Under review as a conference paper at ICLR 2025

DSPART: A LARGE-SCALE DIFFUSION-GENERATED
SYNTHETIC DATASET WITH ANNOTATIONS FROM 3D
PARTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Object parts provide representations that enable a detailed and interpretable under-
standing of object structures, making part recognition crucial for various real-world
applications. However, acquiring pixel-level part annotations is both expensive
and time-consuming. Rendering 3D object models with their 3D part annotations
is a promising solution since it allows the generation of unlimited synthetic data
samples with precise 3D control and accurate part segmentation masks. Never-
theless, these synthetic datasets suffer from a lack of realism, resulting in large
domain gaps. In this paper, we present a large-scale realistic synthetic dataset with
part annotations, namely Diffusion-generated Synthetic Parts (DSPart), for both
rigid objects and animals. For images in DSPart, we obtain 2D part masks from
3D part annotations by leveraging recent advances in diffusion models with 3D
control. In addition to offering more diverse and realistic textures, prior knowl-
edge of diffusion models enables the object to exhibit more physically realistic
interactions with the ground plane and other spatial contexts. We annotate 475
representative shape instances from 50 object categories for DSPart-Rigid and
use 3, 065 high-quality SMAL models fitted poses from 40 animal categories for
DSPart-Animal. Experimental results demonstrate the potential of our dataset in
training robust part segmentation models, effectively bridging the gap between
synthetic and real-world data.

1 INTRODUCTION

Important contributions in the field of cognitive psychology have evidenced that human perception of
objects is strongly based on part decomposition (Hoffman & Richards, 1984; Biederman, 1987; Ross
& Zemel, 2006) and have inspired the usage of part-based methods for computer vision. Focusing
on parts or their representations, followed by validation of their geometric configurations, offers
many advantages. For example, based on parts, a large number of geometric variations of highly
articulated objects (e.g., animals) can be represented and learned holistically (Ross & Zemel, 2006).
Part-based models have also been shown to be relatively robust to partial occlusion (Kaushik et al.,
2024b; Kortylewski et al., 2020) and allow few/zero-shot knowledge transfer to novel objects (Golcii
& Gilbert, 2009; He et al., 2023b). The visual characteristics of specific object parts exhibit less
variability under changes in pose (and other nuisance factors) compared to the overall appearance
of the entire object (Ross & Zemel, 2006; Kaushik et al., 2024b;a) which enables better model
robustness (Sitawarin et al., 2022; Li et al., 2023; He et al., 2023a; Xie et al., 2024; Zhang et al., 2024).
These advantages make part recognition important in real-world applications, such as robotics (Aleotti
& Caselli, 2012; Nadeau et al., 2023) and action recognition (Zhao et al., 2017; Wang et al., 2012).

However, the predominant focus within the community in the big data era has been on addressing tasks
at the object level, with minimal attention given to intermediate part representations. This shortage is
mainly due to the lack of datasets with pixel-level part annotations across general categories. Most
existing part datasets focus on a small number of object categories, such as humans (Li et al., 2020;
Gong et al., 2017; Li et al., 2017; Yang et al., 2019) and cars (Dinesh Reddy et al., 2018; Song
et al., 2019). Although some recent works have presented relatively large-scale part datasets (Chen
et al., 2014; He et al., 2022), the absolute number of images annotated in these datasets still falls
far behind those with pixel-level annotations on general object-level categories. For example, both
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Figure 1: Overview of the DSPart framework. Firstly, we define 3.5K 3D CAD models with 50 rigid and 40
non-rigid categories. Secondly, following the 3D-Diffusion Style Transfer(3D-DST) (Ma et al., 2024) synthesis
pipeline, we generate 100K realistic synthetic images with 3D pose ground truth (i.e. rotation matrix) from our
3D models. Thirdly, we annotate 24.5K 3D parts on our models, rendering 100K accurate part masks aligned
with 3D pose ground truth. The 100K rendered part masks are associated with the 100K synthetic images,
provided by the same associated 3D pose ground truth. The DSPart framework signifies a paradigm shift in the
curation of part datasets by integrating scalable 3D rendering with diffusion-based realistic image synthesis.

Pascal-Part (Chen et al., 2014) and PartlmageNet (He et al., 2022) include only around 20K images
with part annotations, whereas COCO (Lin et al., 2014) includes 205K annotated images at the object
level. This disparity highlights the need for more extensive and diverse part-annotated datasets.

The aforementioned disparity exists due to the complicated and expensive nature of creating accurate
large-scale pixel-level part annotations. Using foundation models such as SAM (Kirillov et al.,
2023) or active learning methods (Mittal et al., 2023) does not guarantee consistency or coherent
annotations. Alternatively, annotating 3D parts of already existing 3D CAD models emerges as a
cheaper and more scalable solution. Since all parts are discernible within the 3D space, the inherent
ambiguity associated with part annotations in 2D images because of self-occlusion is mitigated,
facilitating more precise and detailed part definitions. By rendering these 3D CAD models with 3D
part annotations, it becomes feasible to generate unlimited synthetic data samples with precise control
over 3D viewpoints (and individual parts), thereby producing highly accurate part segmentation
masks.

Despite these advantages, existing datasets created by simply rendering 3D CAD models (Mu et al.,
2020; Liu et al., 2022; Peng et al., 2024) severely lack realism, presumably due to the limited
availability of high-quality textures in the CAD models. Additionally, rendered objects typically
exhibit unrealistic interactions with their backgrounds, as the rendering process lacks constraints
to ensure accurate context integration. This often enlarges the domain gap between the synthetic
data and real-world data, reducing its utility. A recent work (Ma et al., 2024) has tried to ameliorate
the aforementioned problems by using latent diffusion models with text prompts, coupled with
ControlNet (Zhang et al., 2023b), to generate more realistic synthetic images conditioned on edge
maps of rendered images. However, this approach is limited by its focus on merely coarse 3D object
pose outputs (i.e. object viewpoints) on rigid objects. It falls short in generating high-quality samples
that are consistent with the visual prompts for nonrigid objects, such as animals, which exhibit a wide
range of poses and shapes.

