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Abstract

Catalyst discovery and optimization is key to
solving many societal and energy challenges
including solar fuels synthesis, long-term en-
ergy storage, and renewable fertilizer pro-
duction. Despite considerable effort by the
catalysis community to apply machine learn-
ing models to the computational catalyst dis-
covery process, it remains an open challenge
to build models that can generalize across
both surface elemental composition and ad-
sorbate identity/configuration. To address
this we developed the OC20 dataset, consist-
ing of 1,281,121 Density Functional Theory
(DFT) relaxations (265,723,133 single point
evaluations) across a wide swath of materi-
als, surfaces, and adsorbates (nitrogen, carbon
and oxygen chemistries). We augmented this
dataset with randomly perturbed structures,
short timescale molecular dynamics, and elec-
tronic structure analyses. The dataset is com-
prised of three central tasks indicative of day-
to-day catalyst modeling tasks and comes with
pre-defined train/test/validation splits to facil-
itate direct comparisons with future model de-
velopment efforts. We applied three state-of-
the-art graph neural network models (SchNet,
Dimenet, CGCNN) to each of these tasks as
baseline demonstrations for the community to
build on. For example, models with 10M pa-
rameters trained on over 100M single-point cal-
culations were only able to reproduce DFT en-
ergies/forces to within 0.02 eV/0.03 eV/Å re-
spectively for 0.03% of validation configurations
in the same distribution. Similarly, models to
predict adsorption energies directly from initial
unrelaxed states were able to achieve 0.65 eV

MAE, significantly higher than the same mod-
els applied to far less diverse datasets. In al-
most every task, no upper limit on model size
for accuracy was identified suggesting that even
larger models are likely to improve on these re-
sults. The dataset and baseline models are both
provided as open resources, as well as a public
leader board to encourage community contribu-
tions to solve these important tasks.
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Figure 1: Adsorbates, materials, calculations,
impact areas, and illustrative examples of the
Open Catalyst (2020) (OC20) dataset. Images
are a random sample of the dataset.
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Introduction

Advancements to renewable energy processes
are urgently needed to address climate change
and energy scarcity around the world.1,2 These
include the generation of electricity through
fuel cells, fuel generation from renewable re-
sources, and the production of ammonia for fer-
tilization. Catalysis plays a key role in each of
these by enabling new reactions and improv-
ing process efficiency.3,4 Unfortunately, discov-
ering or optimizing catalysts remains a time-
intensive process. The space of possible cata-
lyst materials that can be synthesized or en-
gineered is vast and modeling their full com-
plexity under reaction conditions remains elu-
sive. Simulation tools such as Density Func-
tional Theory (DFT)5 have greatly expanded
our field’s ability to develop reaction mecha-
nisms for specific materials, rationalize experi-
mental measurements, and suggest more active
or selective structures for experimental test-
ing. Despite steady growth in computing re-
sources from Moore’s law, the computational
complexity of DFT remains a limiting factor in
the large-scale exploration of new catalysts.6,7

Given its societal importance, finding compu-
tationally efficient methods for molecular sim-
ulations is of utmost necessity. One potentially
promising approach is the use of efficient ML
models trained with data produced from com-
putationally expensive models, such as DFT.

Indeed, the application of Artificial Intel-
ligence and Machine Learning (AI/ML) to
molecular simulations has increased in popu-
larity recently, due to its ability to efficiently
model complex functions in data-rich domains.
There have been a number of demonstra-
tions from domain scientists for specific chal-
lenges such as reaction network elucidation,8–10

thermochemistry prediction,11–19 structure op-
timization,20–24 accelerating individual calcula-
tions,25–28 and integration with characteriza-
tion29 (see recent reviews for a more thorough
discussion30–41). Most of these tasks are varia-
tions on the same fundamental problem of pre-
dicting the energy and forces of various configu-
rations of organic molecules at inorganic inter-
faces.

Modeling heterogeneous catalysts, which are
used in the renewable energy applications de-
scribed above, incorporates all the known dif-
ficulties of both organic and inorganic chem-
istry. In organic chemistry, there is an over-
whelming space of molecules and reactions and
many similar, low-energy conformers. In inor-
ganic chemistry, there is a relatively large di-
versity in elements, coordination environments,
lattice structures, and long-range interactions.
The result is a complex space of compositions
and chemistries for which computationally ef-
ficient modeling methods are needed for thor-
ough exploration.

A critical factor in building ML models is
the data used for training. Despite their im-
portance and increased challenge, datasets in
heterogeneous catalysis remain far smaller than
in other related fields. Much of the progress
in applying AI/ML in heterogeneous catalysis
has been driven by increasingly large and di-
verse datasets of electronic structure calcula-
tions. In the past few years there has been a
push towards larger datasets in catalysis, go-
ing from O(100s) to O(100,000)42 relaxations.
Most focus on relaxed adsorption energies of
simple adsorbates with smaller datasets of tran-
sition state calculations. State-of-the-art ML
methods are still improving as data is added to
these datasets, so there is no indication that we
have saturated the performance of these mod-
els. Further, models trained on these datasets
have shown limited ability to generalize, which
suggests that the models are not yet learn-
ing fundamental physical phenomena. As has
been shown in other ML tasks,43–45 we expect
that significantly larger datasets will lead to im-
proved accuracy and better generalization.

In this paper, we present the OC20, illus-
trated in Figure 1, comprised of over 1.2M
DFT relaxations of molecular adsorptions onto
surfaces (approx. 250 million single-point cal-
culations) across a substantially larger struc-
ture and chemistry space than previously re-
alized. While a dataset of this magnitude will
lead to significant improvements in ML mod-
els, we note that this is still an extremely
sparse sampling of all possibilities. We con-
sider 82 different adsorbates (small adsorbates,
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C1/C2 compounds, and N/O-containing inter-
mediates) which are relevant for renewable en-
ergy and environmental applications. Relax-
ations were performed on randomly sampled
low-Miller-index facets of stable materials from
the Materials Project,46 resulting in surfaces
from 55 different elements and mixtures thereof.
For each of the calculations, we include relax-
ation trajectories, Bader charges, and LOB-
STER47,48-calculated orbital information. To
aid in training more robust models, we addi-
tionally computed short, high-temperature ab-
initio molecular dynamics trajectories on a ran-
domly sampled subset of the relaxed states.
We also randomly perturbed the atomic posi-
tions in a subset of the structures along the re-
laxation pathways and performed single point
DFT calculations for these rattled structures.
The dataset is publicly available at http://

anonymous.org .
In addition to generating and sharing the

dataset, we propose three related domain chal-
lenges as an open competition: (1) predict the
energy and force for a given state, (2) predict
a nearby relaxed state given an initial start-
ing state, and (3) predict the relaxed adsorp-
tion energy given an initial state. (3) predict
the relaxed state energy given an initial state.
For the purposes of this manuscript, energy
refers to adsorption energy unless otherwise
noted. Adsorption energy is defined as the en-
ergy of the combined surface and adsorbate sys-
tem (relaxed or not) minus the energy of the re-
laxed slab and the relaxed gas phase adsorbate
molecule (Ead = Esys–Eslab–Egas). For a fur-
ther discussion of reference energies see the SI.
The dataset is split into train/validation/test
splits indicative of common situations in catal-
ysis: predicting these properties for a previ-
ously unseen adsorbate, for a previously un-
seen crystal structure or composition, or both.
To boot-strap research and the competition,
we also provide an open software repository
(https://github.com/anonymous) containing
a set of baseline models, data loaders, and train-
ing scripts for each of these tasks. We believe
that models capable of solving these tasks for
the OC20 dataset will also be able to solve a
large number of related catalysis problems.

