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A MORE IMPLEMENTATION DETAILS

In this section, we list the architecture details and training settings. Codes and models will be
released publicly.

A.1 VISUAL ENCODER

The visual encoder contains the first three stages of Swin-Tiny V2. We tabulate the workflow in
Table 1.

stage operation output sizes
input - 3 × 192 × 384

PatchEmbed 4 × 4, stride 4, 96 96 × 48 × 96

SwinBlock1
[

h = 3
ws = 12

]
× 2 96 × 48 × 96

DownSample1 192 192 × 24 × 48

SwinBlock2
[

h = 6
ws = 12

]
× 2 192 × 24 × 48

DownSample2 384 384 × 12 × 24

SwinBlock3
[
h = 12
ws = 12

]
× 6 384 × 12 × 24

Table 1: Architecture of visual encoder. h stands for the number of attention heads while ws refers
to window size.

A.2 FRAME COMPARATOR

The frame comparator possesses two deformable convolutional layers, with ReLU operation in be-
tween and three Transformer Encoder blocks. We tabulate the workflow in Table 2.

stage operation output sizes
input - 768 × 12 × 24

DeformConv1 3 ×3, 768 768 × 12 × 24
ReLU - 768 × 12 × 24

DeformConv2 3 ×3, 384 384 × 12 × 24

Transformer
[
h = 8
384

]
× 3 384 × 12 × 24

Table 2: Architecture of frame comparator. h represents the number of attention heads
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A.3 FLOW DECODER

The frame comparator consists of three stages of SwinV2 block added with linear expanding layers.
We tabulate the workflow in Table 3.

stage operation output sizes
input - 384 × 12 × 24

SwinBlock1
[
h = 12
ws = 12

]
× 2 384 × 12 × 24

PatchExpand1 768 192 × 24 × 48

SwinBlock2
[

h = 6
ws = 12

]
× 2 192 × 24 × 48

PatchExpand2 384 96 × 48 × 96

SwinBlock3
[

h = 3
ws = 12

]
× 2 96 × 48 × 96

PatchExpand3 1536 96 × 192 × 384
outConv 5× 5, stride 1, 4 4 × 192 × 384

Table 3: Architecture of flow decoder. h stands for the number of attention heads while ws refers to
window size.

A.4 TRAINING DETAILS

For all datasets, we train with a batch size of 2. To train more efficiently, we sample three flow pairs
(i → j) for a given frame i; one is static replication i = j, another two are motion pair i ̸= j.
We apply temporal consistency first on the masks from two motion pairs, then pull the static mask
to the average of two dynamic masks closer. We linearly warm up the learning rate for the first 1k
iterations. Besides, for every 100k iterations, we decay the learning rate by half and increase the
scale of temporal consistency λc and entropy regularisation λe by the factor of 5. In the default
setting, we train for about 3 days on 8 standard Tesla V100 GPUs with 32GB memory each.

A.5 TEST-TIME ADAPTATION

Inspired by OCLR (Xie et al., 2022), we adopt test-time adaptation based on RGB sequence to
enhance appearance consistency. In detail, we follow existing works on self-supervised tracking (Lai
et al., 2020; Jabri et al., 2020) to propagate object masks across time span. The whole process
consists of three steps. First, we extract RGB features of each frame with a DINO-pretrained ViT
encoder. Then, we select key frames for object mask propagation. Finally, we calculate the affinity
matrix between frames and perform mask propagation.

DINO Feature Extraction. Given a video sequence v = {x1, ..., xT }, v ∈ RT×H×W×3, we use
DINO pretrained ViT-Small encoder with patch size 8× 8 to extract features:

{f1, ..., fT } = {Φ(x1), ...,Φ(xT )}, ft ∈ Rh×w×384, (1)
where h = H//8 and w = W//8. The extracted features will be used in the mask propagation step.

