
A APPENDIX

A.1 EXPERIMENTAL DETAILS

Dataset summary An overview of the characteristics of the datasets we used for our experiments
is given in Table 1.

Table 1: Summary of the datasets used in our experiments.

Cora Citeseer Pubmed Actor Cornell Texas Wisconsin

Nodes(# Graphs) 2708 (1) 3327 (1) 19717 (1) 7600 (1) 183 (1) 183 (1) 251 (1)
Edges 5429 4732 44338 33544 295 309 499
Features/Node 1433 3703 500 931 1703 1703 1703
Classes 7 6 3 5 5 5 5
Training Nodes 140 120 60 60% 60% 60% 60%
Validation Nodes 500 500 500 20% 20% 20% 20%
Test Nodes 1000 1000 1000 20% 20% 20% 20%

Backbone architecture Here we specify setups of the backbone architectures.

MemGAT We mostly adopted the original architecture of GAT. Specifically, we used a two-layer
GAT across all tasks. For all but the PubMed dataset, the first layer consists of 2 attention heads and
256 features each. The second layer is used for classification with a single attention head that computes
C features (with C being number of classes), followed by a softmax activation. For Pubmed dataset,
we used 8 output attention heads as in Veličković et al. (2018). For the edge weights, we picked ψij =

Sij where S is the edge weight matrix, and φ(l) (h, h′) = LeakyRelu
(
Sij〈a,

[
W (l)h ‖W (l)h′

]
〉
)
.

The nonlinear function σ(l) was chosen identically across all models and all layers as the ELU
function Clevert et al. (2015), with the exception that we did not use nonlinear transform of the input
features.

MemGCN We used a two-layer GCN across all tasks with 256 hidden features.

Training We applied L2 regularization with tuning parameter 0.001 and a dropout Srivastava et al.
(2014) operation of probability 0.6 to each layer’s inputs for all transductive tasks. We applied entropy
regularization Grandvalet & Bengio (2005) with tuning parameter 0.6 for Cora and Citeseer datasets
(but not for the ablation study) and 0.1 for Pubmed dataset. All models used Glorot initialization
Glorot & Bengio (2010) and cross entropy loss optimized using Adam Kingma & Ba (2014) with
an initial learning rate of 0.01 for Pubmed dataset, and 0.005 for all the other datasets. We used an
early stopping strategy on both the cross-entropy loss and accuracy on the validation nodes, with a
patience of 100 epochs.

Optimal hyperparameters We report the optimal choice of hyperparameters in table 2.

1

Table 2: Optimal choice of hyperparameters, namely the incorporation of skip connection, the
number of random walk steps K, and the type of transition matrix T . We tune K over the set
{0, 1, 2, 3, 4, 5, 10, 20, 30}.

MemGAT MemGCN

Dataset Cora Citeseer Pubmed Cora Citeseer Pubmed

skip connection 3 3 3 7 7 7
K 30 30 0 3 1 30
T Asym Asym Asym Asym Asym Asym

MemGAT MemGCN

Dataset Actor Cornell Texas Wisconsin Actor Cornell Texas Wisconsin

skip connection 3 3 3 3 3 3 3 3
K 3 3 3 3 3 3 3 3
T Asym Asym Asym Asym Asym Asym Asym Asym

Implementation We implemented MemGAT based on the open source PyTorch Paszke et al. (2019)
implementation of GAT Veličković et al. (2018) at https://github.com/PetarV-/GAT,
and MemGCN based on the open source PyTorch implementation of GCN (Kipf & Welling, 2016) at
https://github.com/tkipf/pygcn,

A.2 PROOF OF THEOREMS

Proof of theorem 1. We show by induction on l, for l = 0 it follows trivially sinceXv = X ′f(v),∀v ∈
V , suppose for l = L we have h(L)

v = h
(L)′
f(v),∀v ∈ V , for l = L + 1, consider any v ∈ V , since

STAR(v) is isomorphic to STAR(f(v)) and the map f is surjective, it follows that the multiset
representation of the feature vector XNv

is identical to X ′Nf(v)
, thus an unordered aggregation

function would produce h̃(L)
v = h̃

(L)′
f(v), we conclude that h(L+1)

v = COMBINE
(
h
(L)
v , h̃

(L)
v

)
=

COMBINE
(
h
(L)′
f(v), h̃

(L)′
f(v)

)
= h

(L+1)′
f(v) .

