
Fast Optimal Locally Private Mean Estimation
via Random Projections

Hilal Asi
Apple Inc.

hilal.asi94@gmail.com

Vitaly Feldman
Apple Inc.

vitaly.edu@gmail.com

Jelani Nelson
UC Berkeley

minilek@berkeley.edu

Huy L. Nguyen
Northeastern University

hu.nguyen@northeastern.edu

Kunal Talwar
Apple Inc.

kunal@kunaltalwar.org

Abstract

We study the problem of locally private mean estimation of high-dimensional
vectors in the Euclidean ball. Existing algorithms for this problem either incur sub-
optimal error or have high communication and/or run-time complexity. We propose
a new algorithmic framework, ProjUnit, for private mean estimation that yields
algorithms that are computationally efficient, have low communication complexity,
and incur optimal error up to a 1 + o(1)-factor. Our framework is deceptively
simple: each randomizer projects its input to a random low-dimensional subspace,
normalizes the result, and then runs an optimal algorithm such as PrivUnitG in the
lower-dimensional space. In addition, we show that, by appropriately correlating
the random projection matrices across devices, we can achieve fast server run-time.
We mathematically analyze the error of the algorithm in terms of properties of
the random projections, and study two instantiations. Lastly, our experiments
for private mean estimation and private federated learning demonstrate that our
algorithms empirically obtain nearly the same utility as optimal ones while having
significantly lower communication and computational cost.

1 Introduction

Distributed estimation of the mean, or equivalently the sum, of vectors v1, . . . , vn ∈ Rd is a
fundamental problem in distributed optimization and federated learning. For example, in the latter,
each of n devices may compute some update to parameters of a machine learning model based on its
local data, at which point a central server wishes to apply all updates to the model, i.e. add

∑n
i=1 vi

to the vector of parameters. The typical desire to keep local data private necessitates methods for
computing this sum while preserving privacy of the local data on each individual device, so that
the central server essentially only learns the noisy sum and (almost) nothing about each individual
summand vi [20, 11].

The gold standard for measuring privacy preservation is via the language of differential privacy [21].
In this work, we study this problem in the setting of local differential privacy (LDP). We consider (one-
round) protocols for which there exists some randomized algorithm R : Rd → M (called the local
randomizer), such that each device i sends R(vi) to the server. We say the protocol is ε-differentially
private if for any v, v′ ∈ Rd and any event S ⊆ M, Pr(R(v) ∈ S) ≤ eε Pr(R(v′) ∈ S). If ε = 0
then the distribution of R(v) is independent of v, and hence the output of R(·) reveals nothing about
the local data (perfect privacy); meanwhile if ε = ∞ then the distributions of R(v) and R(v′) can be
arbitrarily far, so that in fact one may simply set R(x) = x and reveal local data in the clear (total
lack of privacy). Thus, ε ≥ 0 is typically called the privacy loss of a protocol.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

There has been much previous work on private protocols for estimating the mean µ := 1
n

∑n
i=1 vi in

the LDP setting. Henceforth we assume each vi lives on the unit Euclidean sphere 1 Sd−1 ⊂ Rd. Let µ̂
be the estimate computed by the central server based on the randomized messages R(v1), . . . ,R(vn)
it receives. Duchi and Rogers [18] showed that the asymptotically optimal expected mean squared
error E ∥µ− µ̂∥22 achievable by any one-round protocol must be at least Ω(d

nmin(ε,ε2)), which is in
fact achieved by several protocols [19, 9, 14, 24]. These protocols however achieved empirically
different errors, with some having noticeably better constant factors than others.

Recent work of Asi et al. [7] sought to understand the optimal error achievable by any protocol. Let
R be any local randomizer satisfying ε-DP, and A be an aggregation algorithm for the central server
such that it computes its mean estimate as µ̂ := A(R(v1), . . . ,R(vn)). Furthermore, suppose that
the protocol is unbiased, so that Eµ̂ = µ for any inputs v1, . . . , vn. Lastly, let APrivUnitε ,RPrivUnitε
denote the PrivUnitε protocol of [9] (parameterized to satisfy ε-DP 2). Let Errn,d(A,R) denote

sup
v1,...,vn∈Sd−1

∥A(R(v1), . . . ,R(vn))− µ∥22 .

Asi et al. [7] proved the remarkable theorem that for any n, d:

Errn,d(A,R) ≥ Errn,d(APrivUnitε ,RPrivUnitε).

Thus, PrivUnit is not only asymptotically optimal, but in fact actually optimal in a very strong sense
(at least, amongst unbiased protocols).

While this work thus characterizes the optimal error achievable for ε-LDP mean estimation, there are
other desiderata that are important in practice. The most important amongst them are the device run-
time (the time to compute R(v)), the server runtime (the time to compute A on (R(v1), . . . ,R(vn))),
and the communication cost (⌈log2 |M|⌉ bits for each device to send its R(v) to the server). The
known error-optimal algorithms (PrivUnit [9] and PrivUnitG [7]) either require communicating d
floats or have a slower device runtime of Ω(eεd). As mean estimation is often used as a subroutine in
high-dimensional learning settings, this communication cost can be prohibitive and this has led to
a large body of work on reducing communication cost [2, 27, 14, 26, 24, 12]. Server runtimes of
these optimal algorithms are also slow, scaling as nd, whereas one could hope for nearly linear time
Õ(n+ d) (see Table 1).

Chen et al. [14] recently studied this tradeoff and proposed an algorithm called SQKR, which has an
optimal communication cost of ε bits and device runtime only O(d log2 d). However, this algorithm
incurs error that is suboptimal by a constant factor, which can be detrimental in practice. Indeed
our experiments in Section 4 demonstrate the significance of such constants as the utility of these
algorithms does not match that of optimal algorithms even empirically, resulting for example in 10%
degradation in accuracy for private federated learning over MNIST with ε = 10.

Feldman and Talwar [24] give a general approach to reducing communication via rejection sampling.
When applied to PrivUnitG, it yields a natural algorithm that we call Compressed PrivUnitG. While
it yields optimal error and near-optimal communication, it requires device run time that is O(eεd).
These algorithms are often used for large d (e.g. in the range 105−107) corresponding to large model
sizes. The values of ε are often in the range 4-12 or more, which may be justifiable due to privacy
being improved by aggregation or shuffling [10, 15, 22, 25]. For this range of values, the Θ(eεd)
device runtime is prohibitively large and natural approaches to reduce this in Feldman and Talwar [24]
lead to increased error. To summarize, in the high-dimensional setting, communication-efficient local
randomizers are forced to choose between high device runtime or suboptimal error (see Table 1).

Another related line of work is non-private communication efficient distributed mean estimation where
numerous papers have recently studied the problem due to its importance in federated learning [37,
4, 29, 2, 26, 23, 32, 38, 39]. Similarly to our paper, multiple works in this line of work have used
random rotations to design efficient algorithms [37–39]. However, the purpose of these works is to

1One often considers the problem for the vectors being of norm at most 1, rather than exactly 1. It is easy to
show that vectors v in the unit ball in Rd can be mapped to Sd ⊆ Rd+1, simply as (v, 1− ∥v∥22). Thus up to
changing d to d+ 1, the two problems are the same. Since we are interested in the case of large d, we choose
the version that is easier to work with.

2There are multiple ways to set parameters of PrivUnit to achieve ε-DP; we assume the setting described by
Asi et al. [7], which optimizes the parameters to minimize the expected mean squared error.

2

develop better quantization schemes for real-valued vectors to reduce communication to (1+o(1)) ·d
bits. This is different from our goal, which is to send k ≪ d parameters while still obtaining the
statistically optimal bounds up to a 1 + o(1) factor. Moreover, in order to preserve privacy, our
algorithms require new techniques to handle the norms of the projected vectors, and post-process
them using different normalization schemes, in order to guarantee that the projection error after
post-processing is negligible.

1.1 Contributions

Our main contribution is a new framework, ProjUnit, for private mean estimation which results in near-
optimal, efficient, and low-communication algorithms. Our algorithm obtains the same optimal utility
as PrivUnit and PrivUnitG but with a significantly lower polylogarithmic communication complexity,
and device runtime that is O(d log d) and server runtime Õ(n+d). We also implement our algorithms
and show that both the computational cost and communication cost are small empirically as well.
Figure 1 plots the error as a function of ε for several algorithms and demonstrates the superiority of
our algorithms compared to existing low-communication algorithms (see more details in Section 4).
Moreover, we show that the optimal error bound indeed translates to fast convergence in our private
federated learning simulation.

At a high level, each local randomizer in our algorithm first projects the vector to a randomly
chosen lower-dimensional subspace, and then runs an optimal local randomizer in this lower-
dimensional space. At first glance, this is reminiscent of the use of random projections in the
Johnson-Lindenstrauss (JL) transform or the use of various embeddings in prior work (such as [14]).
However, unlike the JL transform and embeddings in prior work, in our application, each point uses
its own projection matrix . The JL transform is designed to preserve distances between points, not
the points themselves. In our application, a random projection is used to obtain a low-dimensional
unbiased estimator for a point; however the variance of this estimator is quite large (of the order
of d/k). Our main observation is that while large, this variance is small compared to the variance
added due to privacy when k is chosen appropriately. This fact allows us to use the projections as a
pre-processing step. With some care needed to control the norm of the projected vector which is no
longer fixed, we then run a local randomizer in the lower dimensional space. We analyze the expected
squared error of the whole process and show that as long as the random projection ensemble satisfies
certain specific properties, the expected squared error of our algorithm is within (1 + o(1)) factors of
the optimal; the o(1) term here falls with the projection dimension k. The required properties are
easily shown to be satisfied by random orthogonal projections. We further show that more structured
projection ensembles, that allow for faster projection algorithms, also satisfy the required properties,
and this yields even faster device runtime.

Although these structured projections result in fast device runtime, they still incur an expensive
computational cost for the server which needs to apply the inverse transformation for each client,
resulting in runtime O(nd log d). Specifically, each device sends a privated version v̂i of Wivi,
and the server must then compute

∑
i W

⊤v̂i. To address this, we use correlated transformations in
order to reduce server runtime while maintaining optimal accuracy up to 1 + o(1) factors. In our
correlated ProjUnit protocol, the server pre-defines a random transformation W , which all devices
then use to define Wi = SiW where Si is a sampling matrix. The advantage is then that

∑
i W

⊤
i v̂i

is replaced with
∑

i W
⊤v̂i = W⊤(

∑
i Siv̂i), which can be computed more quickly as it requires

only a single matrix-vector multiplication. The main challenge with correlated transformations is
that the correlated client transformations result in increased variance. However, we show that the
independence in choosing the sampling matrices Si is sufficient to obtain optimal error.

Finally, we note without correlating projections each client using its own projection would imply
that each projection needs to be communicated to the server. Doing this naively would require
communicating kd real values completely defeating the benefits of our protocol. However the
projection matrix does not depend on the input and therefore can be communicated cheaply using a
seed to an appropriate pseudorandom generator.