Key Frame Selection. Given video v, our model predicts object mask of each frame as m =
{α1, ..., αT },m ∈ RT×H×W×1. Since the video frames are continuous along the temporal di-
mension, it is practical to propagate object masks between neighboring frames. The propagation
operation is the same as Jabri et al. (2020), the only difference is that we have no ground-truth mask
for reference. Therefore, we need to design a mechanism to select object masks of high confidence.
To do this, we measure the temporal coherence of predicted object masks for key frame selection.
Specifically, for each timestamp t ∈ {3, ..., T −2}, we can calculate four propagated masks as:

α̂t = [Mask-prop(αt−2),Mask-prop(αt−1),Mask-prop(αt+1),Mask-prop(αt+2)], (2)
where ‘Mask-prop’ denotes the propagation operation. Then we calculate the average IoU between
the original mask and propagated masks as the confidence score:

st =
IoU(α̂t[0], αt) + IoU(α̂t[1], αt) + IoU(α̂t[2], αt) + IoU(α̂t[3], αt)

4
. (3)

2



Under review as a conference paper at ICLR 2023

J (Mean) ↑
Sequence w/o post proc. test-time adap.

dog 80.7 87.4
cows 87.2 88.8
goat 47.5 80.6

camel 85.6 86.1
libby 72.5 77.7

parkour 72.9 87.9
soapbox 84.6 86.5

blackswan 48.9 46.9
bmx-trees 50.1 55.8
kite-surf 55.9 62.6

car-shadow 87.9 86.9
breakdance 82.6 76.0
dance-twirl 82.5 85.4

scooter-black 80.2 80.3
drift-chicane 78.6 82.2

motocross-jump 68.4 88.9
horsejump-high 78.0 84.3

drift-straight 69.2 80.0
car-roundabout 87.7 83.9

paragliding-launch 62.1 62.8
frame avg. 73.9 79.2

Table 4: Sequence-wise results on DAVIS2016.

The calculated st measures the coherency between αt and its neighbors. Our empirical studies show
that it serves as a reliable signal for key frame selection.

Object Mask Propagation. We select timestamps with Top-k% confidence score as the key ref-
erence frames (k = 15 on DAVIS2016, k = 25 on SegTrackv2, k = 10 on FBMS-59). Then we
iteratively propagate the object masks with a neighbor temporal window size n = 7.

B RESULTS BREAKDOWN

We include a specific result breakdown in this section. We show the per-sequence results on
DAVIS2016 in Table 4, SegTrackv2 in Table 5 and FBMS-59 in Table 6.

C MORE QUALITATIVE RESULTS

We show more qualitative results of SegTrackv2 and FBMS-59 in Figure 1 and Figure 2.
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J (Mean) ↑
Sequence w/o post proc. test-time adap.

drift 41.7 40.7
birdfall 38.2 61.5

girl 76.5 82.3
cheetah 18.4 30.1
worm 52.5 74.3

parachute 90.2 92.0
monkeydog 14.3 31.1

hummingbird 61.2 58.8
soldier 66.3 58.8
bmx 73.7 78.8
frog 80.5 76.3

penguin 63.5 62.7
monkey 46.8 77.4

bird of paradise 85.3 85.4
frame avg. 62.2 69.4

Table 5: Sequence-wise results on SegTrackv2.

J (Mean) ↑
Sequence w/o post proc. test-time adap.
camel01 25.8 66.9

cars1 66.1 88.3
cars10 31.6 33.9
cars4 72.9 83.2
cars5 81.2 82.5
cats01 80.6 79.2
cats03 62.0 63.4
cats06 40.1 38.7
dogs01 70.6 61.2
dogs02 62.8 82.2
farm01 86.7 88.9

giraffes01 38.6 52.2
goats01 44.8 45.3
horses02 64.4 77.6
horses04 68.5 73.5
horses05 43.7 49.0
lion01 60.1 71.5

marple12 74.7 80.3
marple2 65.0 71.4
marple4 79.1 91.6
marple6 76.0 85.1
marple7 72.5 55.2
marple9 87.5 97.9
people03 76.5 48.5
people1 72.4 80.8
people2 80.9 83.0

rabbits02 50.2 58.9
rabbits03 39.5 55.7
rabbits04 47.0 53.0

tennis 63.1 71.1
frame avg. 61.3 66.9

Table 6: Sequence-wise results on FBMS-59.
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Figure 1: Qualitative results on SegTrackv2. MG refers to Yang et al. (2021). Red boxes outline the
corresponding difference.

R
G
B

Fl
ow

M
G

G
T

O
ur
s

(w
/o

 p
os

t 
pr

oc
.)

O
ur
s

(t
es

t-
ti

m
e 

ad
ap

.)

Figure 2: Qualitative results on FBMS-59. MG refers to Yang et al. (2021). Red boxes highlight the
corresponding difference.
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