Proof of lemma 1. For part (i), under condition C1 there exists a parameter (hereafter referred to as
identifier) ϑ∗0 = Θ(X) that identifies every bounded subset (with subset in the sense of multiset) of
X up to distributional equivalence. The map Θ hence maps feature set to an "identifier" parameter.
Since X is a countable subset of some euclidean space, it’s easy to find an element m0 /∈ X , and
we let X̄ = X

⋃
{m0}, it follows immediately that if we augment every {{X}} into {{X

⋃
{m0}}},

the identifier ϑ̃∗0 = Θ(X̄) over X̄ identifies {{X
⋃
{m0}}} and {{X ′

⋃
{m0}}} for any {{X}} 6= {{X ′}},

since m0 always has a multiplicity of one and is distinct from all elements in X .

The injectivity is therefore defined in the following sense: for any multiset
{{
X̃
}}

satisfying:

(i) Its underlying set X̃ represented as X̃ = {m0}
⋃
X whereX is a subset ofX with bounded

size.

(ii) The multiplicity of m0 is restricted to be one, and the multiplicities of other elements are
uniformly bounded from above.

Then under identifier ϑ̃∗0, GNNϑ̃∗
0

({{
X̃
}})

= GNNϑ̃∗
0

({{
X̃ ′
}})

if and only if
{{
X̃
}}

=
{{
X̃ ′
}}

,
which is equivalent to {{X}} = {{X ′}}. Applying the previous argument iteratively, we obtain
identifier for each layer ϑ̃∗l , l ∈ N and injectivity could be defined in similar ways. Part (ii) is a
consequence of part (i) in that we choose X and X ′ to be the corresponding graph feature of G and
G′.

2

https://github.com/PetarV-/GAT
https://github.com/tkipf/pygcn

Proof of theorem 2. By lemma 1, the output of the second MemGAT layer would be different for
h
(2)
v , h

(2)′
f(v),∀v ∈ V , since the underlying feature space is countable, there exists a nonlinear function

σ satisfying σ
(
h
(2)
v

)
< 0.5, σ

(
h
(2)′
f(v)

)
≥ 0.5,∀v ∈ V . Picking the readout function as σ finishes

the proof. Note also that this function could be approximated by universal approximators like multi
layer perceptrons.

Proof of corollary 1. We first show for GCN. Note that GCN has several different definitions, we
will follow the general definition in Dehmamy et al. (2019) without bias term:

H(l+1) = σ
(
τ(A)H(l)W

)
(1)

where H(l) is the matrix stacked by hidden representations of each node in the lth layer, and
τ : RN×N 7→ RN×N is a matrix transformation operation. With D = diag(AIN), two popular
forms of GCN are defined as

Kipf & Welling (2016) uses τ1(A) = (D + In)−1/2(A+ IN)(D + IN)−1/2, and σ is RELU.

Xu et al. (2019) uses τ2(A) = (D + In)−1(A + IN) which reduces to mean pooling, and σ is
RELU.

The fact that GCN formulated by τ2 satisfied condition C1 is directly implied by Xu et al. (2019,
Corollary 8). But for GCN induced by τ1, the identifiability result need not hold since the aggregation
process of each node v ∈ V is determined not solely by its neighborhood information, but also by the
degree of its neighborhoods which could be arbitrary. Nevertheless, we could still gain insights from
this (more popular) design by noting that with respect to regular graphs, the identifiability issue of
both formulations are the same, and are mitigated via memory augmentation.
For GAT, consider the worst case of two multisets with their underlying set identical with a single
element but different in multiplicities. In this case, regardless of the attention mechanism, GAT is
identical to mean pooling. Hence it suffices to choose the identifier obtained from (Xu et al., 2019,
Corollary 8) over mean pooling that makes GAT identify multisets up to distributional equivalence.

