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Figure 5: The feature maps of six samples with 3 rows and 4 columns. Each row represents a speci�c local modeling approach:
identity (Iden.), convolution (Conv.) and SPC. The columns are the maps in di�erent phases of Caterpillar (CPr.)-T.

A Appendix
A .1 Supplementary Visualization

As referred to in Sec. 4.4, we illustrated the SPC, Conv and Iden.
based Caterpillar in Fig. 5.

A .2 Further Comparison with SOTA methods
There are some representative MLP models and recent SOTA

convolutional models have published.We add a lot methods in Table
A1. Due to the space limit, we only list the models with around
20-30M parameters.

Table A1: Results (%) on ImageNet-1K datasets.

Networks Params FLOPs Top-1

MLP-Mixer-B/16[42] 30M - 76.4
CycleMLP-T[2] 28M 4.4G 81.3
ConvNeXt-T[34] 29M 4.5G 82.1
SLak-T[32] 30M 5.0G 82.5
VAN-B2[13] 27M 5.0G 82.8
HorNet-T[38] 23M 3.9G 83.0
MogaNet-S[28] 25M 5.0G 83.4
InternImage-T[48] 30M 5.0G 83.5
Caterpillar-T 29M 6.0G 82.4

We compare the models in three aspects:
Performance. The model performance are mainly determined

by the architecture design and training strategies. For the recent

SOTA methods like MogaNet, they mostly adopt richer strategies,
such as larger batch size (i.e., 4096) and advanced augmentation
(e.g., color jitter), which are e�ective but tricky. In our manuscript,
we have compared Caterpillar with models with similar strategies,
among which Caterpillar reached competitive or even superior
performance. Therefore, despite the higher results of recent SOTA
methods, Caterpillar is still competitive in classi�cation capability.

Technique. Modern deep vision architectures can be decom-
posed into 5 levels, i.e., architecture, stage, block, module and layers,
among which the spatial-mixing modules (in module level) mainly
leads to the di�erence among various methods. MLP-Mixer and
CycleMLP are early MLP models which focus on global and local in-
formation, respectively. Another models are advanced conv-based
models, which all make full use of depth-wise convolution (DW-
Conv), with both local and global information aggregated in parallel
regimes. Caterpillar separately captures the local and global infor-
mation through SPC and sparse-MLP modules.

Trend. Recent convolutional and MLP models have shown simi-
lar trends, i.e., capturing spatial information more elaborately and
sparsely, fromMLP-mixer, through ResMLP and to sMLPNet inMLP
family, and from Conv-Mixer, through ConvNeXt, and to Moganet
in Conv models. Therefore, combining lightweight techniques like
depth-wise with SPC module could be promising works.
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A .3 Further Explanation for Shift Methods
Shift spawns a broad class of methods, where the shifting steps,

directions, dimensions aswell as the restoring/learningwaysmainly
determines the various forms and functions for those methods. We
add a detailed comparison of the SPC with some shift-base methods
of di�erent operations and applications.

Comparison with AS-MLP. The main di�erence between AS-
MLP[29] and Caterpillar is shifting dimensions and directions. AS-
MLP shifts each channel of the image along two directions, while
Caterpillar shifts the entire image into four neighboring maps and
encode them in individual sub-spaces, achieving parallel computing
capability.

Comparison with Grouped Spatial-temporal Shift (GSTS)
and X-volution. Both of the shifting operations in GSTS[26] and
X-volution[4] are adopted to aggregate long-term information, with
the GSTS shifted in both temporal and spatial dimensions for 3D
data and X-volution shifted in more �exible directions (e.g., left-
righ) for wider receptive �eld. Di�erent from them, the SPC is
proposed with a 4-scoped receptive �eld to capture local informa-
tion elaborately.

A .4 E�ciency Concerns
Further comparison between Caterpillar, sMLPNet and

Strip-MLP.Both Strip-MLP[1] andCaterpillar are built upon sMLPNet[40].
Strip-MLP replaces the sMLP with Strip-MLP layer in sMLPNet
and lightweights the model architectures, while Caterpillar only
replaces the DWConv with SPC module and thus has more pa-
rameters. However, the Caterpillar-T† (e.g., 23M, 77.6% on MIN)
with similar computational costs can also obtain higher results to
Strip-MLP-T (23M, 76.5%) and sMLPNet-T (24M, 77.1%) (Table 1),
implying the possibility of Caterpillar to be lightweight versions.

More evaluation about e�ciency. We add the comparison
of SPC and conv-based ResNet in Table A2. As we can see, SPC
module brings lower computational complexity than convolution,
since SPC-based model achieves lower parameters and FLOPs. SPC
module also provides higher Thourghput and less training times.
However, such trend is not with directly proportional relationship,
e.g., 1/4 parameters is not bringing 4 times boosting of Throughput
or 1/4 training time. This could be attribute to the lower computa-
tion vs.memory access rate in SPC module, i.e., memory access may
takes more execution time than computation can cannot fully utilize
the GPU capacity——the similar problem in depthwise separable
convolution[36, 59]. We hope further optimizations on hardware
computation can further improve its computational e�ciency.

Table A2: Comparison between SPC- and Conv-based ResNet.

Networks Params FLOPs Throughput Training Time

Res-18 12M 1.8G 2174 20 hours
Res-18 (SPC) 3M 0.6G 4885 14 hours

A .5 Detailed Architecture Speci�cations
As mentioned in Section 3 .3, we build our tiny, small, and base

models called Caterpillar-T, -S, -B, which adopt identical backbone
architectures to sMLPNet-T, -S, -B, respectively. The only di�erence

between the Caterpillar and sMLPNet is the local-mixing ways (i.e.,
SPC vs DWConv). To enable Caterpillar more friendly to limited
computational resources, we also introduce the mini and tiny_x
models of Caterpillar, namely Caterpillar-Mi and -Tx, which are
variants of about 0.2 ⇥ , 0.5 ⇥ the parameters and FLOPs of the -T
model. Table A3 displays their detailed architectures.

A .6 Implementation of Models on Small Images
In Section 4 .1, we have conducted �fteen vision models on

small-scale image recognition tasks. Among them, [14, 43–45] are
built with isotropic structure, [17, 50] are with 2Stage structure,
[1, 2, 12, 16, 33, 40, 41, 60] and Caterpillar arewith pyramid structure.
For fair comparison (i.e., enabling the parameters and FLOPs of
these models to be similar), we set the patch size to 3, 1, 1, 1 in their
patch embedding layer for pyramid models when applied on the
MIN, C10, C100 and Fashion datasets, 6, 2, 2, 2 for 2Stage models,
and 12, 4, 4, 4 for Isotropic models, respectively. The feature maps
in their main computational bodies on the four datasets are listed
in Table A4.

A .7 Training Strategies
In Table A6, we present the training strategies for all models

adopted in Section 4 .1. These strategies are the same as those in
their original papers for ImageNet-1k training. Note that we don’t
employ ‘EMA’ for small-scale image recognition studies, since it
decreases the performance of all models by a large margin. For
the proposed Caterpillar, we list its training procedure in Table A5,
which is applied for both ImageNet-1K and small-scale benchmarks.

A .8 Sparse-MLP Module
The sparse-MLP (sMLP) module is proposed in [40] and also

adopted in the Caterpillar block for aggregating global information.
To have a comprehensive understanding of the proposed Caterpillar,
we also depict the sMLPmodule in Figure 6. As we can see, the sMLP
module consists of three branches: two of them are used to mix
information along horizontal and vertical directions, respectively,
which is implemented by two H (W) ⇥ H (W) linear projections,
and the other path is an identity mapping. The output of the three
branches are concatenated and then mixed by a 3C ⇥ C linear
projection to obtain the �nal output. Through the sMLP calculation,
each pillar can gather information from other pillars in the same
row and column. Stacking more sMLP blocks allows for the mixing
of the gathered features across di�erent rows and columns, with
all pillars incorporating the global information of the entire image.
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Table A3: Detailed settings of Caterpillar series.

Stages Caterpillar-Mi Caterpillar-Tx Caterpillar-T Caterpillar-S Caterpillar-B

S1
patch_size: 4 patch_size: 4 patch_size: 4 patch_size: 4 patch_size: 4
[56×56, 40]×2 [56×56, 60]×2 [56×56, 80]×2 [56×56, 96]×2 [56×56, 112]×2

S2
downsp. rate: 2 downsp. rate: 2 downsp. rate: 2 downsp. rate: 2 downsp. rate: 2
[28×28, 80]×6 [28×28, 120]×8 [28×28, 160]×8 [28×28, 192]×10 [28×28, 224]×10

S3
downsp. rate: 2 downsp. rate: 2 downsp. rate: 2 downsp. rate: 2 downsp. rate: 2
[14×14, 160]×10 [14×14, 240]×14 [14×14, 320]×14 [14×14, 384]×24 [14×14, 448]×24

S4
downsp. rate: 2 downsp. rate: 2 downsp. rate: 2 downsp. rate: 2 downsp. rate: 2
[7×7, 320]×2 [7×7, 480]×2 [7×7, 640]×2 [7×7, 768]×2 [7×7, 896]×2

Table A4: Feature maps in models with di�erent architectures on four small-scale benchmarks. C denotes the channel number
of the used models in their �rst stage.

Architecture Stages MIN C10 C100 Fashion

Pyramid

S1 [28×28, C] [32×32, C] [32×32, C] [28×28, C]
S2 [14×14, 2C] [16×16, 2C] [16×16, 2C] [14×14, 2C]
S3 [7×7, 4C] [8×8, 4C] [8×8, 4C] [7×7, 4C]
S4 [7×7, 8C] [4×4, 8C] [4×4, 8C] [7×7, 8C]

2Stage S1 [14×14, C] [16×16, C] [16×16, C] [14×14, C]
S2 [7×7, 2C] [8×8, 2C] [8×8, 2C] [7×7, 2C]

Isotropic S1 [7×7, C] [8×8, C] [8×8, C] [7×7, C]

Table A5: Training strategies for Caterpillar models

Con�gs Caterpillar
Mi, Tx, T, S, B

Training epochs 300
Batch size 1024
Optimizer AdamW
LR 1e-3
LR decay cosine
Min LR 1e-5
Weight_decay 0.05
Warmup epochs 5
Warmup LR 1e-6

Rand Augment 9/0.5
Mixup 0.8
Cutmix 1.0
Stoch. Depth 0, 0, 0.05, 0.2, 0.3
Repeated Aug !
Erasing prob. 0.25
Label smoothing 0.1
EMA 0.99996
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Table A6: Training strategies for various vision models

Con�gs ResNet ConvMixer DeiT Swin CCT NesT ResMLP
18, 34, 50 [51] 768/32 [45] T, S [44] T [33] 7/3⇥1 [14] T [60] S12, S24 [43]

Training epochs 300 300 300 300 300 300 400
Batch size 2048 640 1024 1024 1024 512 1024
Optimizer LAMB AdamW AdamW AdamW AdamW AdamW LAMB
LR 5e-3 1e-2 1e-3 1e-3 5e-4 5e-4 5e-3
LR decay cosine onecycle cosine cosine cosine cosine cosine
Min LR 1e-6 1e-6 1e-5 5e-6 1e-5 0 1e-5
Weight_decay 0.02 0.00002 0.05 0.05 0.05 0.05 0.2
Warmup epochs 5 0 5 20 10 20 5
Warmup LR 1e-4 – 1e-6 5e-7 1e-6 1e-6 1e-6

Rand Augment 7/0.5 9/0.5 9/0.5 9/0.5 9/0.5 9/0.5 9/0.5
Mixup 0.1 0.5 0.8 0.8 0.8 0.8 0.8
Cutmix 1.0 0.5 1.0 1.0 1.0 1.0 1.0
Stoch. Depth 0.05 0 0.1 0.2 0 0.2 0.1
Repeated Aug ! % ! % % % !
Erasing prob. 0 0.25 0.25 0.25 0.25 0.25 0.25
Label smoothing 0 0.1 0.1 0.1 0.1 0.1 0.1
EMA – – – – – – –

Con�gs CycleMLP HireMLP Wave-MLP ViP DynaMixer sMLPNet Strip-MLP
B1, B2 [2] Ti, S [12] T, S [41] S7 [17] S [50] T [40] T*, T [1]

Training epochs 300 300 300 300 300 300 300
Batch size 1024 2048, 1024 1024 2048 2048 1024 1024
Optimizer AdamW AdamW AdamW AdamW AdamW AdamW AdamW
LR 1e-3 1e-3 1e-3 2e-3 2e-3 1e-3 1e-3
LR decay cosine cosine cosine cosine cosine cosine cosine
Min LR 1e-5 1e-5 1e-5 1e-5 1e-5 1e-5 5e-6
Weight_decay 0.05 0.05 0.05 0.05 0.05 0.05 0.05
Warmup epochs 5 20 5 20 20 20 30
Warmup LR 1e-6 1e-6 1e-6 1e-6 1e-6 1e-6 5e-7

Rand Augment 9/0.5 9/0.5 9/0.5 9/0.5 9/0.5 9/0.5 9/0.5
Mixup 0.8 0.8 0.8 0.8 0.8 0.8 0.8
Cutmix 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Stoch. Depth 0.1 0 0.1 0.1 0.1 0 0.2
Repeated Aug ! ! ! % % ! %
Erasing prob. 0.25 0.25 0.25 0.25 0.25 0.25 0.25
Label smoothing 0.1 0.1 0.1 0.1 0.1 0.1 0.1
EMA 0.99996 – 0.99996 – 0.99996 0.99996 –
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Figure 6: The sparse-MLP module proposed in sMLPNet [40]