In this work, we introduce Diffusion-generated Synthetic Parts (DSPart), a comprehensive part dataset
comprising annotated 3D CAD models and realistic 2D images rendered with 3D-DST (Ma et al.,
2024), which serves as a nontrivial extension to 3D-DST in the part context. Specifically, for rigid
object categories, we present DSPart-Rigid, which includes 475 3D CAD models from 50 rigid object
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dataset City.-PP Pascal-Part ADE20k PartlmageNet PACO UDAPart CC-SSL 3DCOMPAT++  DSPart
(Meletis et al, 2020)  (Chenetal,2014) (Zhouetal,2017) (Heetal,2022) (Ramanathanetal,2023) (Liuetal,2022) (Muetal,2020) (Slimetal,2023)  (ours)
image domain real real real real real synthetic synthetic synthetic synthetic
#images 3.5k 19k 12.6k 24k 76.7k 126k 20k 160M 100k
#eategories 5 20 80 158 75 5 2 41 90
#non-rigid categories 1 8 1 122 1 0 2 0 40
#avg parts per object 4.60 9.65 7.08 3.85 6.08 24 7 9.98 6.93
#3D parts - - - - - 120 14 100k 24.5k
#3D instances - - - - - 21 2 10k 3540
real image context v v v v v X x x v
auto-scalability** x X x X X v v v v

Table 1: Statistical comparison between DSPart and other publicly available image part datasets. DSPart
provides dense part annotations (6.93 per image) over a wide range of categories (90), including the most
challenging non-rigid animal categories (40). It offers a substantial number of rendered images (100k), along with
annotated 3D parts (24.5k), and can be scaled up further if needed. Compared to the recent 3DCOMPAT++ (Slim
et al., 2023), DSPart benefits from real image context synthesized by diffusion models. *: realistic synthesized
context. **: the ability to generate more images with part masks without additional annotations.

categories annotated with fine-grained part definitions. Using the 3D-DST synthesis pipeline, we
generate 100 images per 3D CAD model, resulting in a total of 48K synthetic images. For nonrigid
object categories, we introduce DSPart-Animal, which has 52K synthetic animal images. We use
3,065 SMAL (Zuffi et al., 2017) models fitted poses from 40 animal categories, which are obtained
from the training data of Animal3D Dataset (Xu et al., 2023). Since all SMAL models share the same
vertex IDs, we only need one 3D part annotation for all the poses. To solve the high failure rate of
generated animal images which the proposed filtering strategy in 3D-DST can not effectively mitigate,
we propose a more suitable filter, namely PRF. PRF uses metrics and algorithms from 3D animal
pose estimation that focuses not only on 3D rigid body pose but also the accuracy of articulations.
It has been proven to be more efficient and effective in filtering out low-quality synthetic animal
samples, which makes scaling the dataset easier.

Subsequently, we perform 2D part segmentation on both DSPart-Rigid and DSPart-Animal in both
synthetic-only and synthetic-to-real scenarios to evaluate their performance on PartlmageNet (He
etal., 2022). We also conduct experiments on PascalPart (Chen et al., 2014) for fine-grained scenarios.

The experimental results validate the effectiveness of the proposed DSPart as synthetic training
data with less domain gap and better generalizability compared to previous synthetic part datasets,
attributed to its accurate 3D annotated CAD models and high-quality 2D rendered images. In
summary, our contributions in this work include the following:

* We present DSPart, comprising DSPart-Rigid and DSPart-Animal, a large-scale part dataset
featuring 475 rigid CAD models and 3, 065 fitted animal poses in 3D, along with 48K synthetic
images of rigid objects and 52K synthetic images of animals. DSPart significantly surpasses
existing part datasets in both real and synthetic domains in terms of 3D part annotations and
realistic image context, as shown in Table 1.

* We introduce PRF, an efficient and effective filter mechanism designed to exclude low-quality
animal synthetic images due to the large variation in pose and shape, thus serving as a robust
extension of the 3D-DST synthesis pipeline.

* We conduct extensive experiments on DSPart for 2D part segmentation to demonstrate that DSPart
significantly outperforms existing synthetic part datasets in terms of data quality as synthetic
training data.

2 RELATED WORKS

Training with synthetic data. Synthetic data has gained significant attention in generating labeled
data to train computer vision models that require extensive annotations (Rombach et al., 2022; Zhang
et al., 2023a). The “training with synthetic data” methods can be categorized into two groups:
1) 2D-based methods employ recent generative models like GANs and diffusion models to create
photo-realistic images for model training, pre-training, or data augmentation (Baranchuk et al., 2022;
Liu et al., 2021; Dosovitskiy et al., 2015; Sun et al., 2021). However, while offering image realism,
they often do not incorporate explicit 3D structural data, which limits their utility in tasks requiring
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Figure 2: Qualitative examples of DSPart dataset. Examples are generated by 16 3D CAD models from 16
different rigid object categories and 16 different SMAL poses from 12 animal species. The examples exhibit
realistic textures and image contexts under varying viewpoints and shapes.

precise 3D annotations. 2) 3D-based methods involve using advanced rendering technologies and
physical simulations to create environments and objects with realistic textures and physics (Greff
et al., 2022; Zheng et al., 2020). Although these methods provide valuable 3D insights, their diversity
is generally restricted by the texture variability of the 3D models used. In our work, we use the
DST (Wu et al., 2023), which integrates 3D control directly into the diffusion process. This allows for
the synthesis of images that not only adhere to photo-realistic standards but also encapsulate accurate
3D annotations.

Learning part models from synthetic data. Learning part models from synthetic data has garnered
increasing attention, primarily due to the difficulty of obtaining large-scale real part-level annotations.
Mu et al. (2020) conduct an early exploration in a multi-task learning setting, where part segmentation
and object pose estimation are jointly learned. They show that this multi-task learning could enhance
object pose estimation, but they do not fully explore the potential of part segmentation itself. Liu et al.
(2022) propose a cross-domain geometric matching module to align predictions and warp synthetic
results to the real domain, improving alignment and performance. Peng et al. (2024) leverage
recent syn-to-real domain transfer algorithms, augmenting them with a class-balanced pseudo-label
re-weighting mechanism to better align synthetic results with the real domain. In this work, we focus
on improving the quality of synthetic data itself rather than proposing new methods for syn-to-real
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transfer. Consequently, we present DSPart and demonstrate that re-training existing algorithms using
DSPart can significantly enhance performance in 2D part segmentation tasks.

3 DATASET CONSTRUCTION

In this section, we introduce how we construct our DSPart synthetic dataset. The dataset consists of
two parts, DSPart-Rigid (Section 3.1) and DSPart-Animal (Section 3.2). The statistical comparison
between DSPart and other publicly available image part datasets are presented in Table 1. The
example of images and annotated parts are shown in Figure 2.