Tasks

Our goal is to improve the efficiency with which
inorganic and organic interfaces can be simu-
lated for use in catalysis. Since the primary
computational bottleneck are the DFT calcula-
tions used to compute a structure’s forces and
energy, we focus on the general challenge of ef-
ficient DFT approximation. We focus on struc-
ture relaxation—a fundamental calculation in
catalysis used in determining a structure’s ac-
tivity and selectivity. We define three related
tasks, in that success in one task may aid other
tasks. These are not the only possibilities for
this dataset, and future tasks may be added
with additional data generation and input from
the community.

In all our tasks, the structure contains a sur-
face and adsorbate. The surface is defined by a
unit cell that is periodic in the X and Y direc-
tions. Initial structures are heuristically deter-
mined. Ground truth data is computed for all
tasks using DFT. Dataset details and evalua-
tion metrics are provided in following sections.

Structure to Energy and Forces (S2EF)
is the task where given the atomic positions of
the atoms in a structure, the goal is to predict
the energy and per-atom forces as calculated by
Density Functional Theory (DFT). The force is
defined as the negative gradient of the energy
with respect to the atomic positions. This is
our most general task and has the broadest ap-
plicability across catalysis and related fields. It
is essentially identical to existing challenges in
developing machine learning potentials.49 How-
ever, the inclusion of both inorganic and organic
materials and the dataset size, make this chal-
lenge unique.

Initial Structure to Relaxed Structure
(IS2RS) takes as input an initial structure and
predicts the atom positions in their final relaxed
state. A relaxed structure can be confirmed
with a single DFT calculation (all atom forces
are close to zero), or used as input to a more
detailed set of DFT calculations. Traditional
relaxations are performed through an iterative
process that estimates the atom forces using
DFT, which are in turn used to update atom
positions until convergence. This very compu-
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Figure 2: The adsorbates used to generate the Open Catalyst Dataset contain oxygen, hydrogen, C1,
C2, and nitrogen molecules useful for renewable energy applications. Adsorbates that contain both
carbon and nitrogen were counted both as CX adsorbates and as nitrogen-containing adsorbates.
For each adsorbate, up to 553 different catalyst compositions were considered, with up to dozens
of adsorption energy calculations per adsorbate-composition pairing.

tationally expensive process typically requires
hundreds of DFT calculations to converge.

If the IS2RS task is approached using ML ap-
proximations to DFT to estimate atom forces
(S2EF task), evaluation on the IS2RS task
may help determine whether models built for
S2EF are sufficiently accurate for practical ap-
plications. Alternatively, it may be possible
to predict the relaxed structure directly, with-
out estimating a structure’s energy or forces, as
many of the changes during relaxation (say due
to particular initial guess strategies) are sys-
tematic. These direct IS2RS approaches may
lead to even further improvements in computa-
tional efficiency. However, such an approach
might have trouble to generalizing situations
with multiple nearby local minima.

Initial Structure to Relaxed Energy
(IS2RE) task is given the initial structure as
input, and predicts the structure’s energy in the
relaxed state. This is the most common task in
catalysis, as the relaxed energies are often corre-
lated with catalyst activity and selectivity, and
the energies are important parameters for de-
tailed microkinetic models. Similar to IS2RS ,
this task may be approached by estimating the
relaxed structure and energy by iteratively ap-
plying S2EF , or by directly regressing the en-
ergy from the initial structure without estimat-

ing the intermediate or relaxed structures.

The OC20 Dataset

The OC20 dataset is constructed to provide
both training and evaluation data for our three
previously defined tasks involving DFT ap-
proximation and structure relaxation. Modern
machine learning models, especially those em-
ploying deep learning, require sufficiently large
datasets to learn accurate models. For training,
we provide 640,118 relaxations across a wide va-
riety of surfaces and adsorbates. The interme-
diate structures and their corresponding energy
and forces are provided for each relaxation re-
sulting in over 133 million structures. To poten-
tially aid in training and to provide additional
information for the catalysis community, we
performed DFT calculations on rattled and ab
initio Molecular Dynamics (AIMD) data. We
also computed Bader charges and LOBSTER
analyses (1.8M+ examples each).

Dataset Generation

The dataset is constructed in four stages: 1)
adsorbate selection, 2) surface selection, 3) ini-
tial structure generation, and 4) structure re-
laxation. We describe each of these four stages
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in turn, followed by a description of the addi-
tional data provided with the main dataset. All
source code to generate the configurations are
provided in the Open Catalyst Dataset reposi-
tory (https://github.com/anonymous).

Adsorbate Selection

Adsorbates are randomly sampled from a set
of 82 molecules that are chosen based on
their utility to renewable energy applications.
As shown in Figure 2, this includes adsor-
bates that contain only oxygen or hydrogen,
C1 molecules, C2 molecules, and nitrogen-
containing molecules. We enumerated the oxy-
gen and hydrogen molecules for their ubiquitous
presence in water-solvated electrochemical reac-
tions. C1 and C2 molecules are important for
solar fuel synthesis, while nitrogen-containing
molecules have applicability in solar fuel and
solar chemical synthesis. Note that some of the
C2 molecules have two binding sites; we refer
to these as bidentate adsorbates. The list of all
82 adsorbates is provided in the Supplementary
Information.

Surface Selection

Surfaces are sampled in three stages. First, the
number of elements is selected with a 5% chance
of choosing a unary material, 65% chance for a
binary material, and a 30% chance for a ternary
material. Greater emphasis is given to binary
and ternary materials because these sets con-
tain a wider variety of understudied materi-
als. Next, a stable bulk material is randomly
selected from the 11,010 materials in the Ma-
terials Project46 with the number of elements
chosen in the first step. Finally, all symmet-
rically distinct surfaces from the material with
Miller indices less than or equal to 2 are enu-
merated, including possibilities for different ab-
solute positions of surface plane. From this list
of surfaces one is randomly selected. The sur-
face atoms were replicated to a depth of at least
7 Å and a width of at least 8 Å.

