
Supplementary
Too Many Frames, Not All Useful:

Efficient Strategies for Long-Form Video QA

Jongwoo Park 1 Kanchana Ranasinghe 1 Kumara Kahatapitiya 1

Wonjeong Ryoo Donghyun Kim 2 Michael S. Ryoo 1

1Stony Brook University 2Korea University
jongwopark@cs.stonybrook.edu

https://github.com/jongwoopark7978/LVNet

Appendix

A.1 Additional Ablations

In this section, we present additional experiments conducted to inform the LVNet’s design. We have
tested different LLMs and experimented with various scales of the visual feature map.

Table A.1: Ablations on EgoSchema [2]: We evaluate different design decisions of our framework
on EgoSchema 500-video subset for zero-shot VQA.

(a) Choice of LLM: We consider different
options for our LLM for video QA.

LLM Acc. (%)

GPT-3.5 61.0
GPT-4 65.4
GPT-4o 68.2

(b) Effect of Patch Size on Keyword
Matching in CKD: We consider differ-
ent patch sizes to measure the similarity
between the image and the keyword.

Patch Size Acc. (%)

1x1 63.6
7x7 66.2
14x14 68.2

Choice of LLM: Our results show that GPT-4o outperforms both GPT-4 and GPT-3.5 by 2.8% and
7.2%, respectively. Given that GPT-4o is more cost-effective and lightweight compared to GPT-4, we
have selected it as our default LLM.

Effect of Patch Size on Keyword Matching in CKD: Since keywords can represent activities
spanning the entire image or confined to a small region, we adjust the resolution of the visual feature
map output from the spatially aware contrastive image pre-training (CLIP) network [3] to match
keywords. Our findings show that higher resolutions lead to better accuracy. In LVNet, we use a
14×14 feature map and determine the confidence level of the keyword by selecting the maximum
value between the 14×14 patches and the keyword’s text embedding.

Workshop on Video-Language Models at 38th Conference on Neural Information Processing Systems (NeurIPS
2024).

https://github.com/jongwoopark7978/LVNet


A.2 Algorithms in Detail

Our algorithms are presented in full detail in Algorithm 1, Algorithm 2, and Algorithm 3. TSC in
Algorithm 1 extracts per-frame visual features using ResNet-18, followed by an iterative clustering
procedure to identify n non-overlapping frame sets. Within each of the n sets, we uniformly sample
≤ τ frames, obtaining a total of Ta ≤ τ×n frames. For example, LVNet sets ψ = 5, λ = 12, τ = 18,
resulting in approximately n ∼ 25 and Ta ∼ 390 on the EgoSchema dataset. CKD in Algorithm 2
selects top L frames based on similarity/confidence scores, which are calculated using cosine
similarity between frames and keywords with CLIP-B/16. LVNet employs L = 32, len(K) ≤ 25
on the EgoSchema dataset. FKD in Algorithm 3 sorts frames and their corresponding keywords
by confidence scores, and reorder the K frames with the lowest scores temporally. It groups
frames sequentially into visual templates, each consisting of N frames. From each template, the
M frames and keywords most relevant among the N pairs are selected using GPT-4o. We set
L = 32,K = 16, N = 8,M = 3.

Algorithm 1: Temporal Scene Clustering
1: Require: ResNet-18 [1] pretrained on imagenet dataset f , frame list Listframe, image index

list Listindex ∈ {1, . . . , N}, minimum number of list length ψ, temperature λ, number of
sample τ , function to find index of x in list w index(x, w), and function to sort list sort(List)

2: for all imgi in Listframe do
3: Fi ← f(imgi)
4: Listfeat.insert(Fi)
5: end for
6: for all Fi in Listfeat do

7: Listdist ←
∑

y

∑
x

√
(Fi−Listfeat)2

x×y

8: Mdist.insert(Listdist)
9: end for

10: while length of Listindex > ψ do
11: Listsample ← ∅
12: Listδ ← ∅
13: i← Listindex.pop(0)
14: pi ← softmax(Mi

dist)
15: µpi , σpi ← mean(pi), std(pi)

16: β ← µpi − σpi

∑
i=0 e

1−i/λ

17: for all prob in pi do
18: if prob < β then
19: Listselected.insert(index(prob,pi))
20: end if
21: end for
22: for all γ in Listselected do
23: δ← γ th value in Listindex
24: Listδ.insert(δ)
25: Listindex.pop(γ)
26: end for
27: Listδ.insert(i)
28: Listsample← sample τ items from Listδ
29: sort(Listsample)
30: for all framej in Listframe do
31: if j in Listsample then
32: Outputs.insert(framej)
33: end if
34: end for
35: end while

2



Algorithm 2: Keyword-Image Matching Process in CKD
1: Require: keyword set K, image set I, total length of selected image set L, function to calculate

similarity matrix sim(K, I), function to sort similarity matrix and return indices sort(S)

2: S← sim(K, I)
3: Ssorted, idxsorted ← sort(S)
4: Initialize Pbest as an empty list
5: Initialize Iselected as an empty set
6: while length of Iselected < L do
7: for k ∈ K do
8: for i ∈ I do
9: iindex ← idxsorted[k][i]

10: if iindex not in Iselected then
11: Pbest.insert(k, iindex)
12: Iselected.insert(iindex)
13: break
14: end if
15: end for
16: if length of Iselected ≥ L then
17: break
18: end if
19: end for
20: end while
21: return Pbest

Algorithm 3: Fine Keyframe Detection Process (FKD)
1: Require: keyword set K, image set I, similarity score list S, total length L, number of low

similarity indices K, number of frames per visual template N , number of keyframes selected per
visual template M , function to sort by similarity sort(S), function to order indices temporally
temporal_order()

2: idxsorted ← sort(S)
3: idxlow_sim ← idxsorted[−K :]
4: idxtemporal ← temporal_order(idxlow_sim)
5: idxfinal ← concatenate(idxsorted[: −K], idxtemporal)
6: Iordered,Kordered ← I[idxfinal],K[idxfinal]
7: sets← create_sets(Iordered,Kordered, L//N)
8: for each set ∈ sets do
9: Iselected ← select_top_M(set,M)

10: end for
11: return Iselected

3



A.3 Prompting: Fine Keyframe Detector

We prompt the VLM to select frames that are most compatible with the list of given keywords.
Each template image contains 8 images, and their order is described in language (e.g. top left to
right, bottom left to right) and the VLM outputs the selected images according to our prompting as
described in Figure A.1.

Eight images, having egocentric perspectives, are juxtaposed, separated by a red vertical line and red
horizontal line. In the first row, the images from left to right are named as image_0, image_1, image_2,
image_3. In the second row, the images from left to right are named as image_4, image_5, image_6, image_7.
Here are images and their associated guess words: {image_0: drive screws,..., image_32: remove screws}.
Think step-by-step and list only the names of the 3 images most closely related to the guessed words. Do not
select blurry images in your answer. If none of the images correspond to the provided guess words, choose
any three images at random. Your answer should follow the JSON format shown below and should only
include the JSON result. Do not output any warnings or notes under any circumstances. Instead, adhere
strictly to the provided JSON format example.

{"image name": write reason for your selection in 10 words}

This is one example output format. {"image_0": "Person washing a plate; linked to dish cleaning.",
"image_2": "Person washing a bowl; linked to dish cleaning.", "image_6": "Person running water on a
sponge; related to dish cleaning}.

Image Input

Prompt

{"image_1": "Person working on a project", "image_4": "Person holding a
knife", "image_5": "Person sharpening a knife"}

VLM

Figure A.1: Prompt for Fine Keyframe Detection: The figure illustrates the input image, the prompt
provided to the VLM, and the output. The input image represents a visual template composed of
eight frames, and the prompt requests the three best frames along with their corresponding keywords.
The output displays the top three selected frames and their associated keywords.

4



References
[1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.

In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–778, 2016.

[2] Karttikeya Mangalam, Raiymbek Akshulakov, and Jitendra Malik. Egoschema: A diagnostic benchmark for
very long-form video language understanding. ArXiv, abs/2308.09126, 2023.

[3] Kanchana Ranasinghe, Brandon McKinzie, Sachin Ravi, Yinfei Yang, Alexander Toshev, and Jonathon
Shlens. Perceptual grouping in contrastive vision-language models. In ICCV, 2023.

5


	Additional Ablations
	Algorithms in Detail
	Prompting: Fine Keyframe Detector

