
Validating Plans in the Context of Processes and Exogenous Events

Maria Fox and Richard Howey and Derek Long
Department of Computer and Information Sciences, University of Strathclyde, Glasgow, UK

firstname.lastname@cis.strath.ac.uk

Abstract

Complex planning domains push the boundaries of the ex-
pressive power of planning domain modelling languages. Re-
cent extensions to the standard planning languages have in-
cluded expressions for temporal, metric and resource struc-
tures. Other work has also considered how process mod-
els can be incorporated into domain models. In this paper
we consider the problem of expressing and validating models
containingeventswhich are triggered as a consequence of the
action of physical processes. We focus, primarily, on the vali-
dation of plans in the context of exogenous events, discussing
the modelling, semantic and implementation issues that arise.
Events impact not only on plans but on domain models as a
whole and we also consider the problems that arise in consid-
ering the validation of event structures in domain models.

1 Introduction
In recent years planning research has made significant
strides forward from classical STRIPS planning, facing
problems involving explicit temporal structure , metric flu-
ents , conditional and derived effects (Thiebaux & Cordier
2001) and even continuous change (McDermott 2003; Shin
& Davis 2004; Drabble 1993). These extensions to the
expressive power of planning domain descriptions have
brought into reach a far more interesting class of problems.
However, many challenges remain to be confronted. One
example is a relaxation of the classical assumption that all
change in a problem domain occurs as a direct effect of the
execution of planned activities. In many domains, the indi-
rect consequences of actions are equally important, triggered
as a result of the processes initiated by the actions of the ex-
ecutive. These triggeredeventscan represent opportunities
to be exploited by a planner or threats to be avoided. In ei-
ther case, a planner must have access to a representation of
the events and the basis for determining whether and when
they occur in order to assess their impact on a plan.

As an example, when planning the startup procedure for a
process plant (Aylettet al. 2001), events include the reaction
of chemicals released into the same vessel, the potential dan-
ger to the integrity of vessels caused by increasing pressure,
the flow of fluids through connecting pipes caused by open-
ing valves, explosive reactions caused by vessels exceeding

Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

safe threshold temperatures and so on. Some of the events
are to be exploited and others to be avoided.

In this paper we consider the problem of modelling events
in order to make them accessible to planning systems. We
examine, in particular, how events can be given a semantic
interpretation within the existing framework for domain rep-
resentation (Fox & Long 2003) and show how this interpre-
tation can be handled in the validation of plans that interact
with domains that include potential events. We show that
the cost of plan validation grows only linearly with the num-
ber of events that are triggered in the execution of a plan.
This work contributes to the problem of accurate modelling
of complex domains and to the validation and verification
of domain models and plans. In this paper we emphasise the
validation of plans, but we can use the output of the plan val-
idation process to support the verification of the underlying
planning domain model. This is an issue of increasing im-
portance, as planning researchers aspire to apply their work
to more complex problems relevant to real applications.

The semantics of events we describe is implemented in
the automatic plan validation tool,VAL (Howey, Long, &
Fox 2004). In this paper we discuss the practical difficul-
ties in validation presented by the introduction of events and
the solutions we have adopted. These solutions are not only
relevant to the validation of plans, but can also provide the
foundation of the mechanisms required by planners that are
intended to manage events.

2 Motivation
In many potential application domains for planning there are
complications that cannot be captured in classical planning
domain descriptions. Various extensions of classical plan-
ning have been proposed and explored, such as planning un-
der uncertainty and planning with partial observability, with
the intention of moving planning towards more realistic ap-
plication domains. In the real-time control systems commu-
nity there is a focus on controlling systems that are driven
by physical processes as well as controller actions (Hen-
zinger 1996). Systems of this kind offer a major challenge
to the planning community, both as a huge opportunity for
the application of deliberative and planned control but also
in stretching beyond the limits of current expressive capa-
bilities of classical planning languages. Two extensions that
are important for representing such systems are the expres-



sion of continuous processes and the expression of system
responses to situations. A system response is a state change
that is triggered not by an action on the part of the executive,
but by mechanisms inherent to the physical system.

For example, if a ball is dropped onto a floor its velocity
changes at the point of impact with the floor. The change is
not brought about directly by the executive, but by a mech-
anism within the physical environment: bouncing. As can
be seen in this example, the event is a consequence of an
interaction between a process (the falling of the ball) and its
environment (the position of the ball relative to the floor). In
many real-time control problems there are situations similar
to this. It is important to model such a situation in a plan-
ning domain because, if a planner is to attempt to control
a system like this, it is necessary for the planner to be able
to predict and plan around events that are triggered by the
actions (or inactions) that are planned for the executive.

