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1. Introduction
Many real-world problems can be recast within

the framework of complex dynamical systems. Such
systems can be modeled either as high-dimensional
deterministic systems with chaotic, multiscale be-
havior [1, 2], or as stochastic systems that explic-
itly incorporate randomness [3, 4]. Regardless of
the modeling paradigm used, complex dynamical
systems, like the atmosphere, exhibit limited pre-
dictability horizons, causing forecast errors to grow
over time [5, 6]. This statement holds true both
when using traditional numerical methods to solve
the equations governing these systems, as well as
when using data-driven and artificial intelligence
(AI) approaches. In addition, the challenge of pre-
dicting complex dynamical systems becomes even
more pronouncedwhen extreme events occur, given
their short-lived and abrupt nature.
The evaluation of predictability of complex sys-

tem traces back to the sensitivity analysis to the ini-
tial conditions in deterministic systems proposed by
Lorenz [5], which was later formalized through the
largest Lyapunov exponent [7], and its variants [8,
9, 10, 11, 12]. The framework of information the-
ory was also proposed to study predictability [13,
14, 15, 16]. The above two classes of methods have
intrinsic limitations. Lyapunov-based approaches
tend to have restrictive assumption on the underly-
ing data, while information-theory methods are im-
practical for high-dimensional systems due to their
prohibitive computational costs.
Building on a different perspective, Lucarini et

al. [17] proposed local dynamical indices based on
extreme value theory and dynamical systems the-
ory, which can be viewed as qualitative proxies of
state-dependent predictability. However, they can-
not directly provide a quantitative estimation of pre-
dictability. To address this limitation, stemming
from the same framework of dynamical indices,
time-lagged recurrence (TLR) [18] was recently pro-
posed to analyze the state-dependent predictability
of complex systems. This recent and promising ap-
proach was applied to several dynamical systems
showing its ability to correctly capture known pre-
dictability, while also providing results for dynam-
ical systems where Lyapunov exponents and infor-
mation theory struggled.
In this work, we take yet another route, that is:

we attempt to estimate predictability using machine
learning, building upon some recent works [19, 20,
21].

2. Method
We combine machine learning with information

theory to quantify the predictability limits of dy-
namical systems, focusing in particular on extreme
events. Specifically, we utilize a diffusion-based ma-
chine learning model to obtain the distribution of
predicted trajectories, and then define a variable
based on information theory to quantify predictabil-
ity limits of extreme events.
We employ the Autoregressive Conditional Dif-

fusion Model (ACDM) [22] to ensure long-term sta-
ble predictions. ACDM extends Denoising Diffu-
sion Probabilistic Models (DDPMs) [23] by introduc-
ing an autoregressive structure for sequential pre-
dictions, where the system’s previous state condi-
tions the predicted probability distribution at each
time step (see Appendix, Fig. A1). Notably, this ap-
proach inherently provides a distribution of pre-
dicted system trajectories, allowing for better uncer-
tainty and predictability assessment. The training
process follows the standard diffusionmodel frame-
work, where Gaussian noise is progressively added
to the simulation states, transforming the original
data into a noise distribution. This process helps the
model learn the statistical dynamics of the system
while incorporating variability.
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Fig. 1: Methodology to quantify the predictability of
one extreme event that happens on the eth time
step. The variable se denotes the onset state of the
extreme event, while Pn denotes the predictabil-
ity of se from the nth time step before the onset. In
this figure, two sequential states before the onset
of extreme events are used as initial conditions for
probabilistic prediction.

The reverse process, which reconstructs the de-
noised data from the noise distribution, is learned
using a U-Net (based on [24]) with various modern
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architectural improvements [25, 26, 27]. In the in-
ference phase, noise is added to the conditions, and
combined with a random distribution that repre-
sent current state. This random distribution is de-
noised stepwise to produce a predictive distribution
for the current state. This approach maintains con-
sistency and coherence in long simulations. Con-
trolled noise perturbations help reduce error accu-
mulation, enhancing stability and robustness. The
trained ACDM is then used to predict the system’s
evolution, with initial conditions taken from various
time steps before the onset of extreme events. To es-
tablish a benchmark, numerical methods are used
to generate ground truth data, identifying the onset
times of a large number of extreme events. A vari-
able is introduced to evaluate the predictability of
the distribution generated by the diffusion model,
ultimately allowing us to determine the predictabil-
ity limit for each extreme event. An illustration of
how to find the predictability limit for one extreme
event is shown in Fig. 1.

3. Preliminary Results
The proposed model is evaluated on a well-

established dynamical system: namely the Kol-
mogorov flow, a two-dimensional incompressible
flow driven by a sinusoidal body force with a spec-
ified wavenumber [28, 29]. At sufficiently high
Reynolds numbers, this system exhibits extreme
events characterized by sudden increase in instan-
taneous space-averaged enstrophy Ω [29], that is di-
rectly linked to the dissipation rate of the system.
Indeed, in Kolmogorov flow with Reynolds number
Re = 100, an extreme event is defined when the en-
strophy is above 10.7, which represents the top 1% of
the enstrophy distribution within the attractor. To
generate ground truth data, we employ a pseudo-
spectral method [30].
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Fig. 2: Extreme events with different predictability
limits in Kolmogorov flow.

Preliminary results indicate that extreme events
in Kolmogorov flow can be classified into distinct
groups based on their machine-learning-derived
predictability, which is calculated based on informa-
tion theory metrics. Some extreme events exhibit
a relatively long predictability limit. One example

is shown in Fig 2 in orange, labeled as Type 1. The
probability predictions made by the machine learn-
ing model starting from 5 Lyapunov times (LT ) be-
fore the onset of extreme events are tightly concen-
trated around the ground truth, indicating that the
system is still within the predictability limit. How-
ever, predictions starting from above 5 LT before
the event become widely dispersed across the at-
tractor, suggesting that the model cannot accurately
predict this extreme event. Some other extreme
events shows a lower predictability limit at around 3
LT . The successful prediction of one example, made
froma lead time shorter than thepredictability limit,
is shown in Fig 2 in blue, labeled as Type 2. When
predicting starting from above 3 LT before the on-
set, the accuracy cannot be guaranteed. (The unsuc-
cessful predictions that out of predictability limit for
Type 1 and Type 2 are shown in Appendix, Fig. A2)
Additionally, we observe that some extreme events
are entirely unpredictable, with no clear indication
of their occurrence even at shorter timescales. An
example of this type of extreme events can be found
in Fig 2 in gray, labeled as Type 3. Even starting the
prediction from less than 1 LT lead time before the
occurrence of the extreme event, none of the trajec-
tories reach the threshold of extreme events. This
variability in predictability may stem from differ-
ent underlyingmechanisms driving extreme events,
which warrants further investigation in future stud-
ies.

4. Conclusion
This work establishes a machine-learning-driven

approach for quantifying the predictability of dy-
namical systems, with a focus on extreme events.
The approach uses a diffusion-basedmodel, and can
pave the way to better understand the behaviour
of real-world dynamical systems, especially for ex-
treme events. Understanding why certain extreme
events have longer or shorter predictabilitywindows
could reveal fundamental properties of chaotic sys-
tems and improve forecasting strategies.
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Appendix A. Additional images
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Fig. A1: The inference workflow of Autoregressive conditional diffusion model (ACDM) [22]. sn denotes the
state of the system at nth time step. As an example, the input of ACDM is two sequential state for each time
step prediction.
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Fig. A2: Unsuccessful prediction of Type 1 and Type 2 extremes from initial conditions out of predictability
limit.
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