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Figure 6: XLVIN model summary with compact dataflow. The individual modules are explained (and
colour-coded) in Section 3.1, and the dataflow is outlined in Algorithm 1.

A Alternate rendition of XLVIN dataflow

See Figure 6 for an alternate visualisation of the dataflow of XLVIN—which is more compact, but
does not explicitly sequentialise the operations of the transition model with the operations of the
executor.

B Additional description of the Execute function

In Algorithm 2, we provide a symbolic overview of running the executor network X over the local
state embedding graph constructed in Algorithm 1.

Algorithm 2: Forward propagation of the executor

Input :State embedding ~hs, executor depth K, graph with nodes S =
KS

k=0
Sk and edges E

Output :Updated state embedding ~�s

for ~h 2 Sk do
N (~h) = {~h0 | 9↵.(~h,~h0

,↵) 2 E} ; // Construct neighbourhood of node embedding ~h
end

X0 =
KS

k=0
Sk; // We will use Xk to store the executor embeddings after k steps; initially, X0 = S

for k 2 [0,K) do
for ~h 2 Xk do

~� = X(~h,N (~h)); // Run executor on the neighbourhood of node embedding ~h 2 Xk

Mk(~h) = ~�; // Maintain a mapping, Mk, from input to output embeddings of X at step k
end
Xk+1 = {~� | 9~h.~h 2 Xk ^Mk(~h) = ~�} ; // Xk+1 consists of all outputs of Mk

for ~� 2 Xk+1; // Rebuild neighbourhoods for node embeddings in Xk+1

do
N (~�) = {~�0 | 9~h9~h0

.~h 2 Xk ^ ~h
0 2 Xk ^Mk(~h) = ~� ^Mk(~h0) = ~�

0 ^ ~h
0 2 N (~h)}

end
end
~�s = MK�1(. . .M1(M0(~hs)) . . . ) ; // To recover ~�s, follow the mappings Mk starting from ~hs
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Figure 7: The eight environments considered within our evaluation: continuous control environments
(CartPole-v0, Acrobot-v1, MountainCar-v0, LunarLander-v2) and pixel-based environments (Atari
Freeway, Alien, Enduro and H.E.R.O.).

C Environments under study

We provide a visual overview of all eight environments considered in Figure 7.

CartPole The CartPole environment is a classic example of continuous control, first proposed by
[5]. The goal is to keep the pole connected by an un-actuated joint to a cart in an upright position.
Observations are four-dimensional vectors indicating the cart’s position and velocity as well as pole’s
angle from vertical and pole’s velocity at the tip. Actions correspond to staying still, or pushing the
engine forwards or backwards. The agent receives a fixed reward of +1 for every timestep that the
pole remains upright. The episode ends when the pole is more than 15 degrees from the vertical, the
cart moves more than 2.4 units from the center or by timing out (at 200 steps), at which point the
environment is considered solved.

Acrobot The Acrobot system includes two joints and two links, where the joint between the two
links is actuated. Initially, the links are hanging downwards, and the goal is to swing the end of the
lower link up to a given height. The environment was first proposed by [39]. The observations—
specifying in full the Acrobot’s configuration—constitute a six-dimensional vector, and the agent is
able to swing the Acrobot using three distinct actions. The agent receives a fixed negative reward of
�1 until either timing out (at 500 steps) or swinging the acrobot up, when the episode terminates.

MountainCar The MountainCar environment is an example of a challenging, sparse-reward,
continuous-space environment first proposed by [28]. The objective is to make a car reach the top of
the mountain, but its engine is too weak to go all the way uphill, so the agent must use gravity to
their advantage by first moving in the opposite direction and gathering momentum. Observations are
two-dimensional vectors indicating the car’s position and velocity. Actions correspond to staying
still, or pushing the engine forward or backward. The agent receives a fixed negative reward of �1
until either timing out (at 200 steps) or reaching the top, when the episode terminates.