PDDL2.1 already has the expressive power to represent
events that occur simply as a consequence of the passage
of time (events such as sunrise and sunset) (Fox, Long,
& Halsey 2004). Events that are triggered by activities
initiated by the executive cannot be modelled without ex-
tending the language. In earlier work (Fox & Long 2003;
Howey, Long, & Fox 2004) Fox, Long and Howey examined
how some forms of continuous change can be modelled and
some of the consequent problems for plan validation. Events
represent another step in the progress towards modelling and
planning with models of rich physical systems.

Further examples motivating the need to model event-
behaviours in planning domains include:

• In the control of an orbiting observation satellite, the event
of the heaters being triggered to protect sensitive parts of
the satellite that are in shadow because of the orientation
of the satellite, requiring planned activities to work within
constrained energy supply levels.

• In a logistics-style domain, the event of a driver having
reached maximum safe driving hours under European law
and having to take a break, requiring planned activity to
either work with the necessary delay in transit or else to
have provided for the availability of a relief driver at an
appropriate driver-exchange site.

• The event of a fermentation vessel reaching a temperature
at which its contents undergo a chemical reaction.

In this paper we do not consider non-deterministic effects
or unpredictable events. It might appear that this constraint
implies that events could be modelled using conditional ef-
fects or delayed effects (Bacchus & Kabanza 2000a). In fact,
this is not the case, because the interaction with processes
means that events can occur at arbitrary times, not linked
directly to the execution of any actions.

At this point we can offer a preliminary, though informal,
definition of an event.

Definition 2.1 An event is an instantaneous change in log-
ical and/or numeric state, brought about by the interaction
between a physical process and the environment.

We will refine this definition in the following sections.

3 Semantic issues raised by events
If events were only ever the consequence of discrete changes
caused by actions then it would be sufficient to model them
using conditional effects of the actions that could cause them
(although it might be tedious to do so). The more interesting
case is when events can be caused by continuous change of
a metric variable. A metric variable that can be changed by a
continuous effect is called aPrimitive Numerical Expression
(PNE). In earlier work Fox, Long and Howey described how
continuous change is modelled inPDDL2.1 (Fox & Long
2003; Howey, Long, & Fox 2004).

Events were first proposed as an extension forPDDL
in (Fox & Long 2002) as part of an enriched language,
PDDL+, along with a formal semantics in terms of hybrid
automata (Henzinger 1996). This approach is attractive as
it is a widely accepted model of mixed discrete-continuous
activity. In models of hybrid automata, there is no distinc-
tion between the activities of an executive and the events
triggered by the world. As a consequence, any events that
trigger in a particular trajectory are recorded explicitly in the
trajectory. In contrast, because a plan describes only the ac-
tivities under control of the executive, and events are neces-
sarily triggered by the environment and therefore not under
the control of the executive, they are not explicitly recorded.
Instead they must be inferred by examining the trajectory
of the planned activities of the executive. This difference
gives rise to certain semantic difficulties when constructing
a mixed discrete-continuous model of a planning domain. In
this paper we do not attempt to give the details of a formal
semantics, but instead concentrate on discussing the prob-
lems that arise in defining such a semantics and our propos-
als for resolving them.

3.1 Modelling events
A simple proposal for modelling events is to use the format
of an action, with pre and postconditions, but to label events
to distinguish them from actions and to prevent them from
being selected by a planner. This proposal is essentially con-
sistent with the hybrid automaton model, treating events as
semantically equivalent, in their effects, to actions.

The intuitive meaning of events is deceptively simple: an
event is triggered when its preconditions become true, af-
fecting the state as if it were an action applied at that instant.
Unfortunately, this simple intuition is quickly undermined
by several problems:

• If the precondition of an event holds over a continuous
interval, what does it mean?

• If the effect of an event causes the precondition of another
event to become true, what happens?

• If the preconditions of several events all become true at
the same time, what happens?

An answer to the first question is to propose that events are
triggered only when their preconditions change from being
unsatisfied to being satisfied. However, this requires expen-
sive monitoring of the preconditions of events that have trig-
gered to determine if and when they become false again.
In practice, events make most sense when they change the



Time

Action

Event happening

Event happening

(a) Event happenings

A

B

D
E

G
F

C

(b) Event chain

Figure 1: Events triggered at the same time point.

current situation into one in which the event preconditions
are no longer satisfied. We therefore introduce this as a for-
mal constraint on events, removing the problem of checking
when preconditions become false. The validator highlights
any events that fail to falsify their own preconditions.

