
Under review as a conference paper at ICLR 2021

A SYNTHESIZING TRAINING DATA

The generating algorithm takes as input a set of symbols Sym (e.g. all MitM-symbols for which an
alignment to SMGLoM exists) and a starting symbol s ∈ Sym (e.g. nattimes; binary multiplication
on natural numbers). The algorithm then proceeds as follows:

1. If s : T has a (simple or dependent) function type, we fill in the required arguments. For
s =nattimes, our type is T =Nat→Nat→Nat, hence we need to find two arguments
s1, s2 of type Nat. For each si of required type Ti we proceed as follows:

(a) With probability pvar, we introduce a new variable v : Ti from a list of allowed variable
names (which include variants such as a, a′, a0 etc.) and let si := v.

(b) With probability pfun, we pick a symbol f ∈ Sym with a function type with return
type Ti (e.g. for Ti =Nat, we can pick natplus). In that case, we let s := f , recurse,
and set si as the result.

(c) With probability pconst = 1 − pvar − pfun, we pick a constant symbol c ∈ Sym of
type Ti (e.g. for Ti =Nat we can pick 0) and return si := c.

In order to avoid stack overflows, we reduce pfun in each iteration by a certain factor < 1.
As to not overuse certain symbols, we scale pfun and pconst with the number of respectively
suitable symbols available; if Sym contains no suitable function or constant symbols, we let
pfun = 0 (and/or pconst = 0, respectively).

2. If s : T does not have a function type (or all its parameters have been filled in 1.), then s is
well-typed and we return s with probability 1− pup.
With probability pup, we instead pick a new symbol sf ∈ S of some function type such that
some i-th parameter type of sf is T . In that case, we let si := s and s := sf and recurse.
Again, in order to avoid stack overflows we reduce pup by some factor with each iteration.

The algorithm also takes subtyping into account, e.g. whenever a term of type Real is required, terms
of type Int or Nat are used with some probability.

In order to obtain a sentence in the sense of Section 5 providing context for disambiguation, we
first translate t along alignments to SMGLoM (using a random \symvariant), collect the set V
of all free variables of t and verbalize their types. For that, we associate each type with a set of
verbalizations from which we choose randomly to produce a sentence that introduces the variables
before using them in the generated expression. Figure 3 shows a few example verbalizations for a
variable x of type Nat and generated sentences for the input symbol s =realuminus; the negation
on real numbers.

The verbalizations are categorized as prefixed (e.g. “a natural number n”) or suffixed (e.g. “n a
natural number”), and singular or plural, and picked according to the number of variables of the
same type and the surrounding sentence, which is also picked at random (e.g. “Assume we have ...”
uses prefixed, whereas “Let ...” uses suffixed).

B EVALUATION TACTICS

For every LATEX input SLATEX, expected label SsTEX and returned sentence SR, we employ the following
strategies, the results of which are summarized in Figure 4:

islatex We parse SR into an AST. Success implies that SR is syntactically valid LATEX. This might
fail for “minor” reasons such as a missing closing bracket. It might yield false positives in
cases where macros (not explicitly considered by our parser) occurring in SR have a wrong
number of arguments.
All subsequent evaluation strategies require islatex to succeed.

stexcheck We heuristically check whether SR is in LsTEX – unlike islatex, this requires that
all sTEX macros occurring in SR have the right number of arguments. Success does not
tell us that the input has been disambiguated correctly, but does imply that is has been
disambiguated at all. False negatives can occur if SR (and thus likely SLATEX as well)

13

Under review as a conference paper at ICLR 2021

Generated sTEX PDF output
Verbalizations $\inset{x}{\NaturalNumbers}$ x ∈ N

a positive integer x a positive integer x
an integer $\intmethan{x}{0}$ an integer x ≥ 0
a natural number x a natural number x

Sentences Assume we have some $\inset{y’}
{\NaturalNumbers}$ and arbitrary
$\inset{\mathcal F}{\IntegerNumbers}$.
It follows that $\realuminus{\realuminus
{\inttimes[x]{\mathcal F,y’,y’}}}$.

Assume we have some y′ ∈ N
and arbitrary F ∈ Z. It fol-
lows that −− (F × y′ × y′).

Let $\natmorethan n{0}$. Then consider
$\realuminus{\realuminus{\natsucc{
\natsucc n}}}$.

Let n > 0. Then consider
−− S(S(n)).

Whenever we have some positive natural
number ε, any integer ℓ
and a real number $\livar{\mathcal C}
{2}$, then it follows that $\realtimes{
\livar{\mathcal C}{2},\livar{\mathcal C}
{2},\realplus{\realuminus{\ell},\natsucc{
\varepsilon}}}$.

Whenever we have some posi-
tive natural number ε, any in-
teger ` and a real number C2,
then it follows that C2C2(−`+
S(ε)).

Figure 3: Example Verbalizations for x :Nat and Generated Sentences

contains complex variable names, or if SR contains e.g. an equality symbol “=” instead of
the corresponding sTEX macro, which LaTeXML could recover.

eval_latex All sTEX macros occurring in SR are expanded and SR is normalized as described in
Section 5. The result is string-compared to SLATEX. Success thus implies, that the notational
presentation in PDF output of SLATEX and SR will coincide. False negatives can occur due to
minor differences e.g. in not strictly necessary brackets.

omdoc SR is translated to OMDOC using LaTeXML and imported to MMT. Success guarantees
syntactic well-formedness of SR. Since both the LaTeXML-OMDOC export and the
subsequent MMT-import are somewhat brittle, this can easily lead to false negatives.

translated The import from omdoc is translated to the typed MitM library. This entails that
all symbols used in SR are aligned with MitM symbols and SR is amenable for formal
knowledge management services.

inferred The translation to MitM obtained from translated is type checked by MMT by
having its type inferred. Success guarantees that SR is well-typed.
Notably, if SR is a mere variable (e.g. the expression n), it does not actually have an
inferrable type, but succeeds trivially. This accounts for 60 of the entries in our evaluation
set, i.e. 37%.

provided_stex Both the expected label SsTEX and SR are normalized and string-compared.
Success implies that SR is definitely the correct translation. False negatives can easily occur
due to non-semantic differences between SsTEX and SR however, such as bracketing, nested
applications in SR (e.g. $\natplus{\natplus{a,b},c}$ vs. $\natplus{a,b,c}$),
etc.

stex_as_omdoc SsTEX is translated to OMDOC via LaTeXML and directly compared to the
OMDOC-term obtained from omdoc. Like provided_stex, success implies that SR is
correct, but it is more fault-tolerant with respect to the precise syntax of SR, while being
less fault tolerant due to the issues mentioned in omdoc.

The first three evaluations can always be applied; from the remaining, all but provided_stex
require a working installation of LaTeXML and its sTEX-Plugin. The last two require a known
correct translation.

14

Under review as a conference paper at ICLR 2021

Total inputs 161
islatex 96.9%

stexcheck 60.2%
eval_latex 64.0 %

omdoc 76.4%
translated 63.5%
inferred 59.6%

provided_stex 47.2 %
stex_as_omdoc 53.4 %

Figure 4: Results on our Evaluation Document

A detailed log file on our evaluation document with the individual results for each input and evaluation
is available in the associated git repository.

15

	Synthesizing Training Data
	Evaluation Tactics