A.3 ON THE EFFECT OF NUMBER OF MEMORY NODES

In this section we present a study on training MemGAT on the Cora dataset using different number of
memory nodes M . The tuning range is {1, 3, 5, 7, 9, 11, 13, 15, 17}. The rest of the hyperparameters
are the same as the one reported in table ??. The results are reported in table 3. The result shows
little performance difference in using different number of memory nodes.

A.4 ARCHITECTURES UNSUITABLE FOR MEMORY AUGMENTATION

GNN architectures that utilize max pooling for aggregating operation may not identify distributionally
equivalent instances (Xu et al., 2019, Corollary 9), hence the max-pooling version of GraphSAGE
(Hamilton et al., 2017) is not a proper backbone architecture for memory augmentation. GIN (Xu et al.,
2019) uses sum pooling that is strictly more expressive than mean pooling hence satisfies condition
C1. However, summing up feature vectors of the whole graph increases numerical instability and is
empirically found hard to train.

A.5 COMPARISONS WITH OTHER MESSAGE PASSING VARIANTS

Comparison with CPCGNN CPCGNN Sato et al. (2019) utilizes a consistent port numbering
that numbers the neighbors of each node v by an integer i ∈ [degree(v)], according to a port
numbering function p such that p(v, i) = (u, j) identifies the neighboring node u labeled i and a port
number j ∈ [degree(u). The port numbering rule is said to be consistent if p(p(v, i)) = (v, i) for
any valid (v, i) pairs. CPCGNN allows node v sending messages to node u depending on both its
own feature and the port number of u, thus forms a certain kind of locally ordered message passing
framework that is strictly more expressive than locally unordered GNNs. However was shown in

3

a1

a2 a3

a4

a5a6

1

2

2
1

1
2

1

1

2

2

1

2

Ga

b1

b2

b3

1

2

1
2

2
1

Gb

Figure 1: Consistent port numberings for Ga and Gb that makes them locally distinguishable

a1

a2 a3

a4

a5a6

1

2

2
1

2
1

2

1

1

2

2

1

Ga

b1

b2

b3

1

2

2
1

2
1

Gb

Figure 2: Consistent port numbering for Ga and Gb that fails to distinguish a1, a4 and b1

Garg et al. (2020) that since consistent port numbering functions are non-unique, there exists some
port numbering functions that does not strengthen expressiveness, we illustrate this phenomenon
using the construction in figure 1 and figure 2. Figure 1 shows a port numbering that makes a1, a4
receiving different messages with that of b1. Meanwhile in figure 2 the port numbering can not
distinguish a1, a4 and b1. Finding a consistent port numbering that succeeds in distinguishing local
structures is yet another challenging task, MemGAT thus offers an easier choice when the two graphs
have different global features.

Table 3: Study on number of memory
nodes on the Cora dataset using Mem-
GAT model. Results (%mean ±%stan-
dard deviation test set accuracy) are com-
puted over 100 trials

M Performance
1 84.60± 0.58
3 84.62± 0.58
5 84.70± 0.52
7 84.64± 0.52
9 84.71± 0.54
11 84.69± 0.67
13 84.78± 0.59
15 84.78± 0.59
17 84.76± 0.60

Comparison with DimeNet DimeNet Klicpera et al.
(2020) is a directional message passing model that ex-
ploits the relative layout of local neighborhood through
angles. Specifically DimeNet computes node embedding
h
(l)
v as the summation of its incoming message embed-

dings h(l)v =
∑

u∈Nv
m

(l)
uv, and the update rule is defined

as

m(l)
uv = fupdate

m(l−1)
uv ,

∑
w∈Nv\u

fintegrate

(
m(l−1)

wv , e(uv), a(wu,uv)
)