3.1 DSPART-RIGID

DSPart-Rigid aims to provide fine-grained 2D part masks and 3D part annotations for common rigid
models in the real world. Existing 3D part datasets (Mo et al., 2019; Slim et al., 2023) have annotated
a large amount of 3D shapes, but the object categories are limited. PartNet (Mo et al., 2019) have
annotated 24 categories of indoor rigid objects, which makes it hard to find real image part datasets
for evaluation since existing ones focus on common outdoor rigid objects such as cars (Meletis et al.,
2020; Chen et al., 2014; Zhou et al., 2017; He et al., 2022). 3DCOMPAT++ (Slim et al., 2023) have
annotated 41 object categories, which include vehicles, but these categories have much fewer 3D
CAD models compared to other indoor objects (e.g. only 36 CAD models for the car category) and
are not diverse enough in shape. Furthermore,it does not further classify vehicle categories into more
fine-grained ImageNet1k (Deng et al., 2009) classes, which increases the possibility of failure cases
in the DST-3D (Ma et al., 2024) pipeline because of the missing class-specific details of prompts. For
instance, for a minivan CAD model, if the text prompt describes it as a general car, the generated
synthetic images are more likely to be inconsistent with the visual conditions.

To make our synthetic dataset capable of evaluation on existing real part datasets and also avoid the
aforementioned class ambiguity issue, we carefully select 50 rigid object categories that are consistent
with ImageNetlk class definitions. We manually classify some 3D shapes from ShapeNet (Chang
et al., 2015) and Objaverse (Deitke et al., 2022) to these fine-grained categories. Subsequently, we
manage to select around 10 CAD models with large shape differences for each category since we
want every CAD model annotated to be representative. We recruit 25 annotators for data annotation
and more details are provided in Appendix A.3.

Annotation scheme. (i) What parts to annotate per category: One of the key challenges in
annotating parts of 3D CAD models is the ambiguity of object part selection (e.g. how to annotate
the parts of a space shuttle). We divide our 50 rigid-object categories into five super-categories: car,
airplane, bicycle, boat, and tool. We classify the super-category of each object category based on
Wikidata and common knowledge. We then analyze what object parts are important in cognition
and are tractable to be annotated in real images. Subsequently, we create part definition templates
for each super-category, except tools, as the shapes of tools vary significantly. Therefore, we define
part definitions individually for each tool category. Note that our part definitions are all recognizable
from the object surface and we do not define parts that are internal structures. Annotators will check
the shapes of their assigned CAD models first and then revise the provided part definitions only
if necessary. Please refer to Appendix A.1 for the part taxonomy. (ii) What principles to select
part vertices: We design several principles in selecting part vertices to guide the annotators to
ensure high-quality and consistent 3D part annotations. Firstly, the annotated part vertex groups
should be disjoint sets, and the union of all groups should contain every vertex in the original CAD
models. Secondly, if a mesh face belongs to two connected parts, the annotator should not assign
all three vertices to one part and should still assign the vertices based on where they are located.
(iii) Annotation quality inspection: We have 2 iterations of the annotation inspection, including
correctness check and revision. The first iteration of annotation inspection is done by selected
annotators whose annotations are high-quality during the annotation process, and the annotators will
inspect the object categories that belong to the same super-categories of what they annotated in the
annotation process. Then, we perform the second iteration of annotation inspection.

3.2 DSPART-ANIMAL

Existing synthetic animal datasets (Mu et al., 2020; Jiang & Ostadabbas, 2023) have less than
ten animal species due to the limited availability of 3D animal CAD models. DSPart-Animal
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aims to achieve a larger scale in animal species to train robust models for the in-the-wild animals.
SMAL (Zuffi et al., 2017) models can fit various quadruped animals based on their shape priors.
However, SMAL models have no textures, which is the crucial reason that prevents people from
using them to generate synthetic images. Existing works (Zuffi et al., 2018; 2019) predict the textures
using real images and paste them on the SMAL models, but these texture prediction methods do not
generalize well enough beyond the distribution of textures observed during training. By leveraging
the powerful latent diffusion model in the 3D-DST pipeline (Ma et al., 2024), DSPart-Animal can
have realistic and diverse textures that generalize better.

Part-attention Regressor Filter (PRF). Unfortunately, the 3D-DST (Ma et al., 2024) images of
animals exhibit low quality due to the wide variation in pose and shape. The 3D-DST proposes
the K-fold consistency filter (KCF) to filter out noisy samples with inaccurate 3D annotations. It
creates the K-fold splits of synthetic samples and for each train-val split, it trains a state-of-the-art
3D pose estimation model (Ma et al., 2022) and evaluates it on the validation split. Each sample
in the validation split will be classified as noisy, with potentially inaccurate 3D annotations, if the
confidence score associated with the 3D annotation falls below a specified threshold.

However, KCF is trained on unfiltered images, which are noisy in the case of animals, leading to
unreliable model predictions. Furthermore, KCF relies on the pose error given by the angle between
the predicted rotation matrix and the ground truth rotation matrix (Zhou et al., 2018), which is not an
effective filtering metric for animals due to their high degree of articulation and deformation.

We then look at the metrics used for 3D human pose estimation and 3D animal pose estimation
models trained from reliable data. We recruit three annotators to do the human filtering on around
46k synthetic animal images (i.e. 15 viewpoints for each SMAL pose). The filtering is based on three
principles: (1) the consistency of leg positions and leg length; (2) the consistency of head orientation
and neck deformation; (3) the face of the animal is recognizable. It takes around 100 working
hours, and we finally get 13k synthetic animal images with reasonably accurate 3D annotations. We
train the 3D animal pose estimation algorithms from (Xu et al., 2023) with these 13k images and
PARE (Kocabas et al., 2021a) exhibit the most robust cross-domain performance. The results and
justification are provided in Appendix B.

We employ two PARE models for filtering: a model trained exclusively on our human-filtered
synthetic data for 1,000 epochs, and a model pre-trained on our synthetic data for 100 epochs,
followed by 1, 000 epochs of fine-tuning on the Animal3D training set. We specify thresholds for
three metrics: Procrustes-aligned mean per joint position error (PA-MPJPE), scale-aligned mean
per joint position error (S-MPJPE), and 2D Percentage of Correct Keypoints (PCK). We choose the
intersection of filtered image sets from the aforementioned two PARE models as the model-filtered
samples. We demonstrate the quality of model-filtered samples in Section 4.3, which guarantees the
scalability of DSPart-Animal. We name the filtering process as Part-attention Regressor Filter (PRF)
inspired by the name of PARE, and we use it to filter the left 39k images in DSPart-Animal.