To answer the other two questions, let us consider events
that are triggered at a given point of time. After the exe-
cution of an action (or a number of actions) all events that
have their preconditions satisfied are executed together as an
event happening(see figure 1 (a)). These events might trig-
ger another event happening and so on. The event happen-
ings are equivalent to action happenings as defined in (Fox &
Long 2003), and are therefore subject to the same execution
constraints. In particular, events are subject tomutexcon-
straints, which prevent their preconditions and effects from
interfering. This issue is further discussed in section 3.2.

We adopt the view that events are causally linked to the
actions (or events) that trigger them, so that they succeed
their triggering actions (events). This means that we do not
consider events in one happening to be mutex with actions
that triggered them. Events are caused by state transitions,
occurring after the triggering conditions are achieved and
as a direct consequence of them, but there is no reason for
there to be a delay between the cause and its effect. There-
fore, events have to occur at the same time as their causes
trigger them. A consequence of this is that event happenings
can occur at the same instant as the action happenings that
trigger them, but are, nevertheless, considered to occur af-
ter the actions that caused them. To address this, we allow
multiple happenings to be sequenced at a single time point.
This idea is similar to the semantics proposed by Bacchus
and Kabanza for actions in TLPlan (Bacchus & Kabanza
2000b) and, by McDermott, for OPTOP (McDermott 2003).
The key difference is that we only allow event happenings
to stack at the same instant, never actions.

3.2 Cascading Events at a Single Time Point
When multiple events are triggered at a single time point,
it is important to resolve precisely what is the outcome.
The causal relationship between actions or events that bring
about conditions and the events that are triggered by those
conditions implies an ordering. However, a single action
might trigger multiple events and these obey no implied or-
dering. In this case, if the triggered events could interact in
any way, the final state will depend on the order in which
the events are enacted. We consider this situation to be
unpredictable: the precise outcome is non-deterministically
dependent on the event ordering. Since we are only inter-

-Time

6
Height

0 401
0

10

Figure 2: Graph showing the height of a bouncing ball

ested, in this work, in deterministic domains, situations in
which events are unordered and interacting are ruled mean-
ingless. To check whether events interact it is only necessary
to check whether they are mutex, according to the standard
definition (Fox & Long 2003). We note that in complex cas-
cades of interacting events, the pairs that are not ordered
must be carefully identified in the partially ordered collec-
tion (see figure 1 (b), where a cascade of events follows a
single action,A. The pairs (B,C), (B,E), (D,C), (D,E), (F,C)
and (F,E) must all be checked for mutex relations.).

3.3 Infinite Sequences of Events
Allowing events to occur ordered at the same time point
could lead to a paradoxical situation if events can trigger
one another in a cyclic pattern. This situation, which we
call cyclic triggering, leads to an infinite number of events
occurring at a single time point. We eliminate this problem
by requiring that no event may be triggered at a single time
point more than once.

A slightly different problem can arise if a continuously
changing PNE is linked to an event, where it is possible
for the event to be triggered repeatedly at increasing fre-
quency, generating infinitely many events in finite time. For
example, a bouncing ball strikes the ground at increasing
frequency as the bounces get smaller (see figure 2). We do
not have an automatic way to identify this problem and are
therefore forced to rely on the domain modeller to prevent it
and related paradoxes such as the Thomson Lamp. Such sit-
uations can be modelled differently to avoid these problems.

3.4 Modelling Processes
Processes are modelled using the same format as an action,
except the effects may only be continuous. Processes are not
explicitly part of a plan but are active when and only when
their preconditions are true. Unlike events, it is sensible for a
process to be active over an interval of time, since the effects
are continuous and not instantaneous.

The precondition of a process should not depend on any
continuously changing PNEs affected by the process itself.
Consider a tap that automatically flows into a bath when-
ever the bath volume is less than or equal to 100 units. The
process is inactive after the volume exceeds 100 units. How-
ever, when the volume is equal to 100 the bath should con-
tinue to fill. This is an ambiguous situation: is the process
active or not when the level is 100 units? To avoid this
difficulty, it is sufficient to restrict process preconditions to
contain no PNEs. Processes may still be started or stopped



by continuously changing PNEs using intermediary events.
(See section 6.2 for an example.)

After the last action of a plan is executed processes might
still be active and, some time later, the goal of the plan
might become unsatisfied. Since monitoring active pro-
cesses could be arbitrarily costly, we adopt the position that
it is sufficient that the goal of the plan should hold after the
last action in the plan (and after any events it triggers), and
it is the responsibility of the domain modeller to ensure that
this adequately captures the intended effect of the plan. Var-
ious modelling techniques allow the modeller to express the
need for goals to hold over an interval (Fox, Long, & Halsey
2004).