2 A random projection framework for low-communication private algorithms

In this section we propose a new algorithm, namely ProjUnit, which has low communication com-
plexity and obtains near-optimal error (namely, up to a 1+o(1) factor of optimum). The starting point

3

Utility
Run-time

(client)
Run-time
(server) Communication

Repeated PrivHS
[19, 24] O(OPT) εd n ⌈ε⌉ ε · poly(log d)

PrivUnit
[9] OPT d nd d

SQKR
[14] O(OPT) d log2 d nε log d+ d log2 d ε log d

CompPrivUnit
[24] (1 + o(1)) · OPT eεd nd log d ε · poly(log d)

FastProjUnit
(Section 2) (1 + o(1)) · OPT d log d nd log d ε log2 d

FastProjUnit-corr
(Section 3) (1 + o(1)) · OPT d log d n log3 d+ nε log d+ d log d ε log2 d

Table 1: Comparison of Error-Runtime-Communication trade-offs for different algorithms for private
mean estimation. The last two rows use our algorithms from Section 2 and Section 3 with a
communication budget k ≈ ε log d. PrivUnitG is omitted as it has the same guarantees as PrivUnit
except utility where it has (1 + o(1)) · OPT. We omit constant factors from the run-time and
communication complexities.

2 4 6 8 10 12 14

104

105

FastProjUnit
ProjUnit
PrivUnitG
PrivHS
RePrivHS
SQKR

Sq
ua

re
d

E
rr

or

ε

Figure 1: Squared error
of different algorithms as
a function of ε for d =
32768 averaged over 50 runs
with 90% confidence inter-
vals. The lines for the top
three algorithms are almost
identical.

of our algorithms is a randomized projection map in Rk×d which we use to project the input vectors
to a lower-dimensional space. The algorithm then normalizes the vector as a necessary pre-processing
step. Finally, the local randomizer applies PrivUnitG [7] (see Algorithm 8 in Appendix) over the
normalized projected vector and sends the response to the server. The server then applies the inverse
transformation and aggregates the responses in order to estimate the mean. We present the full details
of the client and server algorithms in Algorithm 1 and Algorithm 2.

To analyze this algorithm, we first present our general framework for an arbitrary distribution over
projections. In the next sections we utilize different instances of the framework using different
random projections such as random rotations and more structured transforms.

Algorithm 1 ProjUnit (client)
Require: Input vector v ∈ Rd, Distribution over projections W .

1: Randomly sample transform W ∈ Rk×d from W
2: Project the input vector vp = Wv
3: Normalize u =

vp
∥vp∥2

4: Let û = PrivUnitG(u) (as in Algorithm 8)
5: Send û and (encoding of) W to server

The following theorem states the privacy and utility guarantees of ProjUnit for a general distribution
over transformation W that satisfies certain properties. For ease of notation, let RPU denote the
ProjUnit local randomizer of the client (Algorithm 1), and APU denote the server aggregation of

4

Algorithm 2 ProjUnit (server)
1: Receive û1, . . . , û1 from clients with (encodings of) transforms W1, . . . ,Wn

2: Return the estimate µ̂ = 1
n

∑n
i=1 W

⊤
i ûi

ProjUnit (Algorithm 2). To simplify notation, we let

Errn,d(PrivUnitG) = Errn,d(APrivUnitGε
,RPrivUnitGε

) = cd,ε
d

nε

denote the error of the PrivUnitG ε-DP protocol where APrivUnitGε , RPrivUnitGε denote the PrivUnitG
protocol with optimized parameters (see Algorithm 8) and cd,ε = O(1) is a constant [7]. We defer
the proof to Appendix B.1.

Theorem 1. Let k ≤ d and assume that the transformations Wi ∈ Rk×d are independently chosen
from a distribution W that satisfies:

1. Bounded operator norm: E
[∥∥W⊤

i

∥∥2] ≤ d/k + βW .

2. Bounded bias:
∥∥∥E [W⊤

i Wiv
∥Wiv∥2

]
− v
∥∥∥
2
≤ √

αW for all unit vectors v ∈ Rd.

Then for all unit vectors v1, . . . , vn ∈ Rd, setting µ̂ = APU (RPU(v1), . . . ,RPU(vn)), the local
randomizers RPU are ε-DP and

E

∥∥∥∥∥µ̂− 1

n

n∑
i=1

vi

∥∥∥∥∥
2

2

 ≤ Errn,d(PrivUnitG) ·
(
1 +

kβW

d
+O

(
ε+ log k

k

))
+ αW .

2.1 ProjUnit using Random Rotations

Building on the randomized projection framework of the previous section, in this section we instantiate
it with a random rotation matrix. In particular, we sample W ∈ Rk×d with the structure

WH =

√
d

k
SU, (1)

where U ∈ Rd×d is a random rotation matrix such that U⊤U = I , and S ∈ Rk×d is a sampling
matrix where each row has a single 1 in a uniformly random location (without repetitions). The
following theorem states our guarantees for this distribution.

Theorem 2. Let k ≤ d and W ∈ Rk×d be a random rotation matrix sampled as described in (1).
Then for all unit vectors v1, . . . , vn ∈ Rd, setting µ̂ = APU (RPU(v1), . . . ,RPU(vn)), the local
randomizers RPU are ε-DP and

E

∥∥∥∥∥µ̂− 1

n

n∑
i=1

vi

∥∥∥∥∥
2

2

 ≤ Errn,d(PrivUnitG) ·
(
1 +O

(
ε+ log k

k

))
+O

(
1

k2

)
.

The proof follows directly from Theorem 1 and the following proposition which proves certain
properties of random rotations. We defer the proof to Appendix B.2.

Proposition 1. Let W ∈ Rk×d be a random rotation matrix sampled as described in (1). Then

1. Bounded operator norm: ∥W⊤∥ ≤
√

d
k .

2. Bounded bias: for every unit vector v ∈ Rd:
∥∥∥EW⊤Wv

∥Wv∥ − v
∥∥∥ = O(1/k).

We also have similar analysis for Gaussian transforms with an additional O(
√
k/d) factor in the first

term. We include the analysis in Appendix D.

5

2.2 Fast ProjUnit using the SRHT

While the random rotation based randomizer enjoys near-optimal error and low communication
complexity, its runtime complexity is somewhat unsatisfactory as it requires calculating Wv for W ∈
Rk×d, taking time O(kd). In this section, we propose a ProjUnit algorithm using the Subsampled
Randomized Hadamard transform (SRHT), which is closely related to the fast JL transform [3]. We
show that this algorithm has the same optimality and low-communication guarantees as the random
rotations version, and additionally has an efficient implementation with O(d log d) client runtime.

The SRHT ensemble contains matrices WH ∈ Rk×d with the following structure:

WH =

√
d

k
SHD, (2)

where S ∈ Rk×d is a sampling matrix where each row has a single 1 in a uniformly random
location sampled without replacement, H ∈ Rd×d is the Hadamard matrix, and D ∈ Rd×d is
a diagonal matrix where Dii are independent samples from the Rademacher distribution, that is,
Dii ∼ Unif{−1,+1}. The main advantage of the SRHT is that there exist efficient algorithms for
matrix-vector multiplication with H .

The following theorem presents our main guarantees for the SRHT-based ProjUnit algorithm.
Theorem 3. Let k ≤ d and W be sampled from the SRHT ensemble as described in (2). Then for
all unit vectors v1, . . . , vn ∈ Rd, setting µ̂ = APU (RPU(v1), . . . ,RPU(vn)), the local randomizers
RPU are ε-DP and

E

∥∥∥∥∥µ̂− 1

n

n∑
i=1

vi

∥∥∥∥∥
2

2

 ≤ Errn,d(PrivUnitG) ·
(
1 +O

(
ε+ log k

k

))
+O

(
log2 d

k

)
.

Remark 1. The communication complexity of SRHT-based ProjUnit can be reduced to O(k log d+

log2 d). To see this, note that û is a k-dimensional vector. Moreover, the matrix W =
√
d/k · SHD

can be sent in O(k log d) as follows: S has k rows, each with a single entry that contains 1, hence
we can send the indices for each row using log d bits for each row. Moreover, H is the Hadamard
transform and need not be sent. Finally, D is a diagonal matrix with entries Dii ∼ Unif{−1,+1}.
By standard techniques [36, 5], we only need the entries of D to be O(log(d))-wise independent for
Proposition 2 to hold. Thus O(log2 d) bits suffice to communicate a sampled D.

The proof of the theorem builds directly on the following two properties of the SHRT.
Proposition 2. Let W be sampled from the SRHT ensemble as described in (2). Then we have

1. Bounded operator norm: E
[∥∥W⊤

∥∥] = E [∥W∥] ≤
√
d/k.

2. Bounded bias: for every unit vector v ∈ Rd:
∥∥∥EW⊤Wv

∥Wv∥ − v
∥∥∥ = O(log(d)/

√
k).

Theorem 3 now follows directly from the bounds of Theorem 1 using αW = O(log2(d)/k). We
defer the proof to Appendix B.3.
Remark 2. While our randomizers in this section pay an additive term that does not decrease with n
(e.g. log2(d)/k for SRHT), this term is negligible in most settings of interest. Indeed, using Theorem 3
and the fact that Errn,d(PrivUnitG) = cd,εd/nε, we get that the final error of our SRHT algorithm is
roughly cd,εd/nε(1 + o(1)) +O(log2(d)/k). This implies that in the high-dimensional setting the
bias term is negligible.

However, to cover the whole spectrum of parameters, we develop a nearly unbiased versions of these
algorithms in Appendix A. In particular, we show in Theorem 6 that our unbiased version has error

Errn,d(PrivUnitG) ·

(
1 +O

(
ε+ log k

k
+

√
log(nd/k)

k

))
.

3 Efficient Server Runtime via Correlated Sampling

One downside of the algorithms in the previous section is that server runtime can be costly: indeed,
as each client uses an independent transformation, the server has to apply the inverse transformation

6

(matrix multiplication) for each client, resulting in runtime O(nd log d). In this section, we propose a
new protocol that significantly reduces server runtime to O(n log3 d+ d log d+ nk) while retaining
similar error guarantees. The protocol uses correlated transformations between users which allows
the server to apply an inverse transformation only a small number of times. However, clients cannot
use the same transformation as this will result in large bias.

The protocol works as follows: the server samples U ∈ Rd×d from the Randomized Hadamard
transform: U = HD where H ∈ Rd×d is the Hadamard transform, and D ∈ Rd×d is a diagonal
matrix where each diagonal entry is independently sampled from the Rademacher distribution. Then,
client i ∈ [n], samples a random sampling matrix Si ∈ Rk×d, and uses U to define the transform
Wi ∈ Rk×d:

Wi =

√
d

k
SiU. (3)

We describe the full details of the client and server algorithms for correlated ProjUnit in Algorithm 3
and Algorithm 4, and denote them RCPU and ACPU, respectively. We have the following guarantee.
We defer the proof to Appendix C.

Algorithm 3 Correlated ProjUnit (client)
Require: Input vector v ∈ Rd.