4 EXPERIMENTS

To validate the effectiveness of DSPart dataset, we conduct evaluations on 2D object part segmentation
Section 4.2. In Section 4.3, we exhibit the effectiveness and efficiency of PRF and thus demonstrate
the scalability of DSPart-Animal. Furthermore, we demonstrate the benefits of diffusion-generated
textures and contexts (i.e. background) in Section 4.4.

4.1 EXPERIMENTS SETUP

Datasets. We evaluate the 2D object part segmentation mainly on PartlmageNet (He et al., 2022), as
its category and class mapping aligns most closely with DSPart among existing real part datasets.
Specifically, we evaluate the performance of DSPart on its test set of 4 super-categories of rigid
objects and the quadruped category. For each super-category, we exclusively use synthetic images
from that super-category for training. Note that the training data we use for animal experiments is the
13k human-filtered animal images if not specified. To access the performance of DSPart-Rigid, we
compare it against UDAPart (Liu et al., 2022), a specialized dataset for vehicle part segmentation.
The only existing synthetic animal dataset with 2D part annotations is CC-SSL (Mu et al., 2020),
which sourced its animal CAD models from the Unreal Engine Marketplace. CC-SSL includes 10k
horse images and 10k tiger images. We use this dataset as a benchmark to assess the performance of
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datasets supervision  architecture car airplane  boat  bicycle
Syn-only SegFormer  58.55 39.10 - 35.79
UDAPart

UDA DAFormer  65.59 47.73 - 39.67
. Syn-only SegFormer  58.22 58.04 61.63  37.03

DSPart-Rigid
UDA DAFormer  72.67 59.45 65.31  51.55
PartImageNet Real-only SegFormer  74.08 69.98 81.71  66.27

DSPart-Rigid + PartlmageNet =~ Syn+Real  SegFormer* 75.30 72.43 82.51  66.70

Table 2: Part segmentation results on 4 rigid super-categories. The average mloU of parts for each super-
category is reported. *: models trained with synthetic data and real data successively for each iteration. Numbers
are averaged over 3 random seeds.

DSPart-Animal. Additionally, we provide evaluation results of horse category on PascalPart (Chen
et al., 2014) to access the performance for more fine-grained part definitions and more challenging
scenarios (e.g. severe occlusion, truncation, multiple objects).

Training setup. We conduct our part segmentation experiments using SegFormer (Xie et al., 2021)
and DAFormer (Hoyer et al., 2022) to serve as the architectures for fully supervised settings and
unsupervised domain adaptation (UDA) respectively. MiT-b5 (Xie et al., 2021) pre-trained on
ImageNet-1k is adopted as the backbone. The real training data for the UDA settings are training
images of each super-category from the train set of PartimageNet. Due to varying image numbers
across different synthetic datasets, we use iterations rather than epochs for a fairer comparison of
evaluation results. Unless specified, synthetic-only models are trained with a batch size of 2 on a
single GPU for 10k iterations to avoid overfitting in the synthetic domain, while all other settings are
trained for 30k iterations. Please refer to Appendix C.1 for more implementation details.

4.2 2D PART SEGMENTATION

DSPart-Rigid. Table 2 summarizes our results of SegFormer (Xie et al., 2021) and DAFormer (Hoyer
et al., 2022) on the PartimageNet test set when training with different datasets under various settings.

Specifically, although training with DSPart-Rigid performs similarly to training with UDAPart (Liu
et al., 2022) under the Syn-only setting, it significantly improves performance in the unsupervised
domain adaptation setting, where knowledge learned from the synthetic dataset is better transferred
to the real domain. Concretely, when training with DSPart-Rigid, DAFormer achieves improvements
of 7.08, 11.72, and 11.88 mloU on car, airplane, and bicycle categories, respectively. Remarkably,
it even achieves performance comparable to training with real images on certain relatively easy
categories (i.e., 72.67 vs. 74.08 mIoU on the car category). We hypothesize that the main reason
behind this improvement is that better cross-domain features are learned from DSPart-Rigid because
of the diverse and realistic textures and image contexts.

The reason for no significant improvements in the Syn-only setting is that DSPart-Rigid still has a
small fraction of noisy samples (i.e. the image content is not consistent with the 3D annotation) even
after using K-fold consistency filter (KCF) (Ma et al., 2024). This issue is mitigated in the UDA
settings since the pseudo-labels are generated in online self-training that uses exponentially moving
averages to update. It increases the stability of the pseudo-label predictions, and thus, the quality of
pseudo-labels will not be influenced significantly by minor noisy samples.

Furthermore, we observe that combining real domain training data with DSPart-Rigid and training
SegFormer in a sequential manner—where synthetic and real data are fed into the model itera-
tively—yields further performance improvements. This showcases the potential of utilizing synthetic
data to boost state-of-the-art performance.

DSPart-Animal. Table 3 and Table 4 present the results of SegFormer and DAFormer on the animal
part segmentation benchmark when trained using different data sources under various supervision
settings. Notably, DSPart-Animal demonstrates a robust capability to enhance model training under
both Syn-only and UDA settings, owing to its more diverse and realistic images. In Table 4, an
interesting observation is that although CC-SSL synthetic data performs well in synthetic-only settings
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datasets supervision  architecture  head  torso leg tail background  mloU
Syn-only SegFormer  23.84 34.64 3038 9.53 78.92 35.46
CC-SSL

UDA DAFormer  41.56 45.14 44.66 18.92 89.56 47.97
. Syn-only SegFormer  48.94 39.53 32.09 16.40 85.43 44.48

DSPart-Animal
UDA DAFormer  52.63 5227 48.67 25.00 94.55 54.62
PartImageNet Real-only SegFormer 8591 7242 60.51 50.23 96.71 73.16

DSPart-Animal + PartiImageNet ~ Syn+Real ~ SegFormer* 87.43 74.19 63.93 55.31 96.75 75.52

Table 3: Part segmentation results on animals. DSPart-Animal outperforms CC-SSL in all settings. *: models
trained with synthetic data and real data successively for each iteration. Numbers are averaged over 3 seeds.

datasets supervision  architecture  head  fl-leg fr-leg bl-leg br-leg tail torso bg mloU

CO-SSL Syn-only SegFormer 3329 16.13 13.61 1122 17.32 3349 4565 8535 3201

UDA DAFormer 3447 0.02 2044 0.01 0.03  40.10 59.60 93.65 31.04

. Syn-only SegFormer  48.65 1591 1576 20.74 10.72 2290 4585 8821 33.59
DSPart-Animal

UDA DAFormer  59.88 0.07 27.81 0.11 2420 5381 5792 9421 39.75

PascalPart Real-only SegFormer ~ 75.57 17.55 13.61 1586 1729 5433 7750 9589 4595

DSPart-Animal + PascalPart ~ Syn+Real =~ SegFormer* 85.08 1625 25.19 2426 2193 55.64 8346 9595 50.97

Table 4: Part segmentation results of horse category on Pascal-Part. Only horse images are used for
training. DSPart-Animal outperforms CC-SSL in all settings. *: models trained with synthetic data and real data
successively for each iteration. Numbers are averaged over 3 random seeds. *fl-leg’, *fr-leg’, ’bl-leg’, "br-leg’,
and ’bg’ stand for front-left-leg, front-right-leg, back-left-leg, back-right-leg, and background respectively.

and is comparable to DSPart-Animal, its UDA performance is even worse than in the synthetic-only
scenarios. We hypothesize that DAFormer trained on CC-SSL may produce very low-quality pseudo-
labels during the early stages of training and have more severe spatial ambiguity issues (i.e. very
low IoU for some legs). Furthermore, the DAFormer performance of DSPart-Animal is close to the
real-only results with even extreme low IoU of front-left and front-right legs. There is a promising
potential for future UDA methods to solve these spatial ambiguity issues and achieve comparable
results to supervised training on real.

4.3 ABLATION ON THE EFFECTIVENESS OF PRF

Table 5 shows the ablation studies on different filtering mechanisms. Specifically, we compare four
types of filtering: no filter, KCF filter (Ma et al., 2024), and the proposed PRF filter. Additionally,
we provide a potential upper bound with our human-filtered images. Except for the human-filtered
data obtained from 46k images, all other filtering strategies are applied to a separate set of 150k
images. From the table, we observe that the KCF filter proposed in 3D-DST (Ma et al., 2024) achieves
performance similar to unfiltered results. This suggests that the KCF filter may not be effective in the
context of animals since the pose error calculated by the rotation matrix is not enough to measure the
accuracy of articulations and deformation.

The proposed PREF filter significantly outperforms prior methods, achieving a mloU improvement
of 9.45 and 6.25 over unfiltered and KCF-filtered data, respectively. Furthermore, the PRF-filtered
result under the UDA setting is close to the human-filtered result, which demonstrates that we can
maintain the scalability of 3D-DST (Ma et al., 2024) with PRF filter when extending to animals.
Moreover, the proposed PRF filter is more cost-effective to apply. The KCF filter (Ma et al., 2024)
necessitates training multiple models (e.g. 5) on different subsets of the generated data and then
performing cross-validation experiments to filter out low-quality data, which takes around 50 hours
to train all the models. The human filter approach requires approximately 100 hours of manual labor
to identify and exclude undesirable images. In contrast, the PRF filter only needs a pre-trained model
and can directly run inference on the generated images at scale without the need for retraining. This
process takes only about 20 minutes, making it significantly more efficient.

4.4  ABLATION ON DIFFUSION-GENERATED TEXTURES AND BACKGROUND

Table 6 exhibits the ablation studies on diffusion-generated object textures and realistic synthe-
sized context (i.e. background). We perform the comparison on the airplane category of 3DCoM-
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filter cost supervision  architecture  head  torso leg tail background mloU
N Syn-only SegFormer  18.28 21.51 1048 5.71 74.90 26.17
one
UDA DAFormer 3339 39.77 4596 12.71 87.80 43.93
. . . Syn-only SegFormer ~ 20.67 20.80 16.54 991 75.80 28.74
K-fold Consistency (KCF) 50 training hours
UDA DAFormer  31.59 4346 4883 20.19 89.46 46.71
. R R Syn-only SegFormer 4333 28.82 2556 13.12 80.09 38.19
Part-attention Regressor (PRF) 20 mins for inference

UDA DAFormer  52.85 4857 44.64 3130 87.45 52.96
Syn-only SegFormer  48.94 39.53 32.09 16.40 85.43 44.48
UDA DAFormer  52.63 52.27 48.67 25.00 94.55 54.62

Human 100 hours human working

Table 5: Comparison of filtering strategies for DSPart-Animal dataset. The human-filtered setting has the
best performance, while PRF has the best performance-time trade-off. Numbers are averaged over 3 seeds.

datasets supervision  architecture body  wing  engine tail bg mloU

i Syn-only SegFormer 2545 11.28 7.64 5.64 8343 26.69
3DCoMPaT++ (white background)

UDA DAFormer 4563 2432  5.18 342 8540 3279
. Syn-only SegFormer  24.89  20.59 9.54 590 87.11 29.61

3DCoMPaT++ foreground w/ diffusion background
UDA DAFormer 4476 2562  6.79 381 9233  34.66

Syn-only SegFormer 33.01 19.63 13.00 15.68 90.20 34.30
UDA DAFormer  56.43 2637 10.71 9.61 94.13 3945

Diffusion generated (Ours)

Table 6: Ablation on diffusion-generated textures and background. "Diffusion generated" refers to synthetic
data generated following our pipeline that uses the same 32 CAD models and viewpoints with 3DCoMPaT++.
"3DCoMPaT++ foreground w/ diffusion background" is generated by replacing the foreground object of
diffusion-generated data with the foreground from 3DCoMPaT++. The results are evaluated on the PartimageNet
test set of airplanes. Numbers are averaged over 3 random seeds.

PaT++ (Slim et al., 2023). Synthetic images in 3DCoMPaT++ have more diverse textures by
compositing a wide range of materials on different parts, which is a good representative of direct ren-
dering methods. Additionally, their synthetic images are rendered with a uniformly white background
which is beneficial for evaluating the effectiveness of the "realistic synthesized context" we proposed
in table 1. "3DCoMPaT++ foreground w/ diffusion background" data is generated by replacing the
foreground object of our diffusion-generated data with the foreground from 3DCoMPaT++. The
evaluation is performed on the PartlmageNet test set of airplanes.

