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A Comparison with RPI+RPT

To demonstrate the necessity of reducing the adversarial transferability in random space and the
superiority of proposed black-box adversarial training, we provide more detailed comparison with
RPI+RPT [1]. Note that we strictly follow the same training recipe of RPI+RPT [1] in this section.
We train all the models for 160 epochs with PGD-7 adversarial training, which is different from the
one introduced in Section 5.1. For a fair comparison, we consider two different attack settings.

We first consider the normal attack setting where the number of attack iterations are fixed for different
examples. Specifically, PGD20 denotes that the number of steps for PGD is 20 for all the examples.
We take ResNet-18 and WideResNet32 as the models for evaluation. For the results of RPI+RPT,
we use the official implementation to train the ResNet-18, and we load the pretrained models from
official implementation for WideResNet32. Similar to Table 1 and 2 in the paper, we consider a wide
range of attacks to evaluate the robustness, including FGSM, PGD20, CW, MIFGSM, DeepFool and
AutoAttack. The detailed results are shown in Table 1 and 2. Our proposed RNA achieves better
performance under different attacks with large margins compared to RPI+RPT.

Table 1: The adversarial robustness evaluation with normal attacks settings on CIFAR-10.

Model Method Natural FGSM PGD20 CW MIFGSM DeepFool AutoAttack

ResNet-18 RPI+RPT [1] 82.84 58.31 52.18 80.02 56.09 27.81 49.70
RNA(Ours) 85.33 63.88 59.79 84.42 61.05 76.83 66.35

WideResNet32 RPI+RPT [1] 81.59 57.95 53.96 79.05 56.32 27.61 53.30
RNA(Ours) 86.22 64.85 60.49 85.87 61.21 57.21 62.91

Table 2: The adversarial robustness evaluation with normal attacks settings on CIFAR-100.

Model Method Natural FGSM PGD20 CW MIFGSM DeepFool AutoAttack

ResNet-18 RPI+RPT [1] 56.72 33.04 29.98 52.87 31.76 20.07 28.14
RNA(Ours) 57.62 36.62 35.51 57.14 35.84 53.12 42.41

WideResNet32 RPI+RPT [1] 60.04 35.78 32.46 56.74 34.29 21.74 31.17
RNA(Ours) 61.36 37.76 35.98 60.80 35.63 54.48 41.23

Besides the normal attack setting, we also consider a relatively weak attack setting evaluated in [1]
where the attackers stop the iteration of attacks when the network misclassifies the perturbed example.
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Thus, the number of attack iterations can be different for different examples. Specifically, PGD20

here denotes the maximum attack iterations for all the examples while the actual attack iterations
are always smaller than 20. Under this attack, the adversarial accuracy is much higher due to the
adversarial transferability. The comparison under this adaptive attack setting is provided in Table
3. Similarly, we include ResNet-18 and WideResNet32 for comparison on CIFAR-10/100. Our
proposed RNA achieves better performance than RPI+RPT with large margins under a relatively
weak adaptive PGD20 attack.

Table 3: The adversarial robustness evaluation under adaptive attack setting on CIFAR-10/100.

Model Method CIFAR-10 CIFAR-100
Natural PGD20 Natural PGD20

ResNet-18 RPI+RPT [1] 82.64 65.77 56.97 41.75
RNA(Ours) 85.33 78.58 57.62 51.62

WideResNet32 RPI+RPT [1] 81.52 66.75 58.41 40.45
RNA(Ours) 86.22 78.33 61.36 53.55

B Proofs of Theorem 2.1

Theorem B.1. Given two networks ha and hb with different normalization layers, the adversarial
perturbation under white-box attack is δ on x with attack target label yA and true label yT . Assume
ha and hb are “effective” βa and βb-smooth respectively, the level of adversarial transferability T
between networks ha and hb within the perturbation ball ∥δ∥2 ≤ ϵ can be upper bounded by

T ≤ Ra +Rb

min(L(x, yA))−max(∥∇xL∥)ϵ(
√

1+S̄
2 + 1)−max(βa, βb)ϵ2

, (1)

where T denotes the attack successful rate, Ra and Rb denotes the empirical risks of network ha and
hb, S̄ denotes the upper loss gradient similarity, min(L(x, yA)) = minx∼X (La(x, yA),Lb(x, y

′)),
and max(∥∇xL∥) = maxx∼X ,y∼{yT ,yA}(∥∇xLa(x, y)∥, ∥∇xLb(x, y)∥). Since the networks share
the same loss function and weight parameters, we denote the influence of weight parameters as some
constant Cg on gradient norm and CH on gradient smoothness. The partial derivative and Hessian
of loss w.r.t. the normalization output are the same for different normalization, denoted as g and H
respectively. The gradient norm and β in Eq. 1 can be bounded as

∥∇xL∥ ≤ Cg ·max
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|γgn|
σgn
j
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∥g∥2 − 1

Ggn
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Ggnγgn
⟨g, Ŷj⟩

]
,

γ2
bgn

(σbgn
j )2

[
g′⊤Hg′

])
.

(2)

Proof. Following [2], we further extend the upper bound of adversarial transferability to the network
with different normalization layers. To establish the connections between normalization types
and adversarial transferability, we first provide some useful simple but useful facts of different
normalization layers, including Group Norm (GN) and Batch Group Norm (BGN).

During the inference stage, the computation of both GN and BGN are independent of batch size. Thus,
we dismiss the discussion of batch. We first consider the network with GN. Given the activations
y ∈ Rd where d denotes the number of features, the normalized outputs after GN with group number
of g and during inference stage are formulated as

ŷi = γ
yi − µ(i)

σ(i)
+ β, zi = γ ∗ ŷi + β,

where µ(i) =
1

⌊d
g ⌋

⌊ d
g ⌋−1∑
i=0

y⌊ i·g
d ⌋+i, σ(i) =

√√√√√ 1

⌊d
g ⌋

⌊ d
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d ⌋+i − µ(i))2,

(3)
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For simplicity, we denote the group size G = ⌊d
g ⌋ and a group of activations Yj = y[⌊ i·g

d ⌋:⌊ i·g
d ⌋+G].

The partial derivative of the loss L̂ w.r.t. y for GN is given as
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(4)
Eq. 4 can be vectorized as

∂L̂
∂Yj

=
γj
Gσj

(G
∂L̂
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Let µg = 1
G ⟨1, ∂L̂

∂Zj
⟩. Note that ∥Ŷj∥ =

√
G. Eq. 5 can be written as
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The squared norm of the partial derivative can be derived as
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Similarly, we consider the network with BGN. Given the activations y ∈ Rd where d denotes the
number of features, the normalized outputs after BGN with group number of g and during inference
stage are formulated as

ŷi = γ
yi − µ(i)

σ(i)
+ β, zi = γ ∗ ŷi + β, (8)

where µ(i) and σ(i) here denote the tracked mean and standard deviation which are fixed during
inference stage. Similarly, we denote the group size G = ⌊d

g ⌋ and a group of activations Yj =

y[⌊ i·g
d ⌋:⌊ i·g

d ⌋+G]. The partial derivative of the loss L̂ w.r.t. y for BGN is given as
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The squared norm of the partial derivative can be derived as
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j

σ2
j
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∥2, (10)

Note that Eq. (5) in the paper is a combination of Eq. 7 and Eq. 10. We denote the influence of weight
parameters as some constant Cg on gradient norm since we assume the networks are identical except
for the normalization layers. And the partial derivative of the loss w.r.t. the output of normalization
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g = ∂L̂
∂Zj

is identical for networks due to the same loss function and weight parameters. Combining
the assumptions with Eq. 7 and Eq. 10, we can derive the upper bound of the gradient norm through
Yj of networks with GN and GBN as

∥∇xL̂gn∥ ≤ Cg ·
|γgn|
σgn
j

√
∥g∥2 − 1

G
⟨1, g⟩2 − 1

G
⟨g, Ŷj⟩2,

∥∇xL̂bgn∥ ≤ Cg ·
|γbgn|
σbgn
j

∥g∥,
(11)

Following [3], we can generalize the results of loss smoothness to the gradient smoothness via
Hessian. Note that the partial derivative of GN during inference in Eq. 7 has the same format of the
partial derivative of BN during training which is studied in [3] as

∥ ∂L̂
∂yj

∥2 =
γ2

σ2
(∥ ∂L̂

∂zj
∥2 − 1

m
⟨1, ∂L̂

∂zj
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m
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∂zj

, ŷj⟩2) (12)

The differences are that Yj denotes a group of activations in GN while yj denotes a batch of activations
in BN, and G denotes the size of group while m denotes the batch size. Thus, we can easily generalize
the smoothness of gradient in BN during training phase which is discussed in [3] to the one in GN
during inference phase. In [3], the “effective” β-smoothness is defined as the changes of gradients
as we move in the direction of gradients, which corresponds to ĝT Ĥĝ where Ĥ denotes the hessian
w.r.t. the output of activations. We slightly modify ĝ to ĝ′ = ĝ

∥ĝ∥ so that ĝ′T Ĥĝ′ corresponds to the β
smoothness in the direction of gradients. Through replacing a batch of activation yj to a group of
activation Yj , batch size m to group size G, and g to normalized one g′, the upper bound of gradient
smoothness of BN in [3] can be reformulated for GN as

ĝ′T Ĥĝ′ ≤ γ2

σ2

[
g′⊤Hg′ − 1

Gγ
⟨g, Ŷj⟩

]
(13)

Since BGN uses fixed mean and variance during inference, Tthe upper bound of gradient smoothness
of BGN during inference can be derived as

ĝ′T Ĥĝ′ ≤ γ2

σ2
[g′⊤Hg′] (14)

Similarly, we denote the influence of weight parameters as some constant CH on gradient smoothness
since we assume the networks are identical except for the normalization layers. And the partial
derivative of the loss w.r.t. the output of normalization H = ∂L̂

∂Zj∂Zj
is identical for networks due to

the same loss function and weight parameters. The β-smoothness of GN and BGN in the direction of
gradients can be upper bounded as

βgn ≤ CH ·
γ2
gn

(σgn
j )2

[
g′⊤Hg′ − 1

Gγgn
⟨g, Ŷj⟩

]
,
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j )2

[
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]
,

(15)

With the results in Eq. 11 and Eq. 15, we can easily extend the upper bound of adversarial
transferability in [2] to the networks with GN and BGN through replacing the assumption of ∥∇xL∥ ≤
B with the upper bound in Eq. 11 and the assumption of β-smoothness to those in Eq.15 since the
usage of β-smoothness in the upper bound of adversarial transferability in [2] lies in

L(x, y) + δ · ∇xL(x, y) +
β

2
∥δ∥2 ≥ L(x+ δ, y), (16)

where the perturbation δ is generated by adversarial attack via gradient ascent. Thus, the assumption
of β-smoothness in [2] is equivalent to the β-smoothness in the direction of gradients in Eq. 15.
Finally, combining the upper bound of transferability in [2] with Eq. 11 and Eq. 15 via max function
gives the desired results.
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C Stability of Robustness

During the inference phase, we randomly sample paths from the random space we build so that
the adversarial robustness could vary according to the sampled paths. To evaluate the stability of
robustness with RNA module, we rerun the evaluation for 10 times with ResNet-18 on CIFAR-10.
The results are shown in Table 4. The maximum accuracy is 60.72% and the minimum accuracy
is 59.15%. The average accuracy of 10 runs is 59.94% and the variance is 0.19. Thus, although
the performance depends on the randomly sampled paths, the stability of robustness is verified in
empirical evaluations since the entire random space is built with weak adversarial transferability.

Table 4: Stability evaluation of adversarial robustness with RNA.

Method Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10
RNA(Ours) 59.79 60.10 59.98 59.97 60.46 59.15 59.86 59.66 59.66 60.72

D Limitations

In our implementation, we simply utilize the random sampling strategy so that the path difference
discussed in Figure 5 (c) is around the half of total number of layers in the networks. However, some
other sampling strategies which can potentially achieve better performance are not discussed in our
work. For example, the robustness can be further improved with increasing path difference in Figure 5
(c), and how to maximize the difference between attack path and inference path via sampling strategy
could be an interesting problem for future study.

References
[1] Yonggan Fu, Qixuan Yu, Meng Li, Vikas Chandra, and Yingyan Lin. Double-win quant: Aggressively

winning robustness of quantized deep neural networks via random precision training and inference. In
Marina Meila and Tong Zhang, editors, Proceedings of the 38th International Conference on Machine
Learning, volume 139 of Proceedings of Machine Learning Research, pages 3492–3504. PMLR, 18–24 Jul
2021.

[2] Zhuolin Yang, Linyi Li, Xiaojun Xu, Shiliang Zuo, Qian Chen, Benjamin I. P. Rubinstein, Ce Zhang, and
Bo Li. TRS: transferability reduced ensemble via encouraging gradient diversity and model smoothness.
CoRR, abs/2104.00671, 2021.

[3] Shibani Santurkar, Dimitris Tsipras, Andrew Ilyas, and Aleksander Madry. How does batch normalization
help optimization?, 2018.

Checklist
1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes]
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they

were chosen)? [Yes]

5



(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

6


	Comparison with RPI+RPT
	Proofs of Theorem 2.1
	Stability of Robustness
	Limitations