(2)

where fintegrate and fupdate are analogs of aggregate and
combine as in LUMP protocol, e(uv) is a representation
vector measuring the distance from u to v, and a(wu,uv)

combines ∠wuv with the distance fromw to u. The choice
of metric is problem dependent, and we presume a suitable
one exists. Consider the following construction:

4

a1 a2

a3a4

a5 a6

a7a8

Ga

b1 b2

b3b4

Gb

Figure 3: Two graphs Ga = (Va, Ea) and Gb = (Vb, Eb) that DimeNet cannot distinguish locally:
for any V ∈ {Va, Vb} and all w, u, v ∈ V satisfying (u,w) ∈ E, (u, v) ∈ E, the graph is constructed
such that ∠wuv = π/2 and for any (u, v) ∈ E, the distance between u and v is identical.

Figure 3 shows a construction that DimeNet fails to distinguish with the local isomorphism map
defined as f(a1) = f(a5) = b1, f(a2) = f(a6) = b2, f(a3) = f(a7) = b3, f(a4) = f(a8) = b4,
while MemGAT is able to distinguish them.

The above contrived examples suggest that the optimal choice of GNN architecture shall be problem
dependent.

REFERENCES

Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and accurate deep network
learning by exponential linear units (elus). arXiv preprint 1511.07289, 2015.

Nima Dehmamy, Albert-László Barabási, and Rose Yu. Understanding the representation power of
graph neural networks in learning graph topology. In Advances in Neural Information Processing
Systems, pp. 15413–15423, 2019.

Vikas K Garg, Stefanie Jegelka, and Tommi Jaakkola. Generalization and representational limits of
graph neural networks. arXiv preprint arXiv:2002.06157, 2020.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward
neural networks. In Yee Whye Teh and Mike Titterington (eds.), Proceedings of the Thirteenth
International Conference on Artificial Intelligence and Statistics, volume 9 of Proceedings of
Machine Learning Research, pp. 249–256, Chia Laguna Resort, Sardinia, Italy, 13–15 May 2010.
PMLR. URL http://proceedings.mlr.press/v9/glorot10a.html.

Yves Grandvalet and Yoshua Bengio. Semi-supervised learning by entropy minimization. In Advances
in neural information processing systems, pp. 529–536, 2005.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs. In
Advances in neural information processing systems, pp. 1024–1034, 2017.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
arXiv preprint arXiv:1609.02907, 2016.

Johannes Klicpera, Janek Groß, and Stephan Günnemann. Directional message passing for molecular
graphs. In International Conference on Learning Representations, 2020. URL https://
openreview.net/forum?id=B1eWbxStPH.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-
performance deep learning library. In Advances in Neural Information Processing Systems 32, pp.
8024–8035. Curran Associates, Inc., 2019. URL http://papers.neurips.cc/paper/

5

http://proceedings.mlr.press/v9/glorot10a.html
https://openreview.net/forum?id=B1eWbxStPH
https://openreview.net/forum?id=B1eWbxStPH
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

9015-pytorch-an-imperative-style-high-performance-deep-learning-library.
pdf.

Ryoma Sato, Makoto Yamada, and Hisashi Kashima. Approximation ratios of graph neural networks
for combinatorial problems. In Advances in Neural Information Processing Systems, pp. 4083–
4092, 2019.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: A simple way to prevent neural networks from overfitting. Journal of Machine
Learning Research, 15(56):1929–1958, 2014. URL http://jmlr.org/papers/v15/
srivastava14a.html.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In International Conference on Learning Representations,
2018. URL https://openreview.net/forum?id=rJXMpikCZ.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations, 2019. URL https:
//openreview.net/forum?id=ryGs6iA5Km.

6

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html
https://openreview.net/forum?id=rJXMpikCZ
https://openreview.net/forum?id=ryGs6iA5Km
https://openreview.net/forum?id=ryGs6iA5Km

	Appendix
	Experimental details
	Proof of theorems
	On the effect of number of memory nodes
	Architectures unsuitable for memory augmentation
	Comparisons with other message passing variants