In Table 6, the diffusion-generated data following our pipeline uses the same 32 CAD models and
viewpoints with 3DCoMPaT++. As observed in the table, diffusion-generated object textures lead to
better performance (i.e. more realistic) than materials provided in 3DCoMPaT++ with improvements
of 4.61 mloU under the Syn-only setting and 4.79 mIoU under the UDA setting. The "realistic
synthesized context" also benefits by comparing it to the white background, which is significant for
observing that the background IoU improves from 85.40 to 92.33 under the UDA setting. Furthermore,
the current diffusion-generated data leads to worse performance on PartImageNet compared to
airplane results in Table 2. We hypothesize two possible reasons: 1) the shape space we selected in
DSPart-Rigid is bigger since we selected CAD models with large shape differences for each category
and tried to make every CAD model we annotated representative; 2) 3DCoMPaT++ only has 8
viewpoints for each 3D shape while we have 100 viewpoints in DSPart-Rigid.

5 CONCLUSIONS

We present DSPart, comprising DSPart-Rigid and DSPart-Animal, a large-scale part dataset featuring
475 rigid CAD models and 3, 065 fitted animal poses in 3D, along with 48K synthetic images of
rigid objects and 52K synthetic images of animals. DSPart significantly surpasses existing part
datasets in both real and synthetic domains in terms of 3D part annotations and realistic synthesized
image context. We introduce PRF, an efficient and effective filter mechanism designed to exclude
low-quality animal synthetic images due to the large variation in pose and shape, thus serving as
a robust extension of the 3D-DST synthesis pipeline and maintaining scalability for animals. We
conduct extensive experiments on DSPart for 2D part segmentation to demonstrate that DSPart vastly
outperforms existing synthetic part datasets in data quality when used as synthetic training data.
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class ID class name parts taxonomy

“DSPart-Rigid
n02690373 airliner enginef, fuselage, wingf, vertical_stabilizer, wheel(front, back_left, back_right), horizontal_stabilizerf
n02701002 ambulance wheel(front_left, front_right, back_left, back_right), doorf, front_trunk, back_trunk, head_lightf, frame, rearview{
n02749479 gun buttstock,magazine,barrel, gunbody
n02804414 bassinet stand, frame
n02814533 beach wagon wheel(front_left, front_right, back_left, back_right), doorf, front_trunk, back_trunk, head_lightf, frame, rearview{
n02835271 bicycle built for two wheels(back, front), frame(paddle), handlebar, saddle
n02906734 broom handle, head
02981792 catamaran sail, body
n03063689 coffeepot spout, body, handle
n03100240 convertible wheel(front_left, front_right, back_left, back_right), doorf, front_trunk, back_trunk, head_lightf, frame, rearviewf
n03187595 dial telephone handset, dial, host, cord
n03272562 electric locomotive wheelf, doort, frame, rearview
n03344393 fireboat top, body
n03345487 fire engine wheelf, doorf, ladder_and_pump, frame, rearview{
n03417042 garbage truck wheelf, frame, front trunk, garbage_container
n03444034 go-kart wheel(front_left, front_right, back_left, back_right), frame, seat, engine
n03445924 golfcart wheel, frame, seat
n03481172 hammer handle, head
n03496892 harvester wheelf, frame, cutter, mirror
n03498962 hatchet handle, head
n03594945 jeep wheel(front_left, front_right, back_left, back_right), doort, frame, front_trunk, back_trunk, rearview
n03599486 jinrikisha wheel(front, back_left, back_right), saddle, frame
n03642806 laptop keyboard, screen, body, touchpad
n03649909 mower wheel(front_left, front_right, back_left, back_right), steering_wheel, shaft, frame
n03670208 limo wheel(front_left, front_right, back_left, back_right), frame, rearview{, doorf, head_light}
n03673027 ocean liner top, body
n03769881 minibus wheel(front_left, front_right, back_left, back_right), frame, door, rearview}
n03770679 minivan wheel(front_left, front_right, back_left, back_right), frame, doorf, head_light{
n03785016 moped wheel(front, back), handlebar, frame, rearview
n03792782 mountain bike wheels(back, front), frame, handlebar, saddle
n03891251 park bench arm, backrest, beam, seat, leg
n03947888 pirate ship sail, body
n03977966 Police car wheel(front_left, front_right, back_left, back_right), doort, front_trunk, back_trunk, frame, rearviewf
n04037443 race car wheel(front_left, front_right, back_left, back_right), doorf, front_trunk, back_trunk, head_lightf, frame, rearview{
n04065272 recreational vehicle wheel(front_left, front_right, back_left, back_right), doorf, front_trunk, back_trunk, head_lightf, frame, rearviewf
n04146614 school bus wheel(front_left, front_right, back_left, back_right), frame, head_lightf, doorf, rearview
n04147183 schooner sail, bottom
n04204347 shopping cart wheel(front_left, front_right, back_left, back_right), basket, handle, frame
n04252225 snowplow wheel(front_left, front_right, back_left, back_right), frame, rearviewt, cutter
n04266014 space shuttle enginef, fuselage, wingf, vertical_stabilizer, wheelf, horizontal_stabilizer{
n04285008 sports car wheel(front_left, front_right, back_left, back_right), doorf, front_trunk, back_trunk, head_lightf, frame, rearviewf
n04465501 tractor wheelt, doort, arm_and_loader, frame, rearview
n04467665 trailer truck wheelf, doorf, front_trunk, trailer, head_lightf, frame, rearview{
n04482393 tricycle, trike, velocipede wheels{, frame, handlebar, saddle, cargo_box
n04483307 trimaran sail, body
n04487081 trolleybus, trolley coach, trackless trolley wheel(front_left, front_right, back_left, back_right), frame, doorf, head_light{
n04507155 umbrella handle, canopy, frame
n04509417 unicycle, monocycle wheels, frame, saddle
n04552348 warplane, military plane enginef, fuselage, wingf, vertical_stabilizer, wheel(middle, left, right), horizontal_stabilizer{
n04612504 yawl sail, body
DSPart-Animal
n02085782 Jjapanese spaniel head, torso, front_left_leg, front_right_leg, back_left_leg, back_right_leg, and tail
n02089867 walker hound head, torso, front_left_leg, front_right_leg, back_left_leg, back_right_leg, and tail
n02090379 redbone head, torso, front_left_leg, front_right_leg, back_left_leg, back_right_leg, and tail
n02091831 saluki head, torso, front_left_leg, front_right_leg, back_left_leg, back_right_leg, and tail
n02092339 weimaraner head, torso, front_left_leg, front_right_leg, back_left_leg, back_right_leg, and tail
n02096177 cairn head, torso, front_left_leg, front_right_leg, back_left_leg, back_right_leg, and tail
n02096585 boston bull head, torso, front_left_leg, front_right_leg, back_left_leg, back_right_leg, and tail
n02097474 tibetan terrier head, torso, front_left_leg, front_right_leg, back_left_leg, back_right_leg, and tail
n02098105 soft-coated wheaten terrier head, torso, front_left_leg, front_right_leg, back_left_leg, back_right_leg, and tail
102099601 golden retriever head, torso, front_left_leg, front_right_leg, back_left_leg, back_right_leg, and tail
n02100583 vizsla head, torso, front_left_leg, front_right_leg, back_left_leg, back_right_leg, and tail
n02101006 Gordon setter head, torso, front_left_leg, front_right_leg, back_left_leg, back_right_leg, and tail
n02101388 brittany spaniel head, torso, front_left_leg, front_right_leg, back_left_leg, back_right_leg, and tail
n02102040 english springer head, torso, front_left_leg, front_right_leg, back_left_leg, back_right_leg, and tail
n02102973 irish water spaniel head, torso, front_left_leg, front_right_leg, back_left_leg, back_right_leg, and tail
n02109525 saint Bernard head, torso, front_left_leg, front_right_leg, back_left_leg, back_right_leg, and tail
n02109961 eskimo dog head, torso, front_left_leg, front_right_leg, back_left_leg, back_right_leg, and tail
n02112137 chow head, torso, front_left_leg, front_right_leg, back_left_leg, back_right_leg, and tail
n02114367 timber wolf head, torso, front_left_leg, front_right_leg, back_left_leg, back_right_leg, and tail
n02120079 arctic fox head, torso, front_left_leg, front_right_leg, back_left_leg, back_right_leg, and tail
n02124075 egyptian cat head, torso, front_left_leg, front_right_leg, back_left_leg, back_right_leg, and tail
n02125311 cougar head, torso, front_left_leg, front_right_leg, back_left_leg, back_right_leg, and tail
n02128385 leopard head, torso, front_left_leg, front_right_leg, back_left_leg, back_right_leg, and tail
n02129604 tiger head, torso, front_left_leg, front_right_leg, back_left_leg, back_right_leg, and tail
n02130308 cheetah head, torso, front_left_leg, front_right_leg, back_left_leg, back_right_leg, and tail
n02132136 brown bear head, torso, front_left_leg, front_right_leg, back_left_leg, back_right_leg, and tail
n02133161 american black bear head, torso, front_left_leg, front_right_leg, back_left_leg, back_right_leg, and tail
n02134084 ice bear head, torso, front_left_leg, front_right_leg, back_left_leg, back_right_leg, and tail
n02134418 sloth bear head, torso, front_left_leg, front_right_leg, back_left_leg, back_right_leg, and tail
n02389026 sorrel head, torso, front_left_leg, front_right_leg, back_left_leg, back_right_leg, and tail
n02391049 zebra head, torso, front_left_leg, front_right_leg, back_left_leg, back_right_leg, and tail
n02397096 warthog head, torso, front_left_leg, front_right_leg, back_left_leg, back_right_leg, and tail
n02403003 ox head, torso, front_left_leg, front_right_leg, back_left_leg, back_right_leg, and tail
n02408429 water buffalo head, torso, front_left_leg, front_right_leg, back_left_leg, back_right_leg, and tail
n02412080 ram head, torso, front_left_leg, front_right_leg, back_left_leg, back_right_leg, and tail
n02415577 bighorn head, torso, front_left_leg, front_right_leg, back_left_leg, back_right_leg, and tail
n02417914 ibex head, torso, front_left_leg, front_right_leg, back_left_leg, back_right_leg, and tail
n02422106 hartebeest head, torso, front_left_leg, front_right_leg, back_left_leg, back_right_leg, and tail
n02422699 impala head, torso, front_left_leg, front_right_leg, back_left_leg, back_right_leg, and tail
n02423022 gazelle head, torso, front_left_leg, front_right_leg, back_left_leg, back_right_leg, and tail