Pymatgen50 was used to search over all bulk
materials in the Materials Project with non-
positive formation energies and energies-above-

lower-hulls of at most 0.1 eV/atom. The enu-
meration of symmetrically distinct surfaces was
also performed using pymatgen.50 Elements for
the bulk materials were chosen from a set of 55
elements comprising reactive nonmetals, alkali
metals, alkaline earth metals, metalloids, tran-
sition metals, and post-transition metals.

Note that DFT was used to re-relax the bulk
structures prior to surface enumeration to en-
sure differences between the DFT settings used
in the Materials Project and the Open Cata-
lyst Dataset did not induce unintended stress
or strain effects. Any bulks that we could not
successfully relaxed were consequently omitted
from this dataset.

Initial Structure Generation

The initial structures are generated by placing
the selected adsorbates on the selected surfaces
using CatKit.51 Surface atoms are identified by
their positions above the center-of-mass, their
z-distance of 2 Angstroms below the upper-
most atom, and by their under-coordination rel-
ative to the bulk atoms. Atomic coordination
environments were calculated using pymatgen’s
Voronoi tesselation algorithm.50 Next, we man-
ually tagged the adsorbates’ binding atoms for
both mono- and bi-dentate adsorbates. Finally,
we gave the surface structure, adsorbate, the
identified surface atoms, and identified adsor-
bate binding sites to CatKit.51 CatKit used
this information to enumerate symmetrically
distinct adsorption sites along with suggested
per-site orientations for the adsorbates. Since
one of our goals is to calculate adsorption en-
ergies, we generate two sets of VASP inputs for
each system, (1) the adsorbate placed over the
catalyst atoms, and (2) just the catalyst atoms
without the adsorbate. This resulted in a total
of 2,520,471 and 768,434 unique inputs for (1)
and (2) respectively, which were later filtered
and segregated into suitable train, test and val-
idation splits.

Structure Relaxation

Structure relaxations were performed using
VASP52–54 until all per-atom forces are less
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Table 1: Size of train/validation/test splits (number of structures for S2EF and initial structures
for IS2RS and IS2RE ). The structures for S2EF are sampled from 640,118 relaxations for train,
and from 30k-70k relaxations for each validation and test split. Subsplits of validation and test are
the same size, but are exclusive of each other. Subsplits include sampling from the same distribution
as training (In Domain), unseen adsorbates (Out of Domain (OOD) Adsorbate), unseen element
compositions for catalysts (OOD Catalyst), and unseen adsorbates and catalysts (OOD Both).

Task Train In Domain OOD Adsorbate OOD Catalyst OOD Both

S2EF 133,953,162 1,000,000 1,000,000 1,000,000 1,000,000
IS2RS 460,364 24,946 24,966 24,963 24,988
IS2RE 460,364 24,946 24,966 24,963 24,988

than 0.03 eV/Å. A timeout was added to limit
the total time it took VASP to perform a
given relaxation. None of the relaxations in
the dataset ran over 144 hours. Systems in
which timed out without reaching the speci-
fied force threshold were set aside for the S2EF
task. All intermediate structures, energies, and
forces are stored for future training and eval-
uation. During the relaxations only the sur-
face atoms (as defined during the generation
above) were allowed to move; subsurface atoms
were maintained at fixed positions. This was
done to avoid unrealistic structure deforma-
tions and to simulate a semi-infinite condition
with bulk material far below the catalyst sur-
face. Relaxations generally followed previous
high-throughput catalysis efforts with reason-
able trade-offs between accuracy for surface
chemistry and computational cost15 (VASP,
RPBE,55 no spin polarization, etc). The energy
of each adsorbate was referenced to gas-phase
CO, H2O, H2, and N2 and the bare slab relaxed
energies. Full details of the relaxation proce-
dures are provided in the SI. Resulting trajec-
tories were further analyzed for per-atom force
criterion, numerical issues or catastrophic re-
constructions as described below in the Train,
Validation, and Test Splits section.

AIMD and Rattled Calculations

The intermediate structures from the relax-
ations may result in a dataset biased towards
structures with lower energies. To learn robust
models, training samples with higher forces
and greater configurational diversity may be

needed. We adopted two strategies for generat-
ing additional training data (1) partial ab initio
Molecular Dynamics (AIMD) in VASP52 and
(2) normally-distributed random position per-
turbation methods colloquially known in molec-
ular simulations as “rattling.”

AIMD calculations simulate the atomic inter-
actions when heat is added to the system. Par-
tial AIMD calculations were carried out on pre-
viously relaxed structures with random initial
velocities generated from a Maxwell-Boltzmann
distribution at a temperature of 900 K. We inte-
grated the AIMD trajectories over 80 fs or 320 fs
with integration steps of 2 fs in the NVE ensem-
ble. Time-scales were selected to allow systems
to explore local configurations while minding
computational costs.

To diversify the distribution of single-point
structures in the dataset, we “rattled” some
of the structures by adding random displace-
ments to the atomic positions. For each re-
laxation, 20% of the images in the trajecto-
ries were selected for rattling. The atomic dis-
placements were sampled from a heuristically-
generated normal distribution with a µ = 0 and
σ = 0.05. Single point DFT calculations were
then performed on the rattled structures.

Similar to the relaxations, only the top sur-
face atom layers were allowed to move in both
the AIMD and rattled calculations with the rest
of the atom positions held fixed. All calcu-
lations were performed at the same theoreti-
cal level and energy/forces convergence crite-
ria as in the relaxation calculations. Approx-
imately 950 thousand AIMD (ca. 64 million
single-point energies/forces) and 30 million rat-

6



tled calculations were carried out.

Bader Charges and LOBSTER Analyses

We performed electronic structure calculations
for general use by the catalysis research field.
These calculations (i.e., Bader charges47,56,57

and LOBSTER58,59 analyses) were carried out
on relaxed structures and also on randomly se-
lected snapshots from both AIMD and rattled
trajectories. Bader charges analyses provides
charge density maxima at each atomic center
and the Bader volume for each atom through
the zero-flux partitioning method.48 LOBSTER
enables chemical-bonding analysis based on pe-
riodic DFT outputs.58 LOBSTER calculates
atom-projected densities of states (pDOS) or
projected crystal orbital Hamilton population
(pCOHP) curves, among others. Literature has
demonstrated that such electronic structure in-
formation can provide valuable insights to the
theoretical and the ML communities.60–62

Dataset profile

Approximately 873,000 adsorption energies
were calculated successfully. Of these, 5.5%
were calculations on unary catalysts; 59.5%
were on binaries; and 35.0% were on ternar-
ies. Among these calculations, 32.3% of them
had reactive nonmetal elements in the cata-
lyst; 12.8% of them had alkali metals; 11.5%
had alkaline earth metals; 27.2% had metal-
loids; 71.1% had transition metals; and 40.9%
had post-transition metals. Considering adsor-
bates: 5.0% of the calculations had adsorbates
containing only oxygen or hydrogen; 24.9%
of the calculations had C1 adsorbates; 46.2%
had C2 adsorbates; and 30.6% had nitrogen-
containing adsorbates.