1: Randomly sample diagonal D from the Rademacher distribution based on predefined seed
2: Sample S ∈ Rk×d where each row is chosen uniformly at random without replacement from

standard basis vectors {e1, . . . , ed}
3: Project the input vector vp = SHDv where H ∈ Rd×d is the Hadamard matrix
4: Normalize u =

vp
∥vp∥2

5: Let û = PrivUnitG(u) (as in Algorithm 8)
6: Send û, and (an encoding of) S to server

Algorithm 4 Correlated ProjUnit (server)
1: Receive û1, . . . , û1 from clients with (encodings of) transforms S1, . . . , Sn

2: Sample diagonal matrices D from Rademacher distribution based on predefined seed
3: Let U = HD where H ∈ Rd×d is the Hadamard matrix
4: Return the estimate µ̂ = 1

nU
⊤∑n

i=1 S
⊤
i ûi

Theorem 4. Let k ≤ d. Then for all unit vectors v1, . . . , vn ∈ Rd, setting µ̂ =
ACPU (RCPU(v1), . . . ,RCPU(vn)), the local randomizers RCPU are ε-DP and

E

∥∥∥∥∥µ̂− 1

n

n∑
i=1

vi

∥∥∥∥∥
2

2

 ≤ Errn,d(PrivUnitG)

(
1 +O

(
ε+ log k

k

))
+O

(
log2 d

k

)
.

Moreover, server runtime is O(n log(d) log2(nd) + d log d+ nk).

4 Experiments

We conclude the paper with several experiments that demonstrate the performance of our proposed
algorithms, comparing them to existing algorithms in the literature. We conduct our experiments in
two different settings: the first is synthetic data, where we aim to test our algorithms and understand
their performance for our basic task of private mean estimation, comparing them to other algorithms.
In our second setting, we seek to evaluate the performance of our algorithms for private federated
learning which requires private mean estimation as a subroutine for DP-SGD.

4.1 Private mean estimation

In our synthetic-data experiment, we study the basic private mean estimation problem, aspiring to
investigate the following aspects:

7

102 103

1.5 × 101

1.6 × 101

1.7 × 101

1.8 × 101

1.9 × 101

2 × 101

2.1 × 101 PrivUnitG
FastProjUnit
FastProjUnit-corr
ProjUnit

Sq
ua

re
d

E
rr

or

k

Figure 2: Performance of
ProjUnit, FastProjUnit and
their correlated versions with
90% confidence intervals as
a function of k for d =
32768, NumRep = 30, n =
50, and ε = 10

1. Utility of ProjUnit algorithms as a function of the communication budget

2. Utility of our low-communication algorithms compared to the optimal utility and other
existing low-communication algorithms

3. Run-time complexity of our algorithms compared to existing algorithms

Our experiments3 measure the error of different algorithms for estimating the mean of a dataset.
To this end, we sample unit vectors v1, . . . , vn ∈ Rd by normalizing samples from the normal
distribution N(µ, 1/d) (where µ ∈ Rd is a random unit vector), and apply a certain privacy protocol
NumRep times to estimate the mean

∑n
i=1 vi/n, producing mean squared errors e1, . . . , eNumRep.

Our final error estimate is then the mean 1
NumRep

∑NumRep
i=1 ei. We test the performance of several

algorithms: ProjUnit (Subsection 2.1), FastProjUnit (Subsection 2.2), FastProjUnit-corr (Section 3),
PrivUnitG [7], CompPrivUnitG [7, 24], PrivHS [19], RePrivHS [19, 24], SQKR [14].

In Figure 2, we plot the error for our ProjUnit algorithms as a function of the communication budget
k. We consider a high-dimensional regime where d = 215 with a small number of users n = 50 and
a bounded communication budget k ∈ [1, 2000]. Our plot shows that our ProjUnit algorithms obtain
the same near-optimal error as PrivUnitG for k as small as 1000. Moreover, the plots show that the
correlated versions of our ProjUnit algorithms obtain nearly the same error.

To translate this into concrete numbers, the transform W can be communicated using a small seed
(∼ 128 bits) in practice, or using k log d + log2 d ∼ 20400 bits or less than 3kB for d = 106.
Sending the k-dimensional vector of 32-bit floats would need an additional 4kB. Thus the total
communication cost is between 4 and 8kB. This can be further reduced by using a compressed version
of PrivUnitG in the projected space, which requires the client to send a 128-bit seed. In this setting,
the communication cost is a total of 256 bits. Thus in the sequel, we primarily focus on the k = 1000
version of our algorithms.

101 102 103 104 105 106

10 3

10 2

10 1

100

101

102

103 PrivUnitG
ProjUnit
FastProjUnit
PrivHS
SQKR
CompPrivUnitG

Ti
m

e
(s

ec
on

ds
)

d
101 102 103 104 105 106

10 3

10 2

10 1

100

101

102

103
PrivUnitG
ProjUnit
FastProjUnit
PrivHS
SQKR
CompPrivUnitG

Ti
m

e
(s

ec
on

ds
)

d

(a) (b)

Figure 3: Run-time (in seconds) as a function of the dimension for (a) ε = 10 and (b) ε = 16. The
plots for some algorithms are not complete as they did not finish within the cut-off time.

3The code is also available online on https://github.com/apple/ml-projunit

8

https://github.com/apple/ml-projunit

0 2 4 6 8

0.70

0.75

0.80

0.85

0.90

MNIST (epsilon = 10)

Gaussian
PrivUnitG
FastProjUnit (k = 1000)
FastProjUnit-corr (k = 1000)
RePrivHS (R = 5)

Te
st

ac
cu

ra
cy

Epoch

Figure 4: Test accuracy
on the MNIST dataset with
90% confidence intervals as
a function of epoch for ε =
10.0.

Next, we compare the performance of our low-communication algorithms against existing low-
communication algorithms: PrivHS and SQKR. In Figure 1, we plot the error as a function of the
privacy parameter for each algorithm using the best choice of k (bound on communication) for
each algorithm. In particular, we choose k = ε for SQKR, num repetitions R = ε/2 for repeated
PrivHS, k = 1000 for ProjUnit and FastProjUnit. Moreover, in this experiment we set n = 1
and NumRep = 50 to estimate the variance of each method. The figure shows that PrivHS and
SQKR, while having low-communication complexity, suffer a significantly worse utility than (near-
optimal) PrivUnitG. On the other side, both our ProjUnit algorithms obtain nearly the same error as
PrivUnitG with a bounded communication budget of k = 1000.

In our third experiment in Figure 3, we plot the runtime of each algorithm as a function of the
privacy parameter. Here, we use n = 1, NumRep = 10 and measure the run-time of each method
for different values of the dimension d and privacy parameter ε, allowing each method to run for 1
hour before interrupting. As expected from our theoretical analysis, the runtime of ProjUnit using
random rotations is noticeably slower than the (high communication cost) PrivUnitG. However,
our SRHT-based FastProjUnit is substantially faster and has a comparable run-time to PrivUnitG.
Moreover, for large ε and d, the run-time of compressed PrivUnitG becomes too costly compared to
our algorithms due to the eεd time complexity.

4.2 Private federated learning

Having demonstrated the effectiveness of our methods for private mean estimation, in this section we
illustrate the improvements offered by our algorithms for private federated learning. Similarly to the
experimental setup in [13], we consider the MNIST [31] dataset and train a convolutional network
(see Table 2) using DP-SGD [1] with 10 epochs and different sub-routines for privately estimating
the mean of gradients at each batch. In order to bound the sensitivity, we clip the gradients to have
ℓ2-norm 1, and run DP-SGD with batch size of 600, step-size equal to 0.1, and momentum of 0.5.

Figure 4 shows our results for this experiment, where we plot the test accuracy as a function of
the epoch for each method. The plots demonstrate that our ProjUnit algorithms obtain similar
performance to PrivUnitG, and better performance than the Gaussian mechanism or PrivHS. For
the Gaussian mechanism, we set δ = 10−5 and add noise to satisfy (ε, δ)-DP using the analysis
in [8]. We did not run SQKR in this experiment as it is not sufficiently computationally efficient for
this experiment and has substantially worse performance in the experiments of the previous section.
We also did not run the MVU mechanism [13] as their experiments show that it is worse than the
Gaussian mechanism which has worse performance than our methods.

Finally, our private algorithms obtain accuracy roughly 91%, whereas the same model trained
without privacy obtains around 98%. This degradation in accuracy is mostly due to the choice of the
optimization algorithm (DP-SGD with clipping); indeed, even without adding any noise, DP-SGD
with clipping achieves around 91% accuracy, suggesting that other private optimization algorithms
with different clipping strategies (e.g. [34, 6]) may tighten this gap further. As this is not the main
focus of our work, we leave this investigation to future work.

9

Acknowledgments

HLN is supported by NSF CAREER grant 1750716 and NSF grant 2311649.

References
[1] Martin Abadi, Andy Chu, Ian Goodfellow, Brendan McMahan, Ilya Mironov, Kunal Talwar,

and Li Zhang. Deep learning with differential privacy. In Proceedings of the 23rd Annual ACM
Conference on Computer and Communications Security (CCS), pages 308–318, 2016.

[2] Naman Agarwal, Ananda Theertha Suresh, Felix Xinnan X Yu, Sanjiv Kumar, and Brendan
McMahan. cpsgd: Communication-efficient and differentially-private distributed sgd. In
Proceedings of the 31nd Annual Conference on Advances in Neural Information Processing
Systems (NeurIPS), 2018.

[3] Nir Ailon and Bernard Chazelle. The fast Johnson-Lindenstrauss transform and approximate
nearest neighbors. SIAM Journal on Computing, 39(1):302–322, 2009.

[4] Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, and Milan Vojnovic. Qsgd:
Communication-efficient sgd via gradient quantization and encoding. In I. Guyon, U. V.
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Ad-
vances in Neural Information Processing Systems, volume 30, pages 1709–1720. Curran
Associates, Inc., 2017. URL https://proceedings.neurips.cc/paper/2017/file/
6c340f25839e6acdc73414517203f5f0-Paper.pdf.

[5] N. Alon and J. H. Spencer. The Probabilistic Method. Wiley-Interscience, second edition, 2000.

[6] Hilal Asi, John Duchi, Alireza Fallah, Omid Javidbakht, and Kunal Talwar. Private adaptive
gradient methods for convex optimization. In Proceedings of the 38th International Conference
on Machine Learning (ICML), pages 383–392, 2021.

[7] Hilal Asi, Vitaly Feldman, and Kunal Talwar. Optimal algorithms for mean estimation under
local differential privacy. In Proceedings of the 39th International Conference on Machine
Learning (ICML), 2022.

[8] Borja Balle and Yu-Xiang Wang. Improving the gaussian mechanism for differential pri-
vacy: Analytical calibration and optimal denoising. In Proceedings of the 35th International
Conference on Machine Learning (ICML), pages 394–403. PMLR, 2018.

[9] Abhishek Bhowmick, John Duchi, Julien Freudiger, Gaurav Kapoor, and Ryan Rogers. Protec-
tion against reconstruction and its applications in private federated learning. arXiv:1812.00984
[stat.ML], 2018.

[10] Andrea Bittau, Úlfar Erlingsson, Petros Maniatis, Ilya Mironov, Ananth Raghunathan, David
Lie, Mitch Rudominer, Ushasree Kode, Julien Tinnes, and Bernhard Seefeld. Prochlo: Strong
privacy for analytics in the crowd. In Proceedings of the 26th Symposium on Operating
Systems Principles, SOSP ’17, page 441–459, New York, NY, USA, 2017. Association for
Computing Machinery. ISBN 9781450350853. doi: 10.1145/3132747.3132769. URL https:
//doi.org/10.1145/3132747.3132769.

[11] Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H. Brendan McMahan,
Sarvar Patel, Daniel Ramage, Aaron Segal, and Karn Seth. Practical secure aggregation for
privacy-preserving machine learning. In Proceedings of the Annual ACM SIGSAC Conference
on Computer and Communications Security (CCS), pages 1175–1191, 2017.

[12] Kamalika Chaudhuri, Claire Monteleoni, and Anand D. Sarwate. Differentially private empirical
risk minimization. Journal of Machine Learning Research, 12:1069–1109, 2011.

[13] Kamalika Chaudhuri, Chuan Guo, and Mike Rabbat. Privacy-aware compression for federated
data analysis. In Proceedings of the Thirty-Eighth Conference on Uncertainty in Artificial
Intelligence, volume 180, pages 296–306. PMLR, 2022. URL https://proceedings.mlr.
press/v180/chaudhuri22a.html.

10

https://proceedings.neurips.cc/paper/2017/file/6c340f25839e6acdc73414517203f5f0-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/6c340f25839e6acdc73414517203f5f0-Paper.pdf
https://doi.org/10.1145/3132747.3132769
https://doi.org/10.1145/3132747.3132769
https://proceedings.mlr.press/v180/chaudhuri22a.html
https://proceedings.mlr.press/v180/chaudhuri22a.html

[14] Wei-Ning Chen, Peter Kairouz, and Ayfer Özgür. Breaking the communication-privacy-accuracy
trilemma. In Proceedings of the 33rd Annual Conference on Advances in Neural Information
Processing Systems (NeurIPS), 2020.

[15] Albert Cheu, Adam Smith, Jonathan Ullman, David Zeber, and Maxim Zhilyaev. Distributed
differential privacy via shuffling. In Yuval Ishai and Vincent Rijmen, editors, Advances in Cryp-
tology – EUROCRYPT 2019, pages 375–403, Cham, 2019. Springer International Publishing.
ISBN 978-3-030-17653-2.

[16] Michael B. Cohen, Jelani Nelson, and David P. Woodruff. Optimal approximate matrix product
in terms of stable rank. In Proceedings of the 41st International Colloquium on Automata,
Languages and Programming (ICALP), pages 11:1–11:14, 2016. Full version at https:
//arxiv.org/abs/1507.02268v3.

[17] K.R. Davidson and Stanislaw Szarek. Local operator theory, random matrices and banach
spaces. Handbook on the Geometry of Banach spaces, Vol. 1, pages 317–366, 01 2003.

[18] John Duchi and Ryan Rogers. Lower bounds for locally private estimation via communication
complexity. In Proceedings of the 32nd Annual Conference on Learning Theory (COLT), pages
1161–1191, 2019.

[19] John C. Duchi, Michael I. Jordan, and Martin J. Wainwright. Minimax optimal procedures for
locally private estimation. Journal of the American Statistical Association, 113(521):182–215,
2018.

[20] Cynthia Dwork, Krishnaram Kenthapadi, Frank McSherry, Ilya Mironov, and Moni Naor.
Our data, ourselves: Privacy via distributed noise generation. In Advances in Cryptology
(EUROCRYPT 2006), 2006.

[21] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to
sensitivity in private data analysis. In Proceedings of the Third Theory of Cryptography
Conference, pages 265–284, 2006.

[22] Ulfar Erlingsson, Vitaly Feldman, Ilya Mironov, Ananth Raghunathan, Kunal Talwar, and
Abhradeep Thakurta. Amplification by shuffling: From local to central differential privacy via
anonymity. In Proceedings of the Thirtieth ACM-SIAM Symposium on Discrete Algorithms
(SODA), 2019.

[23] Fartash Faghri, Iman Tabrizian, Ilia Markov, Dan Alistarh, Daniel M. Roy, and Ali Ramezani-
Kebrya. Adaptive gradient quantization for data-parallel sgd. In Advances in Neural Information
Processing Systems, volume 33, 2020.

[24] Vitaly Feldman and Kunal Talwar. Lossless compression of efficient private local randomizers.
In Proceedings of the 38th International Conference on Machine Learning, volume 139, pages
3208–3219. PMLR, 2021.

[25] Vitaly Feldman, Audra McMillan, and Kunal Talwar. Hiding among the clones: A simple
and nearly optimal analysis of privacy amplification by shuffling. In 2021 IEEE 62nd Annual
Symposium on Foundations of Computer Science (FOCS), pages 954–964, 2022. doi: 10.1109/
FOCS52979.2021.00096. arXiv:2012.12803 [cs.LG].

[26] Venkata Gandikota, Daniel Kane, Raj Kumar Maity, and Arya Mazumdar. vqsgd: Vector
quantized stochastic gradient descent. arXiv preprint arXiv:1911.07971, 2019.

[27] Antonious M. Girgis, Deepesh Data, Suhas Diggavi, Peter Kairouz, and Ananda Theertha
Suresh. Shuffled model of federated learning: Privacy, communication and accuracy trade-offs,
2020.

[28] Parikshit Gopalan, Daniek Kane, and Raghu Meka. Pseudorandomness via the discrete fourier
transform. pages 903–922, 10 2015. doi: 10.1109/FOCS.2015.60.

[29] Jakub Konečnỳ and Peter Richtárik. Randomized distributed mean estimation: Accuracy vs.
communication. Frontiers in Applied Mathematics and Statistics, 4:62, 2018.

11

https://arxiv.org/abs/1507.02268v3
https://arxiv.org/abs/1507.02268v3

[30] Pravesh K. Kothari and Raghu Meka. Almost optimal pseudorandom generators for spherical
caps: Extended abstract. In Proceedings of the Forty-Seventh Annual ACM Symposium on
Theory of Computing, STOC ’15, page 247–256, New York, NY, USA, 2015. Association
for Computing Machinery. ISBN 9781450335362. doi: 10.1145/2746539.2746611. URL
https://doi.org/10.1145/2746539.2746611.

[31] Yann LeCun, Corinna Cortes, and CJ Burges. MNIST handwritten digit database, 1998. URL
http://yann.lecun.com/exdb/mnist. ATT Labs [Online].

[32] P. Mayekar and H. Tyagi. Limits on gradient compression for stochastic optimization. In 2020
IEEE International Symposium on Information Theory (ISIT), pages 2658–2663, 2020. doi:
10.1109/ISIT44484.2020.9174075.

[33] Noam Nisan. Pseudorandom generators for space-bounded computation. Combinatorica, 12:
449–461, 1992.

[34] Venkatadheeraj Pichapati, Ananda Theertha Suresh, Felix X. Yu, Sashank J. Reddi, and Sanjiv
Kumar. AdaCliP: Adaptive clipping for private SGD. arXiv:1908.07643 [cs.LG], 2020.

[35] Tamás Sarlós. Improved approximation algorithms for large matrices via random projections. In
Proceedings of the 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS),
pages 143–152, 2006.

[36] Jeanette P. Schmidt, Alan Siegel, and Aravind Srinivasan. Chernoff–hoeffding bounds for
applications with limited independence. SIAM Journal on Discrete Mathematics, 8(2):223–250,
1995. doi: 10.1137/S089548019223872X.

[37] Ananda Theertha Suresh, Felix X. Yu, Sanjiv Kumar, and H. Brendan McMahan. Distributed
mean estimation with limited communication. In Proceedings of the 34th International Confer-
ence on Machine Learning (ICML), 2017.

[38] Shay Vargaftik, Ran Ben-Basat, Amit Portnoy, Gal Mendelson, Yaniv Ben-Itzhak, and Michael
Mitzenmacher. Drive: One-bit distributed mean estimation. Proceedings of the 34nd Annual
Conference on Advances in Neural Information Processing Systems (NeurIPS), 2021.

[39] Shay Vargaftik, Ran Ben-Basat, Amit Portnoy, Gal Mendelson, Yaniv Ben Itzhak, and Michael
Mitzenmacher. Eden: Communication-efficient and robust distributed mean estimation for
federated learning. In Proceedings of the 39th International Conference on Machine Learning
(ICML), 2022.

12

https://doi.org/10.1145/2746539.2746611
http://yann.lecun.com/exdb/mnist

A Nearly unbiased ProjUnit randomizers

Our randomizers in Section 2 and Section 3 may have O(log(d)/k) bias which can become relatively
large when n ≫ d. In this section, we propose a different normalization technique which allows to
provide a sufficiently small bound on the bias, while still enjoying the same guarantees as the fast
ProjUnit algorithm. We develop versions of this algorithm for both random rotations (Appendix A.1)
and the SRHT transform (Appendix A.2).

A.1 Unbiased variant of ProjUnit using random rotations

In this section, we describe the modification for random rotation matrices. These transformations are
not as efficient as SRHT hence we only present the simple non-correlated version; in the next section
we present our unbiased and correlated sampling procedure for SRHT transforms.

For rotationally symmetric distributions of matrices, we slightly modify the algorithm by scaling the
output of PrivUnitG by a fixed factor c so that it leads to an unbiased estimate of v i.e. E[W⊤û] = v.

Algorithm 5 Unbiased version of ProjUnit using random rotations (client)
Require: Input vector v ∈ Rd.

1: Randomly sample a rotation matrix W ∈ Rk×d as described in (1)
2: Project the input vector vp = Wv
3: Normalize u =

vp
∥vp∥2

4: Let û = c · PrivUnitG(u) where c =
√

k
d
Γ((d+1)/2)Γ(k/2)
Γ((k+1)/2)Γ(d/2)

5: Send û and (encoding of) W to server

We present the details of this modification in Algorithm 5 and state its guarantees in the following
theorem. We let RPU denote the local randomizer described in Algorithm 5.

Theorem 5. Let k ≤ d. For all unit vectors v1, . . . , vn ∈ Rd, setting µ̂ =
APU (RPU(v1), . . . ,RPU(vn)), the local randomizers RPU are ε-DP and

E

∥∥∥∥∥µ̂− 1

n

n∑
i=1

vi

∥∥∥∥∥
2

2

 ≤ Errn,d(PrivUnitG) ·
(
1 +O

(
ε+ log k

k

))
.

Proof. The proof proceeds in the same way as Theorem 1. We break the error down into two terms:

E

∥∥∥∥∥µ̂− 1

n

n∑
i=1

vi

∥∥∥∥∥
2

2

 = E

∥∥∥∥∥ 1n
n∑

i=1

W⊤
i ûi − vi

∥∥∥∥∥
2

2


= E

∥∥∥∥∥ 1n
n∑

i=1

W⊤
i ûi − cW⊤

i ui + cW⊤
i ui − vi

∥∥∥∥∥
2

2


(i)
=

1

n2

n∑
i=1

E
[∥∥W⊤

i ûi − cW⊤
i ui

∥∥2
2

]
+

1

n2
E

∥∥∥∥∥
n∑

i=1

cW⊤
i ui − vi

∥∥∥∥∥
2

2


≤ c2

n
max
i∈[n]

E
[∥∥W⊤

i

∥∥2
2

]
· Err1,k(PrivUnitG) +

1

n2
E

∥∥∥∥∥
n∑

i=1

cW⊤
i ui − vi

∥∥∥∥∥
2

2

 .

where (i) follows from the fact that PrivUnitG is unbiased and E[ûi] = cui. The first term is bounded
in the same way as before noting that c = 1 +O(1/k) (see Lemma F.1). To analyze the second term,
we first show that E[cW⊤

i ui] = vi using a change of variables. Let W ′
i = WiP

⊤
i where Pi is the

rotation matrix such that Pivi = e1, the first standard basis vector. Due to the rotational symmetry
of the uniform distribution over rotation matrices, W ′

i is also a random rotation matrix. Note that
Wi = W ′

iPi, hence

13

EWi
[cW⊤

i ui] = EW ′
i

[
c

∥W ′
iPivi∥2

P⊤
i W ′⊤

i W
′
iPivi

]

= cP⊤
i E

 1

∥W ′
ie1∥2

W ′⊤
i W

′
ie1︸ ︷︷ ︸

z



Notice that zj = 1

∥W ′
ie1∥2

e⊤j W
′⊤
i W

′
ie1 = ⟨W ′

iej ,
1

∥W ′
ie1∥2

W ′
ie1⟩. Because W ′

i is a random rotation

matrix (re-scaled by
√
d/k), Lemma F.1 implies that E[z1] =

√
d
k
Γ((k+1)/2)Γ(d/2)
Γ((d+1)/2)Γ(k/2) = 1

c = 1 +

O(1/k) and E[zj] = 0 for all j > 1. Thus, E[z] = 1
c e1 and E[cW⊤

i ui] = P⊤
i e1 = P⊤

i Pivi = vi.
Because cW⊤

i ui is an unbiased estimator of vi, we have

E

∥∥∥∥∥
n∑

i=1

cW⊤
i ui − vi

∥∥∥∥∥
2

2

 =

n∑
i=1

E
[∥∥cW⊤

i ui − vi
∥∥2
2

]

=

n∑
i=1

E
[∥∥cW⊤

i ui

∥∥2
2
+ ∥vi∥22 − 2cv⊤i W

⊤
i ui

]
=

n∑
i=1

E
[∥∥cW⊤

i ui

∥∥2
2
+ ∥vi∥22 − 2c

∥∥W⊤
i vi

∥∥
2

]
≤ n+

n∑
i=1

c2E
[∥∥W⊤

i

∥∥2
2

]
≤ O(nd/k).

Combining all of these together, the claim follows by noting that Err1,d(PrivUnitG)/n =
Errn,d(PrivUnitG) = Θ(d/nε).

A.2 Nearly unbiased SRHT-based randomizers

While rescaling by a constant was sufficient to debias the random rotation based randomizer, it is
not clear whether such rescaling can debias the SRHT ProjUnit randomizer as it is not rotationally
symmetric. To address this, we propose a different normalization technique for the SRHT randomizer
which allows to provide tighter upper bounds on the bias. We provide the details for our new client
and server protocols in Algorithm 6 and Algorithm 7, respectively.

Let RUPU denote the unbiased ProjUnit local randomizer of the client (Algorithm 6), and AUPU

denote the server aggregation of unbiased ProjUnit (Algorithm 7). We have the following guarantees
for this procedure.

Theorem 6. Let k ≤ d and δ = k/n2d. Assume k ≥ max{ε + log k, log2(nd)}. Then for all
unit vectors v1, . . . , vn ∈ Rd, setting µ̂ = AUPU (RUPU(v1), . . . ,RUPU(vn)), the local randomizers
RUPU are ε-DP and

E

∥∥∥∥∥µ̂− 1

n

n∑
i=1

vi

∥∥∥∥∥
2

2

 ≤ Errn,d(PrivUnitG) ·

1 +O

ε+ log k

k
+

√
log2(nd)

k

 .

14

Algorithm 6 Nearly Unbiased ProjUnit (client)
Require: Input vector v ∈ Rd, Bias bound probability δ.

1: Randomly sample diagonal D from the Rademacher distribution based on predefined seed
2: Sample S ∈ Rk×d where each row is chosen uniformly at random without replacement from

standard basis vectors {e1, . . . , ed}
3: Let W =

√
d/kSHD

4: Set C = 1 +Θ(
√
log2(k/δ)/k)

5: Project the input vector vp = Wv
6: Complete the norm then normalize:

u =


1√
C

(
vp,
√
C − ∥vp∥22

)
, if ∥vp∥22 ≤ C(

vp
∥vp∥2

, 0
)
, otherwise

7: Let û = PrivUnitG(u)
8: Send C, û and (encoding of) S to server

Algorithm 7 Nearly Unbiased ProjUnit (server)
1: Receive C, û1, . . . , û1, from clients with (encodings of) transforms S1, . . . , Sn

2: Sample the diagonal matrices D from the Rademacher distribution based on predefined seed
3: Let U = HD for where H ∈ Rd×d is the Hadamard matrix
4: Return the estimate

µ̂ =

√
C

n
U⊤

n∑
i=1

S⊤
i ûi[1 : k]

Proof. Note that µ̂ =
√
C
n

∑n
i=1 W

⊤
i ûi[1 : k]. Thus we get

E

∥∥∥∥∥µ̂− 1

n

n∑
i=1

vi

∥∥∥∥∥
2

2

 (4)

= E

∥∥∥∥∥
√
C

n

n∑
i=1

W⊤
i ûi[1 : k]− vi

∥∥∥∥∥
2

2


=

1

n
max
i∈[n]

E
[∥∥∥√CW⊤

i ûi[1 : k]− vi

∥∥∥2
2

]
+

1

n2

∑
i ̸=j

E⟨
√
CW⊤

i ûi[1 : k]− vi,
√
CW⊤

j ûj [1 : k]− vj⟩

(5)

Now we upper bound both terms in (5) separately. Note that Corollary F.1 implies that with probability

at least 1− nδ we have ∥Wivi∥22 ≤ (1 + C1

√
log2(k/δ)/k) ∥vi∥2 for all i ∈ [n]. We let E denote

the event that this event holds. Note that P (E) ≥ 1− δ̄ where δ̄ = nδ.

We begin with the second term in (5). Let C = 1+C1

√
log2(k/δ)/k for appropriate constant C1 > 0.

Note that Wi =
√
d/kSiHD, taking expecations over the randomness of the local randomizer, and

noticing that PrivUnitG is unbiased, we have that for i ̸= j

E⟨
√
CW⊤

i ûi[1 : k]− vi,
√
CW⊤

j ûj [1 : k]− vj⟩ = E⟨
√
CW⊤

i ui[1 : k]− vi,
√
CW⊤

j uj [1 : k]− vj⟩
(6)

15

Since Wi =
√
d/kSiHD and Wj =

√
d/kSjHD, we have

E
[
⟨
√
CW⊤

i ui[1 : k]− vi,
√
CW⊤

j uj [1 : k]− vj⟩
]

= E
[
⟨W⊤

i Wivi − vi,W
⊤
j Wjvj − vj⟩ | E

]
P (E)

+ E
[
⟨
√
CW⊤

i Wivi/ ∥Wivi∥2 − vi,
√
CW⊤

j Wjvj/ ∥Wjvj∥2 − vj⟩ | Ec
]
P (Ec)

≤ vTi E[(W⊤
i Wi − I)(W⊤

j Wj − I) | E]vj + δ̄(2Cd/k + 2)

≤ vTi E[DH(d/kS⊤
i Si − I)(d/kS⊤

j Sj − I)HD | E]vj + δ̄(2Cd/k + 2)

(i)

≤
∥∥E[d/kS⊤

i Si − I | E]
∥∥
2

∥∥E[d/kS⊤
j Sj − I | E]

∥∥
2
+ δ̄(2Cd/k + 2)

≤ O((δ̄d/k)2) + δ̄(2Cd/k + 2) ≤ O(δ̄d/k),

where inequality (i) follows since
∥∥E[d/kS⊤

j Sj − I | E]
∥∥
2
≤ O(δ̄/k) since

I = E[(d/k)S⊤
i Si] = E[(d/k)S⊤

i Si | E]P(E) + (1− P(E))E[(d/k)S⊤
i Si | Ec]

which implies that

E[(d/k)S⊤
i Si | E] =

I − (1− P(E))E[(d/k)S⊤
i Si | Ec]

P(E)
.

Since P(E) ≥ 1−δ̄ and
∥∥(d/k)S⊤

i Si

∥∥
2
≤ (d/k), this shows that

∥∥(E [(d/k)S⊤
i Si | E

]
− I
)
v
∥∥
2
=

O(δ̄d/k).

Now we proceed to analyze the first term in (5). Note that for any i ∈ [n]

E
[∥∥∥√CW⊤

i ûi[1 : k]− vi

∥∥∥2
2

]
= E

[∥∥∥√CW⊤
i ûi[1 : k]−

√
CW⊤

i ui[1 : k] +
√
CW⊤

i ui[1 : k]− vi

∥∥∥2
2

]
(i)
= CE

[∥∥W⊤
i ûi[1 : k]−W⊤

i ui[1 : k]
∥∥2
2

]
+ E

[∥∥∥√CW⊤
i ui[1 : k]− vi

∥∥∥2
2

]
(ii)

≤ CE
[∥∥W⊤

i

∥∥2
2

]
· C · Err1,k+1(PrivUnitG) + E

[∥∥∥√CW⊤
i ui[1 : k]− vi

∥∥∥2
2

]
.

where (i) follows since E[ûi] = ui as PrivUnitG is unbiased, and (ii) since PrivUnitG is applied for
k + 1 dimensional vectors of squared norm C, hence its error is C · Err1,k+1(PrivUnitG). For the

first term, as ∥Wi∥22 ≤ d/k and C = 1 + C1

√
log2(k/δ)/k, we have:

C2
∥∥W⊤

i

∥∥2
2
· Err1,k+1(PrivUnitG) ≤ C2 d

k
ck+1,ε

k + 1

ε

= C2 d

ε
cd,ε

ck+1,ε

cd,ε
(1 + 1/k)

= C2 d

ε
cd,ε ·

(
1 +O

(
ε+ log k

k

))

= Err1,d(PrivUnitG) ·

1 +O

ε+ log k

k
+

√
log2(k/δ)

k

 ,

where the third step follows from Proposition 5. For the second term, we have

E[
∥∥∥√CW⊤

i ui[1 : k]− vi

∥∥∥2
2
] = E

[∥∥∥√CW⊤
i ui[1 : k]−

√
CW⊤

i Wivi +
√
CW⊤

i Wivi − vi

∥∥∥2
2

]
≤ 2CE

[∥∥W⊤
i ui[1 : k]−W⊤

i Wivi
∥∥2
2

]
+ 2E

[∥∥∥√CW⊤
i Wivi − vi

∥∥∥2
2

]
≤ 2CE

[∥∥W⊤
i ui[1 : k]−W⊤

i Wivi
∥∥2
2

]
+ 2E

[∥∥∥√CW⊤
i Wivi −W⊤

i Wivi

∥∥∥2
2

]
+ 2E

[∥∥W⊤
i Wivi − vi

∥∥2
2

]
≤ 2CE

[∥∥W⊤
i ui[1 : k]−W⊤

i Wivi
∥∥2
2

]
+ 2(

√
C − 1)2d/k + 2(d/k − 1),

16

where the second inequality follows since E[W⊤
i Wi] = I . Now we have

E
[∥∥W⊤

i ui[1 : k]−W⊤
i Wivi

∥∥2
2

]
= E

[∥∥∥W⊤
i Wivi/

√
C −W⊤

i Wivi

∥∥∥2
2
| E
]
P(E)

+ E
[∥∥W⊤

i Wivi/ ∥Wivi∥2 −W⊤
i Wivi

∥∥2
2
| Ec

]
P(Ec)

≤ (1/
√
C − 1)2d/k + 2δ̄(d/k + (d/k)2)

≤ O

d
√

log2(k/δ)

k3/2
+

δ̄d2

k2

 .

Overall, putting these back in Inequality (5), we get

E

∥∥∥∥∥µ̂− 1

n

n∑
i=1

vi

∥∥∥∥∥
2

2

 =
1

n
Err1,d(PrivUnitG) ·

1 +O

ε+ log k

k
+

√
log2(k/δ)

k


+O

 1

n

d
√

log2(k/δ)

k3/2
+

nδd2

k2
+

d

k

+ (nδd/k)2

 .

Noting that Err1,d(PrivUnitG)/n = Errn,d(PrivUnitG) = cd,ε · d
nε for some constant cd,ε, this

implies the theorem given that δ = k/n2d.

B Missing proofs for Section 2

B.1 Proof of Theorem 1

First, note that the claim about privacy follows directly from the privacy guarantees of PrivUnitG [7]
as our algorithm applies PrivUnitG over a certain input vector with unit norm.
For accuracy, note that µ̂ = 1

n

∑n
i=1 W

⊤
i ûi, therefore

E

∥∥∥∥∥µ̂− 1

n

n∑
i=1

vi

∥∥∥∥∥
2

2

 = E

∥∥∥∥∥ 1n
n∑

i=1

W⊤
i ûi − vi

∥∥∥∥∥
2

2


= E

∥∥∥∥∥ 1n
n∑

i=1

W⊤
i ûi −W⊤

i ui +W⊤
i ui − vi

∥∥∥∥∥
2

2


(i)
=

1

n2

n∑
i=1

E
[∥∥W⊤

i ûi −W⊤
i ui

∥∥2
2

]
+

1

n2
E

∥∥∥∥∥
n∑

i=1

W⊤
i ui − vi

∥∥∥∥∥
2

2


≤ 1

n
max
i∈[n]

E
[∥∥W⊤

i

∥∥2
2

]
· Err1,k(PrivUnitG) +

1

n2
E

∥∥∥∥∥
n∑

i=1

W⊤
i ui − vi

∥∥∥∥∥
2

2

 .

where (i) follows since E[û | Wi = wi] = u as PrivUnitG is unbiased. Now we analyze each of
these two terms separately. For the first term, as E[∥Wi∥2] ≤ d/k + βW for all i ∈ [n] we have that

17

is is bounded by

max
i∈[n]

E
[∥∥W⊤∥∥2

2

]
· Err1,k(PrivUnitG) ≤

(
d

k
+ βW

)
ck,ε

k

ε

=

(
d

ε
+

βWk

ε

)
cd,ε

ck,ε
cd,ε

=

(
d

ε
+

βWk

ε

)
cd,ε ·

(
1 +O

(
ε+ log k

k

))
= Err1,d(PrivUnitG) ·

(
1 +

βWk

d
+O

(
ε+ log k

k

))
,

where the third step follows from Proposition 5. For the second term,

E

∥∥∥∥∥
n∑

i=1

W⊤
i ui − vi

∥∥∥∥∥
2

2

 =

n∑
i=1

∑
j ̸=i

E
[〈
W⊤

i ui − vi,W
⊤
j uj − vj

〉]
+

n∑
i=1

E
[∥∥W⊤

i ui − vi
∥∥2
2

]

≤
n∑

i=1

∑
j ̸=i

∥∥EW⊤
i ui − vi

∥∥
2
·
∥∥EW⊤

j uj − vj
∥∥
2
+

n∑
i=1

E
[∥∥W⊤

i ui − vi
∥∥2
2

]
≤ n(n− 1)αW +

n∑
i=1

E
[∥∥W⊤

i ui

∥∥2
2
+ ∥vi∥22 − 2v⊤i W

⊤
i ui

]
= n(n− 1)αW +

n∑
i=1

E
[∥∥W⊤

i ui

∥∥2
2
+ 1− 2 ∥Wivi∥2

]
≤ n(n− 1)αW + nmax

i∈[n]
E
[∥∥W⊤

i

∥∥2
2

]
+ n.

Overall, this shows that

E

∥∥∥∥∥µ̂− 1

n

n∑
i=1

vi

∥∥∥∥∥
2

2

 ≤ Err(PrivUnitGd, n) ·
(
1 +O

(
ε+ log k

k

))

+O

(
d

nk

)
+

1

n
+

(n− 1)αW

n
.

Noticing that Errn,d(PrivUnitG) = cd,ε · d
nε for some constant cd,ε (see [7]), this implies that

E

∥∥∥∥∥µ̂− 1

n

n∑
i=1

vi

∥∥∥∥∥
2

2

 ≤ Errn,d(PrivUnitG) ·
(
1 +O

(
ε+ log k

k

))
+ αW .

This completes the proof.

B.2 Proof of Proposition 1

The first item follows immediately as U ∈ Rd×d is a random rotation matrix where U⊤U = I , hence
∥U∥ ≤ 1.

For the second item, we use a change of variables. Let W ′ = WP⊤ where P is the rotation matrix
such that Pv = e1, the first standard basis vector. Recall that the rotation matrix P is orthogonal i.e.
P⊤ = P−1. Due to the rotational symmetry of rotation matrices, W ′ is a random also a random
rotation matrix. Note that W = W ′P .

EW

[
W⊤Wv

∥Wv∥2

]
= EW ′

[
1

∥W ′Pv∥2
P⊤W ′⊤W ′Pv

]

= P⊤E

 1

∥W ′e1∥2
W ′⊤W ′e1︸ ︷︷ ︸
z



18

Notice that zj = 1
∥W ′e1∥2

e⊤j W
′⊤W ′e1 = ⟨W ′ej ,

1
∥W ′e1∥2

W ′e1⟩. First, note that E[zj] = 0 for all
j > 1. Moreover, z1 = ∥W ′e1∥2, therefore because W ′ is a random rotation matrix, Lemma F.1
implies that E[z1] =

√
d/k(

√
k/d + O(1/

√
kd)) = 1 + O(1/k). We let c = E[z1]. Thus,

E[z] = ce1 and E[W⊤Wv/ ∥Wv∥2] = cP⊤e1 = cP⊤Pv = cv. Therefore,
∥∥∥E[W⊤Wv

∥Wv∥2
− v]

∥∥∥
2
=

|c− 1| ∥v∥2 = O(1/k).

B.3 Proof of Proposition 2

The bound on the operator norm is straightforward and follows from the fact that the Hadamard
transform has operator norm bounded by 1.

Next we bound the bias. Let δ = min(1/d2, k/2d) and let E1 denote the event where ∥Wv∥ ∈
1±O(ln(k/δ)/

√
k). By Corollary F.1, E1 happens with probability 1− δ. Note that W⊤W is PSD

and E[W⊤W] = I . Thus,∥∥∥∥E [W⊤Wv

∥Wv∥
−W⊤Wv

]∥∥∥∥ ≤
∥∥∥∥E [W⊤Wv

∥Wv∥
−W⊤Wv|E1

]∥∥∥∥+ ∥∥∥∥E [W⊤Wv

∥Wv∥
−W⊤Wv|E1

]∥∥∥∥P(E1)

≤
∥∥∥∥E [(1

∥Wv∥
− 1

)
W⊤Wv|E1

]∥∥∥∥+ (∥W⊤∥+ 1)P(E1)

≤
∥∥∥∥E [(1

∥Wv∥
− 1

)
W⊤W |E1

]∥∥∥∥+ (∥W⊤∥+ 1)P(E1)

≤
∥∥∥∥E [∣∣∣∣ 1

∥Wv∥
− 1

∣∣∣∣W⊤W |E1

]∥∥∥∥+ (∥W⊤∥+ 1)P(E1)

≤ O(ln(k/δ)/
√
k) + (

√
d/k + 1)δ

Substituting in the value of δ gives the desired bound on the bias, by noticing that∥∥E[W⊤W | E1]
∥∥
2
≤ 2 since for any unit vector x,

x⊤Ix = E[x⊤W⊤Wx]

= E[x⊤W⊤Wx | E1]P(E1) + E[x⊤W⊤Wx | E1]P(E1)

≥ E[xW⊤Wx | E1](1− δ).

In other words, E[xW⊤Wx | E1] ≤ 1
1−δ for all x ∈ Rd with unit norm.

C Proof of Theorem 4

The proof of this result follows from the next proposition.
Proposition 3. Let k ≤ d, G ≥ 1 be an integer, U1, . . . , UG and W1, . . . ,Wn be sampled as
described in (3). Moreover, Uj for j ∈ [G] and Wi for i ∈ [n] satisfy:

1. Bounded operator norm:
∥∥U⊤

j

∥∥ ≤ 1.

2. Bounded bias:
∥∥∥E [W⊤

i Wiv
∥Wiv∥2

]
− v
∥∥∥
2
≤ √

αW for all unit vectors v ∈ Rd.

Then for all unit vectors v1, . . . , vn ∈ Rd, setting µ̂ = ACPU (RCPU(v1), . . . ,RCPU(vn)),

E

∥∥∥∥∥µ̂− 1

n

n∑
i=1

vi

∥∥∥∥∥
2

2

 ≤ Errn,d(PrivUnitG) ·
(
1 +O

(
ε+ log k

k
+

nε log2(nd)

Gdk

))
+ αW .

Before proving the proposition, we can now prove Theorem 4.

Proof. The proof follows from Proposition 3 by noting that the server returns
∑n

i=1 W
⊤
i ûi/n. The

first property holds immediately from the definition of Uj . Moreover, for the second property,

19

Proposition 2 implies that αW = O(log2(d)/k). Since Errn,d(PrivUnitG) = Θ(d/nε), the claim
about utility follows.
Now we prove the part regarding runtime. First, note that calculating the matrix D can be done
efficiently using standard techniques [36, 5]. The server has to calculate the quantity

U⊤
n∑

i=1

S⊤
i ûi.

Note that the summation has vectors which are k-sparse, therefore can be done in time O(nk). Then,
we have a multiplication step by Hadamard transform,which can be done in O(d log d).

We now prove Proposition 3.

Proof. Note that µ̂ = 1
n

∑n
i=1 W

⊤
i ûi. Therefore we have

E

∥∥∥∥∥µ̂− 1

n

n∑
i=1

vi

∥∥∥∥∥
2

2

 = E

∥∥∥∥∥ 1n
n∑

i=1

W⊤
i ûi − vi

∥∥∥∥∥
2

2


= E

∥∥∥∥∥ 1n
n∑

i=1

W⊤
i ûi −W⊤

i ui +W⊤
i ui − vi

∥∥∥∥∥
2

2


(i)
=

1

n2

n∑
i=1

E
[∥∥W⊤

i ûi −W⊤
i ui

∥∥2
2

]
+

1

n2
E

∥∥∥∥∥
n∑

i=1

W⊤
i ui − vi

∥∥∥∥∥
2

2


≤ 1

n
max
i∈[n]

E
[∥∥W⊤

i

∥∥2
2

]
· Err1,k(PrivUnitG) +

1

n2
E

∥∥∥∥∥
n∑

i=1

W⊤
i ui − vi

∥∥∥∥∥
2

2

 .

where (i) follows since E[û] = u as PrivUnitG is unbiased. Now we analyze each of these two terms
separately. For the first term, as E[∥Wi∥2] ≤ d/k for all i ∈ [n] we have that it is bounded by

max
i∈[n]

E
[∥∥W⊤

i

∥∥2
2

]
· Err1,k(PrivUnitG) ≤ d

k
ck,ε

k

ε
=

d

ε
cd,ε

ck,ε
cd,ε

=
d

ε
cd,ε ·

(
1 +O

(
ε+ log k

k

))
= Err1,d(PrivUnitG) ·

(
1 +O

(
ε+ log k

k

))
,

where the third step follows from Proposition 5. For the second term,

E

∥∥∥∥∥
n∑

i=1

W⊤
i ui − vi

∥∥∥∥∥
2

2

 =

n∑
i=1

∑
j ̸=i

E
[〈
W⊤

i ui − vi,W
⊤
j uj − vj

〉]
+

n∑
i=1

E
[∥∥W⊤

i ui − vi
∥∥2
2

]
.

For the second term note that
n∑

i=1

E
[∥∥W⊤

i ui − vi
∥∥2
2

]
=

n∑
i=1

E
[∥∥W⊤

i ui

∥∥2
2
+ ∥vi∥22 − 2v⊤i W

⊤
i ui

]
=

n∑
i=1

E
[∥∥W⊤

i ui

∥∥2
2
+ 1− 2 ∥Wivi∥2

]
≤ nmax

i∈[n]
E
[∥∥W⊤

i

∥∥2
2

]
+ n ≤ n(d/k + 1).

For the first term, we have
E
[〈
W⊤

i ui − vi,W
⊤
j uj − vj

〉]
= E

[〈
W⊤

i (ui −Wvi) +W⊤
i Wivi − vi,W

⊤
j (uj −Wjvj) +W⊤

j Wjvj − vj
〉]

= E
[〈
W⊤

i (ui −Wvi) ,W
⊤
j (uj −Wjvj)

〉]
+ E

[〈
W⊤

i Wivi − vi,W
⊤
j (uj −Wjvj)

〉]
+ E

[〈
W⊤

i (ui −Wvi) ,W
⊤
j Wjvj − vj

〉]
+ E

[〈
W⊤

i Wivi − vi,W
⊤
j Wjvj − vj

〉]
20

Because ESi

[
d
kS

⊤
i Si

]
= I , H⊤H = I , and D⊤D = I , we can evaluate the second term:

ESi

[〈
W⊤

i Wivi − vi,W
⊤
j (uj −Wjvj)

〉]
= ESi

[〈
d

k
D⊤H⊤S⊤

i SiHDvi − vi,W
⊤
j (uj −Wjvj)

〉]
= 0

Similarly, we can evaluate the fourth term:

E
[〈
W⊤

i Wivi − vi,W
⊤
j Wjvj − vj

〉]
= E

[〈
d

k
D⊤H⊤S⊤

i SiHDvi − vi,W
⊤
j Wjvj − vj

〉]
= 0

The third term is similar. Thus, we only need to bound the first term. First we give an upper bound
that holds with probability 1.

〈
W⊤

i (ui −Wivi) ,W
⊤
j (uj −Wjvj)

〉
≤
∥∥W⊤

i

∥∥∥∥W⊤
j

∥∥ (∥Wi∥+ 1) (∥Wj∥+ 1)

≤ O
(
d2/k2

)
Let E1 be the event that ∥Wivi∥ , ∥Wjvj∥ ∈ 1 ± O

(
ln (k/δ) /

√
k
)

where δ is a parameter to be
chosen later. We will split the expectation depending on the event E1.

〈
W⊤

i (ui −Wivi) ,W
⊤
j (uj −Wjvj)

〉
=

(
1

∥Wivi∥
− 1

)(
1

∥Wjvj∥
− 1

)
v⊤i W

⊤
i WiW

⊤
j Wjvj

=
d2

k2

(
1

∥Wivi∥
− 1

)(
1

∥Wjvj∥
− 1

)
v⊤i U

⊤S⊤
i Si UU⊤︸ ︷︷ ︸

I

S⊤
j SjUvj

Note that M := S⊤
i SiS

⊤
j Sj is PSD (both S⊤

i Si and S⊤
j Sj are diagonal matrices and so is the

product). Furthermore, E[dkS
⊤
i Si] = I . Thus

E
[
d2

k2

(
1

∥Wivi∥
− 1

)(
1

∥Wjvj∥
− 1

)
v⊤i U

⊤MUvj , E1

]
· Pr [E1]

≤ E
[
d2

4k2

(
1

∥Wivi∥
− 1

)(
1

∥Wjvj∥
− 1

)(
v⊤i + v⊤j

)
U⊤MU (vi + vj) , E1

]
· Pr [E1]

≤ E
[
O
(
ln2 (k/δ) d2/k3

) (
v⊤i + v⊤j

)
U⊤MU (vi + vj)

]
= O

(
ln2 (k/δ) /k

)
Therefore,

E
[〈
W⊤

i (ui −Wivi) ,W
⊤
j (uj −Wjvj)

〉]
≤ O

(
ln2 (k/δ) /k

)
+O

(
d2/k2

)
· Pr

[
E1

]
We now complete the proof of the claim. Combining the analysis, we get

E

∥∥∥∥∥µ̂− 1

n

n∑
i=1

vi

∥∥∥∥∥
2

2

 ≤ Errn,d(PrivUnitG) ·
(
1 +O

(
ε+ log k

k

))

+O

(
d

nk
+

d2δ

Gk2
+

ln2(k/δ)

Gk
+ αW

)
.

Noticing that Err1,d(PrivUnitG)/n = Errn,d(PrivUnitG) = cd,ε · d
nε for some constant cd,ε (see [7]),

and δ ≤ k/(nd), this implies that

E

∥∥∥∥∥µ̂− 1

n

n∑
i=1

vi

∥∥∥∥∥
2

2

 ≤ Errn,d(PrivUnitG) ·
(
1 +O

(
ε+ log k

k
+

nε ln2(k/δ)

Gdk

))
+ αW .

This proves the claim.

21

D ProjUnit using Gaussian transforms

Building on the randomized projection framework of the previous section, in this section we in-
stantiate it with the Gaussian transform. In particular, we sample W ∈ Rk×d from the Gaussian
distribution where W has i.i.d. N (0, 1/k) entries. The following theorem states our guarantees for
this distribution.

Theorem 7. Let k ≤ d and W ∈ Rk×d be sampled from the Gaussian distribution where
W has i.i.d. N (0, 1/k) entries. Then for all unit vectors v1, . . . , vn ∈ Rd, setting µ̂ =
APU (RPU(v1), . . . ,RPU(vn)),

E

∥∥∥∥∥µ̂− 1

n

n∑
i=1

vi

∥∥∥∥∥
2

2

 ≤ Err(PrivUnitGd, n)

(
1 +O

(√
k

d
+

ε+ log k

k

))
+O

(
1

k2

)
.

The proof follows directly from Theorem 1 and the following proposition which proves certain
properties of the Guassian transform.

Proposition 4. Consider W ∈ Rk×d with i.i.d. N (0, 1/k) entries and a fixed v ∈ Rd. Then

1. Bounded operator norm:

E∥W⊤∥2 ≤ d

k

(
1 +O

(√
k

d

))
.

2. Bounded bias: for every unit vector v ∈ Rd∥∥∥∥EW⊤Wv

∥Wv∥
− v

∥∥∥∥ = O(1/k).

Proof. For the first item, we rely on standard results in random matrix theory. If we let Z denote the
top singular value of

√
kW⊤, then (17, Theorem 2.13) shows that for any t, Pr(Z >

√
d +

√
k +

t) < exp(−t2/2). This implies that median(Z) ≤
√
d +

√
k + 2. Further, by the isoperimetric

inequality, Z is concentrated around its median with subGaussian tails, so that the second moment of
Z −median(Z) is at most O(1). Thus the second moment of Z is at most median(Z)2 +O(1) ≤
(
√
d+

√
k + 2)2 +O(1). Scaling this by k, we conclude that E[∥W⊤∥2op] ≤ d

k (1 + 2
√

k
d + O(1)

k).

For the second item, we use a change of variables. Let W ′ = WP⊤ where P is the rotation matrix
such that Pv = e1, the first standard basis vector. Recall that the rotation matrix P is orthogonal i.e.
P⊤ = P−1. Due to the rotational symmetry of the normal distribution, W ′ is a random matrix with
i.i.d. N (0, 1/k) entries. Note that W = W ′P .

EW [W⊤u] = EW ′

[
1

∥W ′Pv∥2
P⊤W ′⊤W ′Pv

]

= P⊤E

 1

∥W ′e1∥2
W ′⊤W ′e1︸ ︷︷ ︸
z


Notice that zj = 1

∥W ′e1∥2
e⊤j W

′⊤W ′e1 = ⟨W ′ej ,
1

∥W ′e1∥2
W ′e1⟩. Because W ′ has i.i.d. N (0, 1/k)

entries, z1 = ∥W ′e1∥2 is 1/
√
k times a χ random variable with k degrees of freedom. We let

1
c = E[z1] = 1√

k
·

√
2Γ((k+1)/2)
Γ(k/2) = 1 − O(1/k) and E[zj] = 0 ∀j > 1. Thus, E[z] = 1

c e1

and E[W⊤
i ui] =

1
cP

⊤
i e1 = 1

cP
⊤Pv = 1

cv. Therefore,
∥∥∥E[W⊤Wv

∥Wv∥2
− v
∥∥∥
2
= ∥|1/c− 1|v∥2 =

O(1/k).

22

0 2 4 6 8

0.55

0.60

0.65

0.70

0.75

0.80

0.85
MNIST (epsilon = 4)

Gaussian
PrivUnitG
FastProjUnit (k = 1000)
FastProjUnit-corr (k = 1000)
RePrivHS (R = 2)

0 2 4 6 8

0.70

0.75

0.80

0.85

0.90

MNIST (epsilon = 10)

Gaussian
PrivUnitG
FastProjUnit (k = 1000)
FastProjUnit-corr (k = 1000)
RePrivHS (R = 5)

0 2 4 6 8

0.70

0.75

0.80

0.85

0.90

MNIST (epsilon = 16)

Gaussian
PrivUnitG
FastProjUnit (k = 1000)
FastProjUnit-corr (k = 1000)
RePrivHS (R = 8)

(a) (b) (c)

Figure 5: Test accuracy on the MNIST dataset as a function of epoch for (a) ε = 4.0, (b) ε = 10.0
and (c) ε = 16.0.

E Additional plots for the MNIST experiment

We present additional details for the MNIST experiment including the description of the neural
network (Table 2) and additional plots with different values of the privacy parameters for the MNIST
experiment. In Figure 5, we present more plots for the MNIST experiment where we train models
with several privacy parameters ε ∈ {4, 10, 16}.

Layer Parameters
Convolution +tanh 16 filters of 8× 8, stride 2, padding 2
Average pooling 2× 2, stride 1
Convolution +tanh 32 filters of 4× 4, stride 2, padding 0
Average pooling 2× 2, stride 1
Fully connected +tanh 32 units
Fully connected +tanh 10 units

Table 2: Architecture for convolutional network model.

F Helper Lemmas

F.1 Helper lemmas for random rotations

Lemma F.1. Let x be a random unit vector on the unit ball of Rd and z be the projection of x on to
the last k coordinates. We have ∣∣∣E[∥z∥]−√k/d

∣∣∣ = O

(
1√
kd

)
Proof. We represent d dimensional vector x using spherical coordinates as follows.

x1 = cos (ϕ1)

x2 = sin (ϕ1) cos (ϕ2)

. . .

xd−1 = sin (ϕ1) · · · sin (ϕd−2) cos (ϕd−1)

xd = sin (ϕ1) · · · sin (ϕd−2) sin (ϕd−1)

The squared length of the projection is

d∑
i=d−k+1

x2
i = sin2 (ϕ1) · · · sin2 (ϕd−k)

23

Recall the surface area element is sind−2 (ϕ1) sin
d−3 (ϕ2) · · · sin (ϕd−2) dϕ1 · · · dϕd−1.

For k ≥ 2, the expected length is

∫ π

0
· · ·
∫ π

0

∫ 2π

0
(sin (ϕ1) · · · sin (ϕd−k)) sin

d−2 (ϕ1) sin
d−3 (ϕ2) · · · sin (ϕd−2) dϕ1 · · · dϕd−1

Sd−1

where Sd−1 is the surface area of the unit ball, which is Sd−1 = 2πd/2

Γ(d/2) .

We first evaluate the integral for each sine power.

Claim F.1. For integer n ≥ 1 we have∫ π

0

sinn xdx =
Γ((n+ 1)/2)

Γ (1 + n/2)

√
π

Proof. For n ≥ 2, we have∫
sinn xdx = −

∫
sinn−1 xd(cosx)

= − sinn−1 x cosx+ (n− 1)

∫
sinn−2 x cos2 xdx

= − sinn−1 x cosx+ (n− 1)

∫
sinn−2 x(1− sin2 x)dx

Thus, ∫ π

0

sinn xdx =
n− 1

n

∫ π

0

sinn−2 xdx− sinn−1 x cosx

n

∣∣∣π
0

=
(n− 1)/2

n/2

∫ π

0

sinn−2 xdx

The claim then follows using induction with base cases
∫ π

0
sinxdx = 2 and

∫ π

0
dx = π.

∫ π

0

· · ·
∫ π

0

∫ 2π

0

(sin (ϕ1) · · · sin (ϕd−k)) sin
d−2 (ϕ1) sin

d−3 (ϕ2) · · · sin (ϕd−2) dϕ1 · · · dϕd−1

=2π

∫ π

0

· · ·
∫ π

0

sind−1 (ϕ1) · · · sink (ϕd−k) sin
k−2 (ϕd−k+1) · · · sin (ϕd−2) dϕ1 · · · dϕd−2

=2π
Γ(d/2)

Γ ((d+ 1)/2)

√
π · · · Γ((k + 1)/2)

Γ ((k + 2) /2)

√
π · Γ((k − 1)/2)

Γ (k/2)

√
π · · · Γ (1)

Γ (3/2)

√
π

=2πd/2 Γ ((k + 1) /2)

Γ ((d+ 1) /2) Γ (k/2)

The expected length is

E[∥z∥] = Γ ((k + 1) /2) Γ (d/2)

Γ ((d+ 1) /2) Γ (k/2)

=
Γ(k)2dΓ(d/2)2

2kΓ(k/2)2Γ(d)

=

√
k
(
1− 1

4k +O
(
1/k2

))
√
d
(
1− 1

4d +O (1/d2)
)

In the second line, we use the Legendre duplication formula Γ(k/2)Γ((k + 1)/2) = 21−k
√
πΓ(k).

In the third line, we use the Stirling’s approximation Γ(z) =
√
2π/z(z/e)z(1+1/(12z)+O(1/z2)).

24

F.2 SRHT Analysis

The Subsampled Randomized Hadamard Transform (SRHT) is the random matrix ensemble defined

as W =
√

d
kSHD. Here D ∈ Rd×d is a diagonal matrix with independent uniform ±1 values on its

diagonal, and H ∈ Rd×d is the normalized Hadamard transform (Hi,j = (−1)⟨v(i),v(j)⟩/
√
d, where

v(i) is the (log2 d)-dimensional vector obtained by writing i in binary). The matrix S ∈ Rk×d is a
sampling matrix. The fact that the SRHT preserves the Euclidean norm of any fixed vector with large
probability has been known for some time [3, 16, 35], though different works have analyzed slightly
different variants of the SRHT, all having to do with how S is defined.

In this work, we make use of the SRHT in which S samples without replacement: that is, each row
of S has a 1 in a uniformly random entry and zeroes elsewhere, and no two rows of S are equal.
The tightest known analysis of the SRHT [16] analyzes the SRHT with a different sampling matrix:
Sη = diag(η), where η1, . . . , ηd are independent Bernoulli random variables each with expectation
k/d (so that we sample a random number of rows from HD, which is equal to k only in expectation).

The following is a special case of Theorem 9 in the full version of [16]

Theorem 8 ([16]). Suppose W =
√

d
kSηHD for S = diag(η), where η1, . . . , ηd is a sequence of

independent, uniform Bernoulli random variables each with expectation k/d. Then for some constant
C > 0, for any fixed u ∈ Rd of unit Euclidean norm and δ ∈ (0, 1),

Pr
η,D

(|∥Wu∥22 − 1| > C
√
log(1/δ) log(k/δ)/k) < δ

An analysis of the SRHT using sampling without replacement then follows as a corollary.

Corollary F.1. Suppose W =
√

d
kSHD is obtained with S being a k × d sampling matrix without

replacement. Then for some constant C > 0, for any fixed u ∈ Rd of unit Euclidean norm and
δ ∈ (0, 1),

Pr
η,D

(|∥Wu∥22 − 1| > C

√
log2(k/δ)/k) < δ

Proof. Consider W ′ =
√

d
kSηHD with Bernoulli parameter k/d, as in Theorem 8. Then for any

δ′ ∈ (0, 1) and fixed unit vector u ∈ Rd, Prη,D(E) < δ′, where E is the event that |∥W ′u∥22 − 1| >
C
√
log(1/δ′) log(k/δ′)/k. But we also have

Pr(E) ≥ Pr(E ∩ (∥η∥1 = k))

= Pr(E | ∥η∥1 = k) · Pr(∥η∥1 = k)

= Pr(E | ∥η∥1 = k) ·Θ(1/
√
k).

Note Pr(E | ∥η∥1 = k) is exactly Pr(|∥Wu∥22 − 1| > C
√

log(1/δ′) log(k/δ′)/k), where W is
defined by sampling without replacement. Thus we have

Pr(|∥Wu∥22 − 1| > C
√
log(1/δ′) log(k/δ′)/k) < Cδ′

√
k.

The claim then follows by applying the above with δ′ = δ/(C
√
k).

G Details of PrivUnitG

For completeness, in this section we provide the full details of PrivUnitG which was proposed by Asi
et al. [7]. Roughly, this algorithm uses the normal distribution to approximate the uniform distribution
over the sphere for large dimensions. We refer the reader to [7] for more details about PrivUnitG.

In the algorithm, Φ and ϕ denote the Cumulative distribution function and probability density function
for a Gaussian random variable N(0, Id). There are multiple ways to set the parameters of PrivUnitG
to achieve ε-DP; in our paper, we use the optimized parameters as described by Asi et al. [7], which
allow to minimize the expected mean squared error (see Proposition 4 in [7]).

25

We note that Algorithm 8 describes the clients’ algorithm (local randomizers) in the PrivUnitG
protocol. The server aggregation simply adds all messages received from clients. Thus, we let
RPrivUnitGε denote the local randomizer in Algorithm 8 (with optimized parameters to satisfy ε-DP)
and let APrivUnitGε

denote the additive server aggregation.

Algorithm 8 PrivUnitG(p, q)

Require: v ∈ Sd−1, q ∈ [0, 1], p ∈ [0, 1]
1: Draw z ∼ Ber(p)
2: Let U = N(0, σ2) where σ2 = 1/d
3: Set γ = Φ−1

σ2 (q) = σ · Φ−1(q)
4: if z = 1 then
5: Draw α ∼ U | U ≥ γ
6: else
7: Draw α ∼ U | U < γ
8: Draw V ⊥ ∼ N(0, σ2(I − vvT)
9: Set V = αv + V ⊥

10: Calculate

m = σϕ(γ/σ)

(
p

1− q
− 1− p

q

)
11: Return 1

m · V

We also use the following useful result on the error of PrivUnitG for different dimensions. Recall
that Errn,d(PrivUnitG) = cd,ε

d
nε . Then we have the following.

Proposition 5 (Propsition 5, [7]). Fix ε > 0. For any 1 ≤ k ≤ d,

1−O

(
ε+ log k

k
+

ε

k

)
≤ ck,ε

cd,ε
≤ 1 +O

(
ε+ log k

k
+

ε

k

)
.

H Compressed PrivUnitG

Compressing the PrivUnit (resp. PrivUnitG) algorithm, using the technique of Feldman and Talwar
[24], requires a pseudorandom generator that generates samples from a unit ball (resp. Gaussian)
and fools spherical caps. As observed in [24], such PRGs with small seed length are known [30, 28].
However, the constructions in those works are optimized for seed length, and the computational cost
of expanding a seed to a vector is a large polynomial. In this section, we argue that for inputs x
having b bits of precision, we can compress PrivUnit/PrivUnitG to small seed length with a relatively
efficient algorithm for seed expansion.

We will rely on Nisan’s generator [33] which says that any space S computation that consumes N bits
of randomness can be δ-fooled using a random seed of length O(logN(S + logN/δ)). Moreover,
the computational cost of generating a pseudorandom string from a random seed is O(N logN). In
our set up, the test that privacy of PrivUnit/PrivUnitG depends on is the [g · x ≥ γ], when g is chosen
from the Gaussian distribution. This probability that this test passes for the Gaussian distribution is
e−cε for some constant c, and thus it suffices to set δ to be e−cεβ to ensure that mechanism satisfies
(ε+ 2β)-DP. For the rest of this discussion, we will set β = ετ/2 which leads to ε′ < ε(1 + τ). We
can set τ to be inverse polynomial as the dependence of the parameters on τ will be logarithmic.

The test of interest for us can be implemented in S = O(log d + b) space, and requires N = db
bits of randomness. Plugging in these values and δ = ετe−cε/2, we get seed length O(log db(b +
cε+ log db/ετ) and each expansion from seed to value requires run time O(db log db). Each run of
PrivUnitG requires O(ecε) expected random strings, leading to a run time of O(ecϵbd log db).

For our algorithm, we run this on a k-dimensional vector instead of a d-dimensional one, with
b = log d. This gives us seed length O(log(k log d) · (log d + ε + log(k log d/ε))). Given the
projected vector, the run time is O(ecεk log2 d).

26

	Introduction
	Contributions

	A random projection framework for low-communication private algorithms
	ProjUnit using Random Rotations
	Fast ProjUnit using the SRHT

	Efficient Server Runtime via Correlated Sampling
	Experiments
	Private mean estimation
	Private federated learning

	Nearly unbiased ProjUnit randomizers
	Unbiased variant of ProjUnit using random rotations
	Nearly unbiased SRHT-based randomizers

	Missing proofs for sec:algs
	Proof of thm:err-jl-gen
	Proof of prop:rotation-prop
	Proof of prop:HD-prop

	Proof of thm:err-fjl-fixed
	ProjUnit using Gaussian transforms
	Additional plots for the MNIST experiment
	Helper Lemmas
	Helper lemmas for random rotations
	SRHT Analysis

	Details of PrivUnitG
	Compressed PrivUnitG