Table 7: Parts taxonomy of DSPart. {: indicate the left and right parts are separate part classes.
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A DETAILS ABOUT DSPART

A.1 PARTS TAXONOMY

Table 7 contains the parts taxonomy for the 50 rigid object classes in DSPart-Rigid and 40 animal
classes in DSPart-Animal.

A.2 VIEWPOINTS SAMPLING RULES

Following (Ma et al., 2024), we sample the object viewpoint with a uniform distribution over the
azimuth angle and Gaussian distributions over the elevation and theta angles.

A.3 ANNOTATOR RECRUITMENT GUIDELINE

To improve the quality of the collected data, each annotator must complete an onboarding stage
before starting. The onboarding stage includes training sessions where we present Blender tutorials
to teach annotators how to annotate with the help of convenient Blender functions efficiently, and
detailed instructions with demo videos on annotating strategies and proper ways to handle edge cases.
Additionally, each annotator must annotate three CAD models and meet our standards to qualify for
subsequent annotations. We also provided 1 hour of Zoom training sessions and 2 hours of Q&A
sessions on handling specific boundary cases which are difficult for annotators.

B 3D ANIMAL POSE ESTIMATION

Table 8 presents our 3D animal pose estimation results tested on both the real and synthetic test sets
of Animal3D (Xu et al., 2023) to demonstrate performance across different domains. The synthetic
test set is generated through naive rendering with SMALR (Zuffi et al., 2018) fitted textures. We train
the models with our human-filtered animal data for 1000 epochs in the synthetic-only setting. For
the synthetic pretrained setting, we pre-train the models on our human-filtered animal data for 100
epochs, then fine-tuned them on real images from the Animal3D training set for 1000 epochs. We
use the same metrics as Animal3D (Xu et al., 2023).

The PARE (Kocabas et al., 2021b) methods consistently outperform HMR (Kanazawa et al., 2018) in
all settings in terms of 2D PCK, indicating better alignment of predictions with the 2D images. Since
2D part segmentation is often considered complementary to 2D pose estimation (Xia et al., 2017), we
select PARE models to filter our animal data. For 3D metrics, PARE showed better performance in
terms of S-MPJPE, suggesting more accurate predictions of rigid 3D body poses. However, PARE
performs worse in terms of PA-MPJPE, indicating lower accuracy in predicting animal articulations.
Therefore, we do not set a strict threshold for PA-MPJPE in our filtering process due to the unreliable
predictions.

Despite the presence of some noisy samples with inaccurate 3D poses and articulations in our DSPart-
Animal, leading to a performance drop in PA-MPJPE compared to the synthetic pretrained results
from Animal3D, we still achieve better performance in S-MPJPE and 2D PCK. We believe our
synthetic data pipeline for animals shows promise, but fundamental improvements in conditional
synthesis via ControlNet (Zhang et al., 2023a) are necessary.