3.5 A Formal Definition of Events and Processes
We are now in a position to state more precisely the defini-
tion of an event and a process.

Definition 3.1 An evente is an instantaneous state transi-
tion (C,E), whereC is a formula expressing the triggering
condition andE describes the effects of the event. The event
e is triggered in any stateS such thatS |= C. Application
of the effectE results in a stateS′ such thatS′ 6|= C.

Definition 3.2 An event cascade triggered in a stateS is a
partially ordered finite set of events,ECS = {e1, . . . , en},
with conditions{c1, . . . , cn}, such that for every eventei in
ECS , eitherS |= ci or the subset of events ordered before
ei achieves a stateS′ such thatS′ |= ci.

Definition 3.3 An event cascadeECS triggered in a state
S is valid if every unordered pair of events inECS is non-
mutex.

Note that the fact thatECS is a partially ordered set means
that no event can be triggered more than once at any given
time point.

Definition 3.4 A processp is a precondition,C, and a set
of continuous effects,E, such that the continuous effects are
active for every stateS such thatS |= C.

4 Managing the Validation of Plans that
Trigger Events

Events are most interesting when they are triggered by con-
tinuous change. With the ability to model both continuous
change and events it is possible to accurately model inter-
esting real world situations that are otherwise impossible to
express. For example, a simple thermostat which operates
a heater to regulate temperature. When the temperature is
too cold the heater is switched on and the temperature rises,
when it is too hot the heater switches off and the temperature
begins to drop, and so on.

The extension of the semantics of continuous effects in
PDDL to include events can be seen as an extension of the
semi-simple planas described in (Howey, Long, & Fox
2004). The graph in figure 3 shows how events are trig-
gered by continuously changing PNEs between two discrete
happenings. Before an event is triggered the continuously
changing PNEs are updated, ensuring that the state is cor-
rect at the time of execution. When an event is triggered

Continuous Update

Event 2

Continuous Update

Time

Time

Event threshold

Value

Event 1

Continuous Update

1H H2

Figure 3: Events triggered by continuous change.

it may, in general, affect the continuously changing PNEs.
Therefore, the interval after the event to the next discrete
happening must be checked for any events that may be trig-
gered.

Events triggered by continuous effects are triggered by a
continuous function of time crossing some threshold. Con-
sequently the times of such events are calculated from the
roots of continuous functions (the values where the func-
tion is zero). The value of the roots are always calculated
to within a certain specified accuracy, and thus the timing
of the event also. The time at which events are triggered can
have a significant impact on the execution of a plan, since the
ordering of events and actions may cause different events to
be triggered in the subsequent plan.

Another equally important point is whether events are
triggered at all. Consider a curve with non-negative val-
ues that only touches the axis at a point, and an event is
triggered if the curve is non-positive. In this case the event
would be triggered, but if the curve had to be strictly nega-
tive to trigger then the event would not be triggered. As a
consequence, it is important to be aware that the realisation
of the validation process inVAL is subject to the accuracy
of computation of event times. Also that where events are
triggered by changes in PNEs then the inaccuracies in com-
puting their values may affect the accuracy of the logical
state of the world.

The issue of plan robustness is currently being investi-
gated by the authors, including the question of how likely it
is that a plan will successfully execute if actions do not ex-
ecute reliably at the times the plan specifies. Important re-
lated work includes (Gupta, Henzinger, & Jagadeesan 1997).

5 The Event Grounding Problem
In a complex domain it is implausible to check the validity
of a plan in the face of the events that could be triggered if
this relies on considering all groundings of events. Fortu-
nately there are ways by which the number of groundings
considered can be reduced. The problem applies equally to
processes but we only consider events here for simplicity.

5.1 Efficient Event Grounding
Events can only be triggered when something in the world
has changed. Therefore at least one of the parameters of
the event being considered must be an object that has just
changed state. However, after the changed objects are con-
sidered there may still be many undefined parameters: we
now consider this problem.



The grounding events problem can be managed through a
map used to efficiently calculate which events are triggered
at a particular point, returning a set ofparameter lists. A
relatively simple extension of this map is needed to calculate
which events are triggered on an interval between discrete
happenings due to continuous change.
Definition 5.1 Parameter list A parameter list is an or-
dered list of object names for a given unground event written
(p1, p2, · · · , pn), where eