:mins:secs) of
different pruning methods applied to LeNet on MNIST, with different compression ratios c, with and
without reweighting (rw) and fine-tuning (ft).

c = 2 c = 4 c = 8 c = 16 c = 32
Method rw ft Acc1 SR time Acc1 SR time Acc1 SR time Acc1 SR time Acc1 SR time

3 3 97.5 3.1 0:00:03 97.1 7.3 0:00:02 97.0 6.2 0:00:02 96.6 8.3 0:00:02 95.4 4.0 0:00:02
AsymInChange 3 7 97.4 3.1 0:00:03 96.2 7.3 0:00:02 94.4 6.2 0:00:02 90.3 8.3 0:00:02 83.5 4.0 0:00:02

7 3 97.6 3.1 0:00:03 97.4 4.0 0:00:02 97.4 2.4 0:00:02 96.2 8.3 0:00:01 95.7 3.5 0:00:02
7 7 84.6 3.1 0:00:03 48.7 4.0 0:00:02 36.4 2.4 0:00:02 12.8 8.3 0:00:01 14.4 3.5 0:00:02
3 3 97.6 3.1 0:00:03 97.2 7.3 0:00:02 97.1 6.2 0:00:02 96.5 8.3 0:00:02 95.4 4.0 0:00:02

SeqInChange 3 7 97.4 3.1 0:00:03 95.8 7.3 0:00:02 94.3 6.2 0:00:02 89.7 8.3 0:00:02 82.2 4.0 0:00:02
7 3 97.6 3.1 0:00:04 97.5 4.0 0:00:02 97.3 2.4 0:00:03 96.5 8.3 0:00:02 95.8 3.5 0:00:01
7 7 88.5 3.1 0:00:04 39.0 4.0 0:00:02 25.8 2.4 0:00:03 12.4 8.3 0:00:02 10.7 3.5 0:00:01
3 3 97.5 3.1 0:00:03 97.1 7.3 0:00:02 97.0 6.2 0:00:02 96.6 8.3 0:00:02 95.6 4.0 0:00:01

LayerInChange 3 7 97.4 3.1 0:00:03 95.8 7.3 0:00:02 94.2 6.2 0:00:02 89.9 8.3 0:00:02 81.8 4.0 0:00:01
7 3 97.6 3.1 0:00:03 97.4 4.0 0:00:02 97.5 2.4 0:00:02 96.5 8.3 0:00:02 95.6 3.5 0:00:01
7 7 88.6 3.1 0:00:03 40.6 4.0 0:00:02 33.5 2.4 0:00:02 23.9 8.3 0:00:02 13.1 3.5 0:00:01
3 3 97.7 2.0 0:00:00 97.4 2.6 0:00:00 97.3 3.4 0:00:00 96.6 4.1 0:00:00 95.3 4.8 0:00:00

ActGrad 3 7 97.2 2.0 0:00:00 94.7 2.6 0:00:00 87.2 3.4 0:00:00 67.5 4.1 0:00:00 40.5 4.8 0:00:00
7 3 97.6 2.0 0:00:00 97.5 2.6 0:00:00 97.2 3.4 0:00:00 96.6 4.1 0:00:00 95.0 4.8 0:00:00
7 7 81.0 2.0 0:00:00 43.5 2.6 0:00:00 24.9 3.4 0:00:00 17.7 4.1 0:00:00 15.1 4.8 0:00:00
3 3 97.6 3.1 0:00:00 97.1 4.7 0:00:00 96.6 11.2 0:00:00 95.8 16.2 0:00:00 95.8 4.0 0:00:00

LayerActGrad 3 7 97.1 3.1 0:00:00 95.1 4.7 0:00:00 90.2 11.2 0:00:00 82.9 16.2 0:00:00 76.9 4.0 0:00:00
7 3 97.5 3.2 0:00:00 97.4 4.4 0:00:00 97.4 2.4 0:00:00 96.9 3.0 0:00:00 96.4 3.1 0:00:00
7 7 84.9 3.2 0:00:00 46.3 4.4 0:00:00 27.9 2.4 0:00:00 20.5 3.0 0:00:00 17.0 3.1 0:00:00
3 3 97.5 3.1 0:00:00 97.1 6.7 0:00:00 96.7 11.2 0:00:00 95.9 16.2 0:00:00 96.0 4.0 0:00:00

LayerWeightNorm 3 7 97.3 3.1 0:00:00 95.5 6.7 0:00:00 93.6 11.2 0:00:00 88.2 16.2 0:00:00 81.1 4.0 0:00:00
7 3 97.5 3.0 0:00:00 97.5 3.0 0:00:00 97.3 2.6 0:00:00 96.0 14.7 0:00:00 95.8 3.5 0:00:00
7 7 91.6 3.0 0:00:00 60.1 3.0 0:00:00 53.9 2.6 0:00:00 18.1 14.7 0:00:00 14.8 3.5 0:00:00
3 3 97.5 1.9 0:00:20 97.4 2.7 0:00:21 97.0 3.5 0:00:19 96.4 4.4 0:00:20 95.7 5.2 0:00:19

LayerSampling 3 7 97.2 1.9 0:00:20 95.5 2.7 0:00:21 91.6 3.5 0:00:19 85.5 4.4 0:00:20 71.7 5.2 0:00:19
7 3 97.6 1.9 0:00:19 97.3 2.7 0:00:20 96.8 3.5 0:00:18 96.1 4.4 0:00:19 94.4 5.2 0:00:18
7 7 41.8 1.9 0:00:19 25.5 2.7 0:00:20 22.4 3.5 0:00:18 13.2 4.4 0:00:19 14.1 5.2 0:00:18
3 3 97.3 3.3 0:00:33 96.9 4.9 0:00:27 95.2 7.4 0:00:40 90.0 10.4 0:00:19 53.3 9.0 0:00:28

LayerGreedyFS 3 7 94.1 3.3 0:00:33 88.1 4.9 0:00:27 76.2 7.4 0:00:40 44.9 10.4 0:00:19 23.8 9.0 0:00:28
7 3 97.6 1.2 0:00:27 97.4 4.2 0:00:23 97.0 2.4 0:00:18 95.8 14.7 0:00:14 96.2 5.1 0:00:09
7 7 73.5 1.2 0:00:27 45.0 4.2 0:00:23 28.0 2.4 0:00:18 28.3 14.7 0:00:14 20.1 5.1 0:00:09
3 3 97.2 3.2 0:01:44 96.8 4.9 0:01:21 95.2 7.4 0:01:23 89.9 10.4 0:00:56 34.1 23.9 0:00:48

LayerGreedyFS-fd 3 7 94.2 3.2 0:01:44 88.2 4.9 0:01:21 75.8 7.4 0:01:23 47.2 10.4 0:00:56 17.2 23.9 0:00:48
7 3 97.6 1.2 0:01:30 97.4 4.4 0:01:19 97.0 2.4 0:01:01 96.7 7.5 0:00:36 95.5 3.5 0:00:21
7 7 73.5 1.2 0:01:30 47.4 4.4 0:01:19 30.3 2.4 0:01:01 23.3 7.5 0:00:36 16.9 3.5 0:00:21

Table 4: Top-1 Accuracy % (Acc1), speedup ratio (SR), and pruning time (in hrs:mins:secs) of
different pruning methods applied to ResNet56 on CIFAR10,with different compression ratios c, with
and without reweighting (rw) and fine-tuning (ft).

c = 2 c = 4 c = 8 c = 16 c = 32
Method rw ft Acc1 SR time Acc1 SR time Acc1 SR time Acc1 SR time Acc1 SR time

3 3 90.7 2.6 2:13:10 87.9 6.0 1:14:00 84.9 11.0 0:42:08 81.1 16.4 0:24:43 72.1 21.3 0:14:57
AsymInChange 3 7 84.2 2.6 2:13:10 46.4 6.0 1:14:00 20.6 11.0 0:42:08 18.3 16.4 0:24:43 10.2 21.3 0:14:57

7 3 90.9 2.5 2:15:09 88.3 6.0 1:12:51 85.4 10.4 0:40:31 81.7 15.1 0:26:00 74.2 20.2 0:15:23
7 7 73.3 2.5 2:15:09 16.4 6.0 1:12:51 13.6 10.4 0:40:31 9.9 15.1 0:26:00 10.7 20.2 0:15:23
3 3 90.7 2.6 4:13:21 88.0 6.0 2:50:54 85.2 11.0 1:30:23 81.1 16.4 0:48:09 72.6 21.3 0:24:36

SeqInChange 3 7 82.3 2.6 4:13:21 45.5 6.0 2:50:54 24.6 11.0 1:30:23 17.3 16.4 0:48:09 12.9 21.3 0:24:36
7 3 90.9 2.5 4:01:33 88.3 6.0 2:41:17 85.5 10.4 1:29:22 81.4 15.1 0:46:34 72.7 20.2 0:22:47
7 7 75.5 2.5 4:01:33 17.5 6.0 2:41:17 12.1 10.4 1:29:22 9.9 15.1 0:46:34 10.6 20.2 0:22:47
3 3 90.7 2.6 4:20:16 88.0 6.0 2:53:00 85.1 11.0 1:38:14 81.5 16.4 0:51:46 72.6 21.3 0:24:11

LayerInChange 3 7 72.3 2.6 4:20:16 23.7 6.0 2:53:00 15.8 11.0 1:38:14 14.0 16.4 0:51:46 11.3 21.3 0:24:11
7 3 90.9 2.5 4:21:26 88.4 6.0 2:49:09 85.4 10.4 1:29:47 81.9 15.1 0:49:17 73.4 20.2 0:22:33
7 7 38.6 2.5 4:21:26 11.4 6.0 2:49:09 9.9 10.4 1:29:47 10.2 15.1 0:49:17 11.0 20.2 0:22:33
3 3 91.3 1.7 0:02:07 89.8 2.6 0:02:22 86.8 4.2 0:01:47 81.0 6.7 0:01:55 71.3 10.8 0:01:31

ActGrad 3 7 85.2 1.7 0:02:07 50.4 2.6 0:02:22 21.3 4.2 0:01:47 14.1 6.7 0:01:55 11.4 10.8 0:01:31
7 3 91.2 1.7 0:00:02 89.8 2.6 0:00:02 86.8 4.2 0:00:05 81.8 6.7 0:00:02 72.3 10.8 0:00:07
7 7 50.3 1.7 0:00:02 16.4 2.6 0:00:02 10.5 4.2 0:00:05 11.7 6.7 0:00:02 10.2 10.8 0:00:07
3 3 90.6 2.8 0:02:01 87.8 6.1 0:02:04 85.0 10.6 0:01:37 80.6 15.5 0:01:43 71.2 21.3 0:02:02

LayerActGrad 3 7 78.4 2.8 0:02:01 35.2 6.1 0:02:04 18.4 10.6 0:01:37 13.1 15.5 0:01:43 11.6 21.3 0:02:02
7 3 90.5 2.9 0:00:06 88.4 5.7 0:00:05 85.3 10.1 0:00:10 81.6 15.1 0:00:10 72.2 20.2 0:00:05
7 7 21.9 2.9 0:00:06 10.2 5.7 0:00:05 10.6 10.1 0:00:10 9.9 15.1 0:00:10 10.3 20.2 0:00:05
3 3 90.8 2.7 0:02:14 88.4 5.8 0:01:48 84.9 10.3 0:01:47 80.8 16.4 0:01:30 71.7 21.3 0:01:39

LayerWeightNorm 3 7 81.8 2.7 0:02:14 46.7 5.8 0:01:48 20.4 10.3 0:01:47 12.0 16.4 0:01:30 11.0 21.3 0:01:39
7 3 90.7 2.7 0:00:00 88.4 5.9 0:00:00 85.4 10.2 0:00:00 81.8 15.1 0:00:00 71.8 20.2 0:00:00
7 7 25.4 2.7 0:00:00 9.9 5.9 0:00:00 9.4 10.2 0:00:00 9.9 15.1 0:00:00 9.8 20.2 0:00:00
3 3 90.9 1.9 0:03:37 88.9 3.6 0:05:02 84.7 7.2 0:04:05 76.7 14.2 0:03:47 68.7 20.7 0:05:12

LayerSampling 3 7 79.2 1.9 0:03:37 32.7 3.6 0:05:02 14.0 7.2 0:04:05 11.8 14.2 0:03:47 10.3 20.7 0:05:12
7 3 91.0 1.9 0:02:59 88.9 3.6 0:06:36 84.1 7.2 0:02:30 75.1 14.2 0:01:54 66.2 20.7 0:05:55
7 7 26.0 1.9 0:02:59 11.9 3.6 0:06:36 11.0 7.2 0:02:30 9.5 14.2 0:01:54 9.5 20.7 0:05:55
3 3 90.6 2.6 0:38:44 88.2 5.3 8:43:34 84.6 9.9 0:10:17 80.2 15.1 0:06:57 71.4 17.4 0:03:16

LayerGreedyFS 3 7 71.5 2.6 0:38:44 36.3 5.3 8:43:34 19.6 9.9 0:10:17 15.2 15.1 0:06:57 11.4 17.4 0:03:16
7 3 90.8 2.6 0:30:11 88.6 5.7 0:36:54 85.5 9.7 0:19:09 80.7 16.4 0:04:44 73.0 21.3 0:02:05
7 7 73.9 2.6 0:30:11 36.0 5.7 0:36:54 21.4 9.7 0:19:09 13.8 16.4 0:04:44 12.1 21.3 0:02:05
3 3 90.6 2.6 6:54:48 88.4 5.6 0:21:51 85.0 9.9 4:19:50 80.0 15.2 0:07:27 70.6 17.4 0:06:58

LayerGreedyFS-fd 3 7 75.9 2.6 6:54:48 28.7 5.6 0:21:51 17.4 9.9 4:19:50 14.4 15.2 0:07:27 12.2 17.4 0:06:58
7 3 90.7 2.6 1:09:55 88.6 5.7 0:25:45 85.6 9.3 0:18:38 81.1 15.3 0:11:40 74.3 22.0 0:04:07
7 7 72.6 2.6 1:09:55 38.0 5.7 0:25:45 20.6 9.3 0:18:38 13.4 15.3 0:11:40 13.0 22.0 0:04:07

31

Table 5: Top-1 Accuracy % (Acc1), speedup ratio (SR), and pruning time (in hrs:mins:secs) of
different pruning methods applied to VGG11 on CIFAR10, with different compression ratios c, with
and without reweighting (rw) and fine-tuning (ft).

c = 2 c = 4 c = 8 c = 16 c = 32
Method rw ft Acc1 SR time Acc1 SR time Acc1 SR time Acc1 SR time Acc1 SR time

3 3 89.7 1.9 31:38:06 89.7 2.1 30:35:13 89.6 2.5 23:54:22 89.5 5.0 22:38:37 81.4 8.3 19:01:51
AsymInChange 3 7 89.7 1.9 31:38:06 89.7 2.1 30:35:13 89.6 2.5 23:54:22 89.5 5.0 22:38:37 80.4 8.3 19:01:51

7 3 90.1 1.9 34:15:16 90.1 2.1 33:33:05 89.3 2.5 24:58:50 89.1 4.7 18:59:56 87.6 6.8 16:52:36
7 7 90.1 1.9 34:15:16 90.1 2.1 33:33:05 88.9 2.5 24:58:50 88.7 4.7 18:59:56 12.1 6.8 16:52:36
3 3 90.1 1.9 30:29:41 90.1 2.1 30:31:14 90.0 2.5 23:25:17 89.8 5.0 25:04:38 81.9 8.3 23:54:55

SeqInChange 3 7 90.1 1.9 30:29:41 90.1 2.1 30:31:14 90.0 2.5 23:25:17 89.8 5.0 25:04:38 81.6 8.3 23:54:55
7 3 90.1 1.9 32:17:12 90.1 2.1 31:13:02 89.3 2.5 23:51:44 89.3 4.7 22:31:17 87.7 6.8 20:23:53
7 7 90.1 1.9 32:17:12 90.1 2.1 31:13:02 89.1 2.5 23:51:44 88.8 4.7 22:31:17 18.2 6.8 20:23:53
3 3 90.1 1.9 27:27:33 90.1 2.1 29:43:24 90.0 2.5 20:45:59 89.8 5.0 29:00:23 85.3 8.3 18:56:08

LayerInChange 3 7 90.1 1.9 27:27:33 90.1 2.1 29:43:24 90.0 2.5 20:45:59 89.8 5.0 29:00:23 84.7 8.3 18:56:08
7 3 90.1 1.9 36:41:49 90.1 2.1 34:49:36 89.2 2.5 29:05:17 89.1 4.7 21:39:32 87.8 6.8 20:45:04
7 7 90.1 1.9 36:41:49 90.1 2.1 34:49:36 89.2 2.5 29:05:17 88.9 4.7 21:39:32 14.7 6.8 20:45:04
3 3 90.1 3.2 0:00:58 90.1 3.4 0:01:17 90.1 3.6 0:01:28 90.1 4.9 0:00:59 88.0 10.2 0:00:54

ActGrad 3 7 90.1 3.2 0:00:58 90.1 3.4 0:01:17 90.1 3.6 0:01:28 90.1 4.9 0:00:59 83.2 10.2 0:00:54
7 3 90.1 3.2 0:00:03 90.1 3.4 0:00:02 90.1 3.6 0:00:03 90.1 4.9 0:00:02 87.9 10.2 0:00:04
7 7 90.1 3.2 0:00:03 90.1 3.4 0:00:02 90.1 3.6 0:00:03 90.1 4.9 0:00:02 56.8 10.2 0:00:04
3 3 89.7 2.0 0:03:53 90.0 2.1 0:02:17 89.7 2.5 0:01:03 89.5 4.6 0:00:48 87.7 8.4 0:01:03

LayerActGrad 3 7 89.7 2.0 0:03:53 90.0 2.1 0:02:17 89.7 2.5 0:01:03 89.5 4.6 0:00:48 75.9 8.4 0:01:03
7 3 90.1 1.9 0:00:05 90.1 2.0 0:00:06 90.1 2.6 0:00:05 89.5 5.0 0:00:06 87.2 5.5 0:00:08
7 7 90.1 1.9 0:00:05 90.1 2.0 0:00:06 90.1 2.6 0:00:05 89.5 5.0 0:00:06 16.0 5.5 0:00:08
3 3 90.1 1.8 0:01:52 90.1 2.0 0:00:53 90.0 2.5 0:00:46 89.8 5.0 0:01:08 88.1 8.3 0:00:52

LayerWeightNorm 3 7 90.1 1.8 0:01:52 90.1 2.0 0:00:53 90.0 2.5 0:00:46 89.8 5.0 0:01:08 80.9 8.3 0:00:52
7 3 90.1 1.8 0:00:00 90.1 2.0 0:00:01 90.1 2.6 0:00:01 89.6 5.2 0:00:01 87.0 12.2 0:00:01
7 7 90.1 1.8 0:00:00 90.1 2.0 0:00:01 90.1 2.6 0:00:01 89.6 5.2 0:00:01 11.6 12.2 0:00:01
3 3 90.1 3.6 0:16:44 90.1 3.6 0:18:20 90.1 4.2 0:14:59 89.2 5.6 0:15:04 86.5 14.6 0:21:26

LayerSampling 3 7 90.1 3.6 0:16:44 90.1 3.6 0:18:20 90.1 4.2 0:14:59 89.2 5.6 0:15:04 75.0 14.6 0:21:26
7 3 90.0 3.7 0:16:18 90.0 3.7 0:16:48 89.9 4.2 0:19:04 89.0 5.6 0:15:04 86.3 14.6 0:15:47
7 7 90.0 3.7 0:16:18 90.0 3.7 0:16:48 89.9 4.2 0:19:04 50.5 5.6 0:15:04 13.7 14.6 0:15:47
3 3 89.3 2.0 23:30:16 83.3 2.9 7:50:23 74.2 4.8 5:12:07 40.3 10.9 6:01:53 31.2 18.3 1:51:43

LayerGreedyFS 3 7 89.3 2.0 23:30:16 83.3 2.9 7:50:23 74.2 4.8 5:12:07 35.9 10.9 6:01:53 16.1 18.3 1:51:43
7 3 89.2 2.0 9:49:18 88.7 2.2 6:56:45 87.2 2.8 4:10:47 84.4 4.8 2:40:57 46.4 7.4 2:36:44
7 7 89.1 2.0 9:49:18 88.6 2.2 6:56:45 82.4 2.8 4:10:47 63.7 4.8 2:40:57 19.1 7.4 2:36:44
3 3 89.4 2.0 12:06:03 86.8 2.7 10:22:33 69.1 4.0 6:00:33 44.3 13.0 3:27:58 31.1 13.0 3:35:15

LayerGreedyFS-fd 3 7 89.3 2.0 12:06:03 86.1 2.7 10:22:33 69.1 4.0 6:00:33 44.3 13.0 3:27:58 21.9 13.0 3:35:15
7 3 89.4 2.0 12:42:58 88.6 2.6 7:40:45 87.1 3.3 5:04:15 85.5 4.9 3:45:22 63.5 11.5 1:59:09
7 7 89.4 2.0 12:42:58 88.0 2.6 7:40:45 81.5 3.3 5:04:15 76.6 4.9 3:45:22 15.5 11.5 1:59:09

32

	Introduction
	Preliminaries
	Reweighted input change pruning
	Greedy selection
	Reweighting
	Cost

	Pruning regular regions of neurons
	Pruning multiple layers
	Reweighted input change pruning variants
	Per-layer budget selection

	Error convergence rate
	Empirical Evaluation
	Conclusion
	Additional details on related work
	Missing proofs
	Submodularity ratio bounds: Proof of prop:WeaklySub and 4.1 and their extension to the asymmetric formulation
	Cost bound: Proof of prop:cost and its extension to other variants
	Extension of Stochastic-Greedy to weakly submodular functions

	Error rates: Proof of prop:layerError and 6.3
	Stronger notion of approximate submodularity
	Additional preliminaries
	Approximate modularity of reweighted input change

	Empirical values of the submodularity ratio
	Tightness of lower bounds on the submodularity ratio
	Experimental setup
	Effect of fine-tuning
	Importance of per-layer budget selection
	Results with respect to other metrics