LunarLander The LunarLander task concerns rocket trajectory optimization—a classic topic in
optimal control. It concerns navigating a spaceship in two dimensions to a landing pad (at coordinates
(0, 0)). Successful landing can be achieved by firing the ship’s engines, however this expenses fuel
and therefore must be done in a parsimonious manner. The observations are eight-dimensional vectors
that include the spaceship’s coordinates, velocity, angle of attack, angular velocity, and whether either
of its two legs are in ground contact. Actions correspond to firing the main engine, firing one of the
two side engines, or idling. The agent receives shaped negative reward corresponding to its distance
to the landing pad, and the magnitude of its velocity and angle. Further, fixed negative rewards are
incurred whenever the engines are fired (more so for the main engine than the side engines). The
agent receives shaped positive rewards of +10 whenever its legs make contact with the ground, and a
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Table 2: Mean scores for CartPole-v0 after training, averaged over 100 episodes and five seeds.
Baseline CartPole results reprinted from [42].

CartPole-v0 100 trajectories Only 10 trajectories
REINFORCE 23.84 ± 0.88 -
WM-AE 114.47 ± 17.32 -
LD-AE 154.73 ± 50.49 -
DMDP-H (J = 0) 72.81 ± 20.16 -
PRAE, J = 5 171.53 ± 34.18 -
PPO - 104.6 ± 48.5
XLVIN-R - 199.2 ± 1.6
XLVIN-CP - 195.2 ± 5.0

reward of either +100 or �100 upon completing the episode, dependent on whether landing on the
landing pad was successful.

Freeway Freeway is a game for the Atari 2600, published by Activision in 1981, where the goal is
to help the chicken cross the road (by only moving vertically upwards or downwards) while avoiding
cars. It is a standard part of the Atari Learning Environment and the OpenAI Gym. Observations
in this environment are the full framebuffer of the Atari console while playing the game, which has
been appropriately preprocessed as in [27]. Actions correspond to staying still, moving upwards or
downwards. Upon colliding with a car, the chicken will be set back a few lanes, and upon crossing a
road, it will be teleported back at the other side to cross the road again (which is also the only time
when it receives a positive reward of +1). The game automatically times out after a fixed number of
transitions.

Enduro Enduro is a game for the Atari 2600, published by Activison in 1983. The goal of the
game is to complete an endurance race, overtaking a certain number of cars each day of the race to
continue to the next day. It is a standard part of the Atari Learning Environment and the OpenAI
Gym. Observations in this environment are the full framebuffer of the Atari console while playing
the game, which has been appropriately preprocessed as in [27]. This game is one of the first games
with day/night cycles as well as weather changes which makes it particularly visually rich. There
are nine different actions we can take in this environment corresponding to staying still as well as
accelerating, decelerating, moving left/right and combinations of two of them.

Alien Alien is a game for the Atari 2600, published by 20th Century Fox in 1982. The goal of
the game is to destroy the alien eggs laid in the hallways (similar to the pellets in Pac-Man) while
running away from three aliens on the ship. It is a standard part of Atari Learning Environment and
the OpenAI Gym. Observations in this environment are the full framebuffer of the Atari console
while playing the game, which has been appropriately preprocessed as in [27]. There are 18 different
actions we can take in this environment corresponding to staying still, firing the flamethrower and
moving or firing the flamethrower in eight directions.

H.E.R.O. H.E.R.O. is a game from Atari 2600, whose goal is to navigate through a mine, clearing
obstacles and destroying enemies on the way, in order to rescue a miner at the end of each level.
Similarly to Alien, observations in this environment are the full framebuffer of the Atari console
while playing the game, which has been appropriately preprocessed as in [27] and the action space is
formed of 18 different actions.

D Additional CartPole results

In Table 2, we provide a comparison between XLVIN and several baselines from [42].

E Synthetic graphs

Figure 8 presents the two kinds of synthetic graphs used for pretraining the GNN executor.
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Figure 8: Synthetic graphs constructed for pre-training the GNN executor: random deterministic (20
states, 8 actions) (left) and CartPole (right)

In most cases, we pre-train the executor using randomly generated deterministic graphs (left): for
|S| = 20 states and |A| = 8 actions, we create a |S|-node graph. For each state-action pair we select,
uniformly at random, the state it transitions to, deterministically. We sample the reward model using
the standard normal distribution. Overall, the graphs are sampled as follows:

T̃ (s, a) ⇠ Uniform(|S|) (8)

P (s0 | s, a) =

⇢
1 s

0 = T̃ (s, a)
0 otherwise

(9)

R(s, a) ⇠ N (0, 1) (10)

These k-NN style graphs do not assume upfront any structural properties of the underlying MDP, and
are a good prior distribution for evaluating the performance of XLVIN.

For CartPole-style environments, we attempt a different type of graph (right). It is a binary tree,
where red nodes represent nodes with reward 0, and blue nodes have reward 1. This aligns with the
idea that going further from the root, which is equivalent with taking repeated left (or right) steps,
leads to being more likely to fail the episode.

We also attempt using the CartPole graph for pre-training the executor for the other two continuous-
observation environments (MountainCar, Acrobot). Primarily, the similar action space of the environ-
ments is a possible supporting argument of the observed transferability. Moreover, MountainCar and
Acrobot can be related to a inverted reward graph of CartPole, with more aggressive combinations
left/right steps often bringing a higher chance of success.

F Maze results

As described in the main text, in order to qualitatively assess the transition and executor modules in
XLVIN, we evaluated them on a known, fixed and discrete MDP—where optimal values V ?(s) can
be trivially computed. Accordingly, we use the 8 ⇥ 8 and 16 ⇥ 16 grid-world mazes proposed by
[40]. The observation for this environment consists of the maze image, the starting position of the
agent and the goal position. Every maze is associated with a difficulty level, equal to the shortest path
length between the start and the goal.

Using this concept, we formulate the continual maze task: the agent is, initially, trained to solve
only mazes of difficulty level 1. Once the agent reaches 95% success rate on the last 1,000 sampled
episodes of level d, it advances to level d+ 1 (without observing level d again). If the agent fails to
reach 95% within 1,000,000 trajectories, it is not allowed to progress. After each passed difficulty,
the agent is evaluated by computing its success rate on held-out test mazes.

Given the grid-world structure, our encoder for the maze environment is a three-layer CNN com-
puting 128 latent features and 10 outputs. The transition function is a three-layer MLP with layer
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Figure 9: Success rate on 8⇥ 8 (left) and on 16⇥ 16 (right) held-out mazes obtained after passing
each level of their respective train mazes. Cut-off curves imply failure to pass a difficulty level.

Figure 10: Freeway frames (above) and reconstructions (below) using a VAE-style world model.

normalisation [4] after the second layer, computing 128 hidden features. We apply the executor until
depth K = 4, with layer normalisation applied after every step.

Beyond its use for qualitative evaluation, we also perform a comparison of XLVINs against several
standard implicit planners in this space (including (G)VIN and GPPN). The results are summarised
in Figure 9, and indicate that XLVIN is competitive with all other models, while not making any
upfront assumptions about the dynamics of the environment.

G Pixel-based world models

XLVIN is, in principle, agnostic to the choice of transition model. We chose a latent-space transition
model in the style of TransE because this aligned the closest with the ATreeC baseline, which also
used a latent-space transition model. World models that predict full observations are also plausible.

We attempt replacing our Atari transition model with a variant that learns representations through
pixel-based reconstructions (using a VAE objective, as done by [19]). We found that representations
obtained in this way were not useful; we observed that most of our state encodings converged to a
fixed-point, and that the pixel-space reconstructions completely ignored the foreground observations
(see Figure 10). This aligns with prior investigations of VAE-style losses on Atari, which found they
tend to overly focus on reconstructing the background and were less predictive of RAM state than
latent-space models, as well as randomly-initialised CNNs [3]. This comparison stands in favour of
our approach to using a transition model optimised purely in the lower-dimensional latent space.

H Compute details

We used one V100 GPU from an internally provided cluster for training our model on the Atari
environments, for which the training time for one seed per environment was always less than 24
hours. For the classical control and navigation tasks, a 2.7GHz i7 CPU was used.
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We used the OpenAI Gym [9] for access to environments, PytorchRL [25] for the PPO implementation
and encoder parameters and OpenAI Baselines [12] for environment wrapper capabilities. All of the
above are licensed under the MIT license.

I Potential societal impact

Our work studies fundamental insights related to implicit planners. The problem of improving data
efficiency, while building better plans is highly important for real world applications. However,
this work does not explicitly focus on the engineering efforts for such applications or implications.
Instead, we analyse the problem from a theoretical and empirical angle, first identifying bottleneck
issues in prior art and then empirically verifying the effects of alleviating the bottleneck on classical
control and standard game-playing benchmarks. Therefore, we consider direct societal impact not to
be applicable in this setting.
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