C EXPERIMENTS DETAILS

C.1 IMPLEMENTATION DETAILS

We disable the Thing-Class ImageNet Feature Distance(FD) (Hoyer et al., 2022) for the UDA method.
It is a regularization technique that uses ImageNet features trained from objects to provide guidance
to segment object classes, which is inappropriate for segmenting semantics parts of objects. Our goal
is to compare baseline performance between other synthetic part datasets with DSPart so we avoid
complex data augmentations and leave it for future work to explore the benefits of data augmentation.
For all experiments, we only adopt random horizontal flips.
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method st set synthetic only synthetic pretrained
PA-MPJPE| S-MPJPE| PCK?t PA-MPJPE| S-MPJPE| PCK?t
HMR . . 155.5 715.4 45.2 143.9 565.9 54.5
Synthetic Animal3D

PARE 241.5 677.9 78.1 202.9 510.8 81.2

HMR . 150.8 660.1 58.2 127.0 475.2 68.9
Animal3D

PARE 252.8 741.2 83.3 168.8 383.1 95.1

HMR* . - - - 124.8 497.7 63.1
Animal3D

PARE* - - - 127.2 392.3 83.7

Table 8: 3D animal pose estimation results. *Synthetic Animal3D’ refers to direct renderings from fitted
SMAL poses and extracted textures. *: results obtained from Animal3D paper that pretrain on the train split of
synthetic Animal3D.

datasets supervision  architecture  body tire mirror  background mloU
Syn-only SegFormer  79.02 59.54  10.96 84.68 58.55
UDAPart

UDA DAFormer  86.82 55.02  28.06 92.48 65.59
. Syn-only SegFormer  82.14 61.35 1.55 87.85 58.22

DSPart-Rigid
UDA DAFormer  89.47 7434  33.75 93.11 72.67
PartImageNet Real-only SegFormer 9236 79.16  29.68 95.12 74.08
DSPart-Rigid + PartlmageNet ~ Syn+Real = SegFormer* 92.43 7891 34.82 95.06 75.30

Table 9: Full part segmentation results on car parts. loU of each car part is reported. *: models trained with
synthetic data and real data successively for each iteration. Numbers are averaged over 3 random seeds.

C.2 FULL PART RESULTS ON RIGID OBJECT

Table 9 shows the full part segmentation results of each part for the car category, where we observe
similar trends as introduced above. We also observe that the lower IoU of the mirror is the reason
that leads to a performance drop under the Syn-only setting with DSPart-Rigid. This is possibly
because the car CAD models of some car classes we used do not have the mirror parts 3, which
leads to a lower pixel distribution of the mirror than UDAPart 10. Additionally, 3D-DST (Ma et al.,
2024) has limitations in generating details of small parts, which is another important reason. Notably,
DSPart-Rigid significantly enhances the performance of segmentation models on certain challenging
part classes (e.g., tire and mirror) under the UDA setting.

pixel frequency  mirror

UDAPart 0.116%
DSPart-Rigid  0.055%

-~ G S LK
* S | °© v = < on &
) . Table 10: Pixel frequency of the
mirror in UDAPart and DSPart-
Figure 3: Example of 3D CAD models that do not have mirror parts. Rigid in terms of car categories.

C.3 ERROR BARS

Table 11 reports the error bars of our main part segmentation results on PartlmageNet (He et al.,
2022) in the 95% confidence interval. The results are calculated over three runs (random seed 0, 1, 2).
We can observe that training with DSPart data will bring higher error bars. This is because DSPart
has noisy synthetic images that are hard to filter by model or human (e.g. missing small parts, slight
3D pose inconsistency, etc.), and thus the sampling order will influence the results more.
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datasets supervision  architecture car airplane boat bicycle animal
Syn-only SegFormer  58.55+1.04 39.10£1.13 N/A 35.79 £ 0.64 N/A
UDAPart
UDA DAFormer  65.59 +1.44 47.73 £1.69 N/A 39.67 £ 3.43 N/A
. Syn-only SegFormer  58.22 £3.57 58.04+1.28 61.634+5.10 37.03+3.45 N/A
DSPart-Rigid
UDA DAFormer — 72.67 +£2.10 59.45+1.72 65.31£5.74 51.55+1.47 N/A
CC-SSL Syn-only SegFormer N/A N/A N/A N/A 35.46 £ 2.20
UDA DAFormer N/A N/A N/A N/A 47.97+2.29
i Syn-only SegFormer N/A N/A N/A N/A 44.48 £+ 2.50
DSPart-Animal
UDA DAFormer N/A N/A N/A N/A 54.62 £ 3.66
PartImageNet Real-only SegFormer ~ 74.08 £2.23 69.98+2.14 81.714+1.28 66.27+1.41 73.16+0.29
DSPart-Rigid + PartImageNet Syn+Real  SegFormer*  75.30+0.27 72.43+2.23 82.51+£2.09 66.70+1.28 N/A
DSPart-Animal + PartlmageNet ~ Syn+Real =~ SegFormer* N/A N/A N/A N/A 75.52 £ 0.40

Table 11: Error bars of the part segmentation results. N/A: no classes in that super-category are available in
the datasets.

D LIMITATION

While 3D-DST (Ma et al., 2024) offers rendered images with free textures and backgrounds, it
also introduces issues such as missing details in small object parts and incorrect 3D poses from
unusual viewpoints. Although the proposed PRF can alleviate these challenges, a more fundamental
improvement in the conditional synthesis via ControlNet (Zhang et al., 2023a) is necessary for future
work.

E VISUAL COMPARISON OF PRF AND KCF

KCF (3D-DST) KCF (3D-DST)
3D rigid pose error (J/): 2.32<3.73 Keep 3D rigid pose error (J/): 1.23<3.73 Keep

PRF (ours) PRF (ours)
PA-MPJPE ({/): 113.79 > 108.06 PA-MPJPE ({/): 98.81 < 108.06
S-MPJPE ({/): 574.28 > 499.99 Reject S-MPJPE (J/): 531.54 > 499.99 Reject
2D PCK (1M): 23.08 <95.83 2D PCK (M): 100.00 > 95.83

Figure 4: Examples that are filtered by PRF but kept by KCF. We show the pose error, PA-MPJPE, S-MPJPE,
and 2D PCK for each image and show the comparison with the filtering thresholds.
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