Despite this dataset’s large size compared to
previous catalytic datasets, it still pales in com-
parison to the number of potential calculations.
Of the

(
55
3

)
+
(
55
2

)
+
(
55
1

)
= 27, 775 possible

compositions, only 5,243 (18.9%) of them were
successfully sampled here. Of the compositions
sampled, there were an average of 249 successful
adsorption calculations for each. Additionally:
if we compare the number of sites we sampled

here to rough estimates of the number of sites
we could have sampled given our constraints on
adsorbates, surfaces, and bulks, then we find
that we performed ca. 0.07% of the possible
calculations. This severe sparsity in the data
compared to its large scale emphasizes the need
for surrogate models.

Train, Validation and Test Splits

We split our dataset into training, validation,
and testing sets. The training set is used to
learn model parameters; the validation set is
used to tune model hyperparameters and to
perform ablation studies; and the test set is
used to report model performance.

A careful choice of validation and test splits
can help evaluate a model’s performance on
both interpolative and extrapolative tasks. In-
terpolative evaluation tests the ability to model
variations of the training data, and is performed
by sampling examples from the same distribu-
tion as the training dataset. Extrapolative eval-
uation tests a model’s performance on unseen
tasks, e.g., new materials or adsorbates. In
the context of catalytic development, we strive
to extrapolate beyond data we have already
seen so that we can discover new materials and
search spaces.63,64

We explore extrapolation along two dimen-
sions; new adsorbates and new catalyst compo-
sitions. Adsorbate extrapolation is performed
by holding out 14 adsorbates from the train-
ing dataset sampled from all types (O, H, C1,
C2, and N) of adsorbates. Similarly for cata-
lyst compositions, a subset of element combina-
tions for catalysts is held out from the training
dataset. These were sampled from the 1,485 bi-
nary and 26,235 ternary material combinations
of the 55 elements used in the dataset. No sur-
faces with unary materials are in the catalyst
compositions subsplits for training or valida-
tion. A full list of the adsorbates materials in
train and validation splits are in the SI.

We used four subsplits for each of the vali-
dation and test sets by considering all combi-
nations of potential extrapolations (Table 1).
These include In-Domain (sampled from the
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training distribution), Out-of-Domain Adsor-
bate (OOD Adsorbate), OOD Catalyst, and
OOD Both (both unseen adsorbate and unseen
catalyst compositions). As shown in Table 1,
each subsplits in validation and testing contains
ca. 25,000 relaxations. For the S2EF task we
randomly select a one million structure subset
from the relaxations in each subsplit. Note that
the extrapolative subsplits of our validation set
are completely exclusive to the extrapolative
subsplits in the test set, e.g., the adsorbates
in the validation adsorbate subsplit are unique
from the adsorbates in the test adsorbate sub-
split. This helps ensure overfitting to the test
set does not occur during hyperparameter tun-
ing on the validation set.

Baseline GNN Models

We evaluate our tasks using a set of baseline
models that are representative of the current
state-of-the-art. The set of models we evaluate
is by no means comprehensive, but they demon-
strate what is feasible with current models.
Code and pretrained models for our baseline
ML approaches implemented in PyTorch Ge-
ometric65,66 are publicly available at the Open
Catalyst Project (http://anonymous.org).

Our baseline ML approaches are all based
on Graph Neural Networks (GNNs)67 that op-
erate over a graph structure containing nodes
and edges. In our domain, the nodes repre-
sent atoms and edges represent the relationship
between neighboring atoms. At each node, an
atom embedding is iteratively updated based
on messages passed along the edges. Dur-
ing this message-passing phase, GNNs employ
neural networks to learn the atomic represen-
tations,68,69 and unlike traditional descriptor-
based models do not require hand-crafting.
Node embeddings are initialized based on the
atom’s properties, such as their atomic num-
ber, group number, electronegativity, atomic
volume, etc.70 Outputs for the GNN may be
computed from individual node (atom) embed-
dings for node-specific information (per-atom
forces), or over the pooled node embeddings for
system outputs (structure energy).

We benchmark three recent GNN methods
– Crystal Graph Convolutional Neural Net-
work (CGCNN),70 SchNet71 and DimeNet.72

CGCNN is one of the first approaches to use
GNNs on periodic crystal systems and uses a
diverse set of features as input to the node em-
beddings. The original model encoded edge
information using the discretized distances be-
tween atoms. SchNet proposed using continu-
ous edge filters, which allows for the computa-
tion of per-atom forces through partial deriva-
tives of the structure’s energy with respect to
the atom positions. To allow CGCNN to com-
pute per-atom forces in the same manner, we
updated the distance encoding to use gaussian
basis functions but without the envelope dis-
tance function used in SchNet in our experi-
ments. Finally, to not only encode distance in-
formation but also angular information between
triplets of atoms, DimeNet introduced the use
of directional message passing.

For all approaches, graph edges were deter-
mined by a nearest neighbor search limited by
a cutoff radius of 6Å, retaining only the 50 near-
est neighbors. When computing distances, pe-
riodic boundary conditions were taken into con-
sideration. Atoms were tagged as three types,
slab (fixed), surface (free), and adsorbate (free),
to allow loss functions to emphasize free atoms
over fixed atoms. The number of hidden chan-
nels is 128, 1024, 256 for CGCNN, SchNet and
DimeNet respectively unless stated otherwise;
resulting in 3.6 million (CGCNN), 7.4 million
(SchNet) and 4.4 million (DimeNet) parame-
ters. Note the size of the models was increased
from their original implementations to account
for OC20’s larger size. Since the number of
atom triplets per structure can be very large,
directional messages in DimeNet were capped
at 30,000. See the SI for additional details.

Since both the computed energies and forces
are evaluated, the baseline loss function26,72

uses the following form:

L =
∑
i

|Ei − EDFT
i |

+λ
∑
i,j

1

Ni

|Fi,j − FDFT
i,j |,
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Figure 3: Demonstration of baselines SchNet model for solving the IS2RE , S2EF , and IS2RS tasks
and the inter-relationships. (A) Snapshots of five representative initial adsorbate configurations
before DFT relaxations, the same adsorbates after DFT relaxation, and the relaxed structures as
relaxed by SchNet after fitting the S2EF task. (B) Illustration of three ways to predict the relaxed
energy: directly through IS2RE , indirectly through IS2RS , and confirmation of the relaxed struc-
ture with a single DFT single-point. (C) SchNet performance as characterized by the percentage
of structures within the desired max force threshold of 0.05 eV/Å(FbT) and average percentage of
force below threshold (AFbT).

where λ is an empirical parameter, Ei is the
energy of image i, and Fi,j is the force of the
jth free atom in image i, and Ni is the number
of free atoms in image i. For the IS2RE task,
in which only the energy is evaluated, only the
first term of the loss function is used (λ = 0).

All of the models are ML-based as there are
currently no physical models that operate over
such a large composition space with reasonable
accuracy and elemental parameterizations. In
particular, the recently developed GFN0-xTB
method73 is parameterized for all of the ele-
ments in this dataset and is fast enough (ap-
prox 10,000X faster than DFT) to compete on
these benchmarks and preliminary results are
reported in the SI. However, since the method
was not fit for inorganic surfaces and the xTB
code74 is still under active development for pe-
riodic boundary conditions, the results were ex-
cluded from the summaries here. We hope that
the release of our dataset will inspire future
efforts on parameterizating tight-binding DFT
codes or reactive force field methods for these
materials.

Experiments

We begin by describing the metrics used to eval-
uate our three tasks, followed by the results of
our baseline models.

Evaluation metrics

For each task, we define evaluation metrics to
track the progress in the field, as well as to mea-
sure the practical utility of the approaches. All
ground truth values are computed using DFT.
Our evaluation metrics are as follows:
S2EF : The S2EF task has three metrics: the

Mean Absolute Error (MAE) for energy, MAE
for forces on free atoms and a combined met-
ric. Our combined metric, Energy and Forces
within Threshold (EFwT), is designed to mea-
sure the practical usefulness of a model for re-
placing DFT by evaluating whether both the
computed energy and forces are close to the
ground truth.

Energy MAE: Mean Absolute Error be-
tween the computed energy and the ground
truth energy.

Force MAE: Mean Absolute Error be-
tween the computed per-atom forces and the
ground truth forces. Errors are only com-
puted for free catalyst and adsorbate atoms.

EFwT: The percentage of structures in
which the computed energy is within ε = 0.02
eV of the ground truth energy, and the max-
imum error in per-atom forces is below α =
0.03 eV/Å. Both these criteria must be met
for the structure to be labeled as “correct”.
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IS2RS : Several methods exist for determin-
ing the accuracy of relaxed structures predicted
by ML models. The simplest is to measure the
distance between the predicted 3D positions of
the atoms and those of the ground truth. How-
ever, small changes in position can lead to sig-
nificant changes in the per-atom forces and a
structure’s energy. For this reason, a better
measure of a proposed relaxed structure is the
magnitude of its per-atom forces as measured
by a single point DFT calculation. If the pro-
posed relaxed structure represents a true local
energy minimum, the forces should be close to
zero.

ADwT: The Average DwT (Distance within
Threshold) across thresholds ranging from
β = 0.01Å to β = 0.5Å in increments of
0.001Å. DwT is computed as the percentage
of structures with a atom position MAE be-
low the threshold. MAE is only computed
for free catalyst and adsorbate atom positions
while taking into account periodic boundary
conditions. We use ADwT as opposed to the
MAE on 3D atom positions, since ADwT is
robust to outliers and better indicates the
percentage of relaxations that are likely to
be successful.

FbT: The percentage of relaxed structures
with maximum DFT calculated per-atom
force magnitudes below a threshold of α =
0.05 eV/Å. Force magnitudes of only free
catalyst and adsorbate atoms are used. A
value of α = 0.05 eV/Å represents a practical
threshold by which DFT relaxations are com-
monly assumed to have converged. To ensure
that the ML relaxations find a relaxed struc-
ture that isn’t significantly different from the
ground truth relaxed structures, e.g., the ad-
sorbate moves to a different binding site, an
additional filtering step is applied. We fil-
ter on the atom position MAE (free cata-
lyst and adsorbate atoms) with a threshold
of β = 0.5Å. Thus, to be considered correct,
a relaxed structure must meet both the FbT
and the DwT criterion.

AFbT: The Average FbT (AFbT) over a
range of thresholds ranging from α = 0.01

Table 2: Predicting energy and forces from a
structure (S2EF ) as evaluated by Mean Abso-
lute Error (MAE) of the energies, forces MAE,
and the percentage of Energies and Forces
within Threshold (EFwT). Results reported for
models training on the entire training dataset.

S2EF Validation

Model ID OOD Ads OOD Cat OOD Both

Energy MAE ↓
Mean baseline 0.0000 0.0000 0.0000 0.0000
CGCNN70 0.5861 0.7088 0.6229 0.7680
SchNet71 0.5397 0.5845 0.6082 0.7942
DimeNet72 0.5880 0.7189 0.6629 0.8010

Forces MAE ↓
Mean baseline 0.0000 0.0000 0.0000 0.0000
CGCNN70 0.0656 0.0642 0.0629 0.0785
SchNet71 0.0438 0.0511 0.0458 0.0619
DimeNet72 0.0600 0.0579 0.0575 0.0702

EFwT ↑
Mean baseline 0.00% 0.00% 0.00% 0.00%
CGCNN70 0.01% 0.00% 0.00% 0.00%
SchNet71 0.03% 0.00% 0.06% 0.00%
DimeNet72 0.01% 0.00% 0.00% 0.00%

eV/Å to α = 0.4 eV/Å in increments of
0.001 eV/Å, Figure 3(C). This metric mea-
sures progress over a wider range of thresh-
olds, which may be important for early al-
gorithm development that may need thresh-
olds more lenient than α = 0.05 eV/Å to see
improvement. Similar to FbT, the relaxed
structures must also meet the same DwT cri-
terion with β = 0.5Å.

Note that FbT and AFbT require the compu-
tation of single point DFT calculations, which
are computationally expensive. For this reason,
a random subset of 500 relaxed structures are
chosen from the validation and test set splits
(2000 total for each) for evaluating these met-
rics. If a DFT calculation fails to converge
within 60 electronic steps or a wall time of 2
hrs, the system is assumed to be incorrect with
forces beyond the thresholds for both FbT and
AFbT.
IS2RE : Similar to the S2EF task we pro-

pose two metrics for IS2RE . The first mea-
sures the MAE on the computed and ground
truth energy. The second measures the ener-
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Figure 4: Predicting Structure to Energy and
Forces (S2EF ) as evaluated by Mean Abso-
lute Error (MAE) of the energies and forces.
The small, medium and large SchNet models
have the following sizes: Small: 256 hidden,
4 message-passing layers, 1,316,097 params,
Medium: 1024 hidden, 3 message-passing lay-
ers, 5,704,193 params, Large: 1024 hidden, 4
message-passing layers, 7,396,353 params. Re-
sults reported for models trained on the entire
training dataset.

gies within a threshold (EwT) of the ground
truth, which once again measures the percent-
age of estimated energies that are likely to be
practically useful.

Energy MAE: Mean Absolute Error be-
tween the computed relaxed energy and the
ground truth relaxed energy.

EwT: The percentage of computed relaxed
energies within ε = 0.02 eV of the ground
truth relaxed energy.

While our evaluation metrics focus on ac-
curacy, it is important to note that methods
should also be significantly faster than conven-
tional DFT. As a rough benchmark, we desire
energy and force estimates at approximately 1
ms/atom which would significantly improve the
applicability of DFT. Significantly faster than
this (closer in speed to classical force fields)
would open up even more interesting applica-
tions. We ask that users self-report timing re-

Table 3: Predicting relaxed structure from ini-
tial structure (IS2RS ) as evaluated by Average
Distance within Threshold (ADwT), Forces be-
low Threshold (FbT), and Average Forces be-
low Threshold (AFbT). All values in percent-
ages, higher is better. Results reported for
structure to force models trained on the All
training dataset.

IS2RS Validation

Model ID OOD Ads OOD Cat OOD Both

ADwT ↑
SchNet71 35.68% 34.11% 29.42% 33.80%
DimeNet72 10.94% 9.80% 8.36% 10.21%

FbT ↑
SchNet71 0.402% 0.00% 0.00% 0.00%
DimeNet72 0.00% 0.00% 0.00% 0.00%

AFbT ↑
SchNet71 6.17% 3.38% 3.40% 2.44%
DimeNet72 0.00 % 0.00% 0.00% 0.00%

sults, but we are not going to make that a core
part of the challenge as computation time can
likely be further optimized for the best models
and with hardware acceleration.

Leaderboard

To ensure consistent and fair evaluation, a pub-
lic leaderboard is available on the Open Cat-
alyst Project webpage (http://anonymous.
org). Results on any of the tasks’ test datasets
may be uploaded for evaluation. Ground truth
test data is not publicly released to reduce po-
tential overfitting. Evaluation on the test set
may only be done through the leaderboard. Ab-
lation studies and hyper-parameter tuning may
be done and reported on using the validation
datasets.

Results

To provide baselines for the OC20 dataset,
we report results using three state-of-the-
art approaches: CGCNN,70 SchNet,71 and
DimeNet.72 Details of the models’ implementa-
tions can be found in the Baselines Section.
S2EF : Results on CGCNN,70 SchNet,71 and

DimeNet72 are evaluated. All approaches pre-

11

http://anonymous.org
http://anonymous.org


Table 4: Predicting relaxed state energy from initial structure (IS2RE ) as evaluated by Mean
Absolute Error (MAE) of the energies and the percentage of Energies within a Threshold (EwT)
of the ground truth energy. Results reported for trained on the All training dataset.

Energy MAE ↓ EwT ↑
Validation

Model Approach ID OOD Ads OOD Cat OOD Both ID OOD Ads OOD Cat OOD Both

Mean baseline - 1.7668 1.7382 1.7469 1.5259 0.0000 0.0000 0.0000 0.0000

CGCNN70 Direct 0.6477 0.7012 0.6309 0.6688 2.95% 2.46% 3.42% 2.41%
SchNet71 Direct 0.6462 0.7063 0.6433 0.6630 3.00% 2.35% 3.08% 2.40%
DimeNet72 Direct 0.6469 0.7358 0.6402 0.6852 3.26% 2.24% 3.45% 2.32%

SchNet71 Relaxation 0.8796 0.9347 1.1595 0.9256 3.40% 2.82% 2.75% 2.36%
DimeNet72 Relaxation 0.8449 0.8909 1.0076 0.8281 2.60% 3.22% 1.96% 2.76%

dict structure energies in their forward pass and
per-atom forces by the negative gradient of the
predicted energy with respect to atomic posi-
tions.75 Across all metrics SchNet performs the
best, with DimeNet outperforming CGCNN on
force MAE and CGCNN performing better on
energy MAE. All approaches perform badly on
the EFwT metric; indicating that the results
are still far from being practically useful. Table
2 and Figure 4 show results across subsplits. As
expected, the In Domain (ID) achieves the best
results and the OOD Both performs the worst.
However, results are not dramatically differ-
ent, which shows some generalization to new
adsorbates and catalysts. Increases in train-
ing data sizes results in significant improve-
ments up until 20M, Figure 5(A). This may be
due to the additional data beyond 20M being
mostly redundant, i.e., it is adding nearby ex-
amples from the relaxation trajectories to those
already in 20M. Finally, wider and deeper mod-
els are shown to improve accuracies in Figure
4. Increased depth (SchNet small) appears to
give slight improvement over additional width
(SchNet medium).
IS2RS : For IS2RS , we use our S2EF base-

lines to drive ML relaxations from the given
initial structures to estimate the relaxed struc-
tures using L-BGFS,76 examples are shown in
Figure 3(A). Table 3 shows that SchNet outper-
forms DimeNet in both the ADwT and AFbT
metrics. However, the FbT metric indicates
both methods do not produce relaxed struc-

tures with forces below thresholds used in prac-
tice. A plot of FbT across thresholds from 0.01
to 4.0 for SchNet is shown in Figure 3(C). Both
methods show better generalization to new ad-
sorbates vs new catalyst material compositions.
Sin=milar to S2EF improved results are found
with more training data up until 20M, Figure
5(B).
IS2RE : For IS2RE we explore two path-

ways for computing the relaxed energy from
the initial state, Figure 3(B). The first directly
computes the relaxed energy given the initial
state. The same model architectures are used as
the S2EF task, but with new weights learned.
The second approach uses models trained on
the S2EF task to perform ML relaxations from
which the resulting energy is returned. Note
that the ML relaxation approach is about 200
times more expensive to compute, since ener-
gies needs to be computed at each relaxation
step. For the relaxation-based approaches, if
the energy prediction was above 10eV, which
represents the cutoff above which relaxations
are removed from the dataset, the energy pre-
diction was set to the median of the training
dataset to reduce outliers skewing MAE results.
This occurred in ∼2% of the predicted struc-
tures.

As shown in Table 4, the direct approaches
out performed those using relaxation across
most metrics. The percentage of predicted en-
ergies within a tight threshold ranged from 2%
to 3.5%; indicating that accuracies are still be-
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Figure 5: (A) Predicting energy and forces from a structure (S2EF ) as evaluated by Mean Absolute
Error (MAE) of the energies and forces. (B) Predicting relaxed structure from initial structure
(IS2RS ) as evaluated by Average Distance within Threshold (ADwT). (C) Predicting relaxed state
energy from initial structure (IS2RE ) as evaluated by Mean Absolute Error (MAE) of the energies
and the percentage of Energies within a Threshold (EwT, ε = 0.02 eV) of the ground truth energy.
Results reported for S2EF and IS2RS trained on 200k, 2M, 20M and All dataset sizes. Results
reported for IS2RE trained on 10k, 100k, All dataset sizes. All values averaged across validation
subsplits.

low practical usefulness. Generalization to new
adsorbates performed better than new catalyst
materials. As shown in Figure 5(C), larger
dataset sizes could significantly improve perfor-
mance.

Outlook and future direc-

tions

The baseline models in this work give signifi-
cant insights into the complexity of day-to-day
challenges in catalysis and what it will take
to achieve generalizable models. To illustrate
the difference between catalysis and related ef-
forts in small molecule property prediction and
materials science and motivated by previous ef-
forts,78 we analyzed model performance for in-
creasing dataset sizes. Figure 6(left) and Figure
2(middle) show the performance of GNN mod-
els similar to the baseline models in this work
on datasets for small molecules (QM9) and ma-
terials (formation energies from the materials
project). The scaling of model accuracy with
respect to dataset size is related to the effective
dimensionality of the task and the effective rep-
resentation in the model. Comparing SchNet
performance across all three tasks shows that
the aggressive scaling for small molecules is re-

duced for inorganic materials, and further re-
duced for surfaces. Focusing on results from
this study in Figure 6(right) shows that the
scaling is similar for the same baseline models
trained on the OC20 dataset and a related lit-
erature dataset of CO adsorption energies (see
the SI). Importantly, the scaling suggests that
achieving the desired accuracy using the current
baseline models would require a dataset nearly
10 orders of magnitude larger than the current
dataset. This implies that this problem will not
be solved through brute-force methods alone,
and that significantly improved ML represen-
tations are also necessary. This is an exciting
opportunity for the broader community.

For the computer science and ML commu-
nities, we expect that this dataset will pro-
vide unique challenges and spur innovation in
atomistic simulations. Many state-of-the-art
methods for organic and inorganic materials are
based on graph convolutional networks,79 which
have seen rapid progress. With the above per-
spective, we expect that additional creative so-
lutions will be necessary to fully solve these
tasks. While they have not been demonstrated
for inorganic materials, physics-informed ten-
sor representations for small molecules may be
helpful.80–83 Element embeddings and represen-
tations will be important to scale across ma-

13



-0.57 -0.33

-0.14

-0.11

UG-CO/IS2RE/CGCNN

Figure 6: Model performance versus dataset size across three related atomistic domains. Insets are
pairwise similarity for selected structures from the respective dataset using GraphDot (see the SI for
details) (0/dark-blue/not-similar to 1/yellow/identical).77 (left) Results49 for FCHL/SchNet models
trained on the QM9 small molecule dataset (slope -0.57). (middle) Models trained on Materials
Project formation energies (slope -0.33, more difficult). (right) Results for catalysis including a
literature dataset for CO adsorbates15 and this work (slope -0.11 to -0.14, most difficult). Note
that reaching the desired accuracy will require several orders of magnitude more data with current
models.

terials. Incorporation of lower-level physics-
based potentials is welcomed and encouraged.
This includes the use of related datasets (or-
ganic molecules or inorganic materials) for pre-
training or learning priors. Incorporating other
electronic features in the training set, such as
charge distribution to correctly localize effects
is also an opportunity to effectively reduce the
dimensionality of the problem.

Note that size of this dataset is larger by
2 orders of magnitude than previous catalyst
DFT dataset efforts.15,84 Along with the poten-
tial for more accurate ML models, it provides
practical challenges to training atomistic ma-
chine learning models at scale, similar to soft-
ware engineering challenges in image recogni-
tion and NLP.85,86 The largest baseline mod-
els with 10M parameters were trained on up-
wards of 32 GPUs at a time, so we encour-
age the catalysis community to take advantage
of these GPU-enabled resources. This is well-
timed with the wave of large GPU-enabled su-
percomputers that are well-suited to these chal-
lenges, such as Perlmutter (DOE NERSC) or
Summit (DOE OLCF), among many others.

The baseline models in this work represent

the state-of-the-art for deep learning methods
to predict thermochemistry for small molecules
on inorganic surfaces. Solving this chal-
lenge with future model development efforts
would enable a new generation of computa-
tional chemistry methods. In particular, on-
the-fly thermochemistry for reaction intermedi-
ates would enable reaction mechanism predic-
tion across materials or composition space. Ac-
celerated methods would also enable the more
routine use of more accurate computational
methods (e.g. hybrid, exact-exchange, or RPA
calculations) by focusing these efforts on the
most promising and pre-relaxed structures. A
solution to the S2EF task would also enable
the more routine use of long timescale molec-
ular dynamics for studying these systems. The
potential applicability of the OC20 dataset is
not just catalysis, but also has implications
for areas where organic and inorganic mate-
rials interact, such as water quality remedi-
ation, geochemistry, advanced manufacturing,
and durable energy materials.
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Supporting Information Avail-

able

The supporting information contains details on
the precise DFT calculation methods, the ad-
sorbates and their assuming binding configura-
tions, details on the graph similarity metrics,
details on GFN0-XTB relaxations on a small
number of sample systems, and comparison of
baseline models on previously published litera-
ture dataset. The full open dataset is provided
at http://anonymous.org, and the baseline
models are provided as an open source repos-
itory at https://github.com/anonymous.
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Supplementary Material

Details of the DFT relaxations

DFT calculations were performed with
the Vienna Ab Initio Simulation Package
(VASP)52–54 with periodic boundary condi-
tions and the projector augmented wave (PAW)
pseudopotentials.87,88 The external electrons
were expanded in plane waves with kinetic
energy cut-offs of 350 eV. Exchange and corre-
lation effects were taken into account via the
generalized gradient approximation55 and the
revised Perdew-Burke-Ernzerhof (RPBE) func-
tional, because of its improved description of
the energetics of atomic and molecular bond-
ing to surfaces.89 Bulk and surface calculations
were performed considering a K-point mesh for
the Brillouin zone derived from the unit cell pa-
rameters as an on-the-spot method, employing
the Monkhorst-Pack grid.90 The ionic degrees
of freedom were relaxed using a Conjugate
Gradient minimization.91,92 The relaxation was
terminated when either the Hellmann-Feynman
forces93 were less than 0.03 eV/Å or the relax-
ation required more than 200 steps in a single
uninterrupted VASP call. This limit was re-
set each time the calculation was checkpointed
allowing some relaxations to exceed this 200
steps. The final distribution of residual forces
is shown in Figure 7 in the SI. Relaxations
still converging after approximately 5,000 core-
hours were terminated and not included in the
dataset. For the electronic degrees of freedom,
the energy convergence criteria was fixed to
10−4 eV, where no spin magnetism or disper-
sion corrections were included.

Adsorbates included

The full list of adsorbates is indicated in 5. This
list was constructed by considering the four
monatomic species and adding common inter-
mediates for renewable energy challenges. The
number of possible organic molecules is combi-
natorially large, so this is not a comprehensive

Figure 7: The distribution of max-absolute
forces, fmax, for systems that converged and
completed successfully. Systems in which
fmax > 0.05 eV/Å were excluded from all tasks
except S2EF.

list. Larger molecules (e.g. C3) are also rele-
vant but have an even larger number of possible
configurations. Most adsorbates were mono-
dentate (binding through a single adsorbate
atom), but larger molecules known to bind in
bi-dentate configurations were initialized that
way. The atoms considered for either mono-
dentate or bi-dentate adsorption location is in-
dicated by *.

Tight Binding Baseline

Obtaining reasonable energies, forces, and re-
laxed structures from tight binding codes is an
enticing possibly because of the low computa-
tional cost compared to DFT; however, tight
binding calculations on systems for catalysis re-
main a challenge, as demonstrated by SI Fig-
ure 8. We preformed tight binding calcula-
tions on 100 random systems from the vali-
dation set with extended tight binding (xTB)
using the GFN0 parameters.73 All calculations
were done in accordance with our DFT calcu-
lations with two notable exceptions. For the
combined systems, i.e. an adsorbate on a sur-
face, all surface atoms were fixed during the
relaxation. Additionally, the surface energies
used for the computation of adsorption energies
were approximated with single point energies.
We did not allow surfaces to relax because of
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Table 5: Adsorbates considered in OC20

Adsorbate class # of adsorbates Adsorbates

O/H Only 4 *H, *O, *OH, *OH2

C1 13

*C, *CO, *CH, *CHO, *COH, *CH2, *CH *
2 O,

*CHOH, *CH3, *OCH3, *CH2OH, *CH4,
*OHCH3

C2 41

*C*C, *CCO, *CCH, *CHCO, *CCHO,
*COCHO, *CCHOH, *CCH2, *CH*CH, CH *

2 CO,
*CHCHO, *CH*COH, *COCH2O, *CHO*CHO,
*COHCHO, *COHCOH, *CCH3, *CHCH2,
*COCH3, *OCHCH2, *COHCH2, *CHCHOH,
*CCH2OH, *CHOCHOH, *COCH2OH,
*COHCHOH, *CH *

2 CH2, *OCHCH3, *COHCH3,
*CHOHCH2, *CHCH2OH, *OCH2CHOH,
*CHOCH2OH, *COHCH2OH, *CHOHCHOH,
*CH2CH3, *OCH2CH3, *CHOHCH3,
*CH2CH2OH, *CHOHCH2OH, *OHCH2CH3

Nitrogen-based 24

*NH2N(CH3)2, *ONN(CH3)2, *OHNNCH3,
*NNCH3, *ONH, *NHNH, *NHN2, *N*NH,
*ONNO2, *NO2NO2, *N*NO, *N2, *ONNH2,
*NH2, *NH3, *NONH, *NH, *NO2, *NO, *N,
*NO3, *OHNH2, *ONOH, *CN

unphysical behavior during optimization, which
we likely attribute to periodic boundary con-
ditions (PBCs). We are aware that the xTB
code was designed for non-periodic systems and
that incorporation of PBCs is an ongoing effort.
Overall, the speed of the xTB was impressive
and we look forward to future developments re-
lated to systems with PBCs.

Graph Generation Example

We generated graphs by converting atoms to
nodes and detecting edges with a nearest neigh-
bor search within a cutoff radius — node and
edge features are model dependent. A simple
1D example is shown in SI Figure 9. PBCs com-
plicate the process of determining edges and we
take an atom centric view when determining if
an edge is undirected or directed. Atoms within

the unit cell all feel each other resulting in undi-
rected edges, whereas unit cell atoms feel peri-
odic image atoms but the reverse is not true,
resulting in directed edges. The length of these
interactions is of course limited by the radius
of cutoff. In the example in SI Figure 9, atom
0 feels the periodic image atom 1, but the pe-
riodic image atom 1 does not feel atom 0. For
this reason, we used mixed graphs that have
both undirected and directed edges. In addi-
tion, a node can have multiple edges with an-
other node (i.e. atom 0 and atom 1 have two
different length connections because of PBCs)
the result being a mixed multigraph.

Graph Pairwise Similarity

The mean pairwise similarity (mps) between
a collection of graphs gives an indication of
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Figure 8: Top: A parity plot comparing xTB adsorption energies with DFT adsorption energies
and an inset that limits xTB values to a range similar to that of DFT. Bottom: Initial and final
structures corresponding to the pink markers in the plot above organized from left to right.
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Figure 9: An example of graph generation for a 1-dimensional periodic system.
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the diversity present in a given dataset and is
comparable between different datasets. Pair-
wise similarity was computed as the mean of
the elements in the upper triangle of the sim-
ilarity matrix (K) without the diagonal ele-
ments included (Equation below). The similar-
ity matrix was calculated using graphs and the
molecular kernel from the GraphDot package
(https://graphdot.readthedocs.io/en/latest/),
details of these methods are provided by Tang
et al.94 Mean pairwise similarity values range
from 1, where all graphs are the same and de-
cay to 0. The mean pairwise similarity can be
compared between datasets if the graph and
the kernel parameters are consistent. For the
results in Figure of the main text, we randomly
sampled 1000 systems (N) from a 10,000 sub-
sample of each respective dataset and computed
the mean pairwise similarity, this was repeated
six times to collect statistics. Random subsam-
pling was done to keep the similarity matrix the
same size across datasets and to decrease the
computational cost. For the similarity matrix
calculation the adjacency length scale used to
convert atomic structures to graphs was set to
6Åand the molecular kernel edge length scale
was set to 18Å. All other parameters were set
to default values.

mps =
1

N(N − 1)/2

N∑
i,j

Kij

where i < j

Train/test/validation splits

The following adsorbates were reserved for val-
idation subsplits: *CH, *CHO, *COCH2OH,
*COH, *NH2, *NH2N(CH3)2, and *ONOH. As-
terisks represent the binding atoms. The follow-
ing adsorbates were reserved for the test sub-
silpts: *CH2*CH2, *CO, *COHCH2, *NHN2,
*NNCH3, *OCHCH2, and *ONNO2.

Baseline models implementation

All proposed baseline models were implemented
using PyTorch Geometric. Several implementa-

tion changes, however, were necessary to make
such models relevant to our dataset and tasks.
We outline the modifications below:

SchNet

• Periodic boundary conditions (PBCs)
were incorporated into the PyTorch Geo-
metric implementation of SchNet.

DimeNet

• PBCs were incorporated into the PyTorch
Geometric implementation of DimeNet.

• The number of triplets was capped to
30,000 during training to ensure tractabil-
ity of our system sizes. All triplets were
used during validation however. Previ-
ous work did not suffer the same com-
putational challenges due to the signifi-
cantly smaller system sizes of small or-
ganic molecules.

CGCNN

• Similar to SchNet, a Gaussian basis func-
tion was incorporated to the edge fea-
tures. Although not contained within
the original CGCNN implementation, a
significant performance increase was ob-
served.

• In order to make force predictions, a gra-
dient call was included in the forward pass
with respect to positions. The original
CGCNN implementation was only con-
cerned with energy predictions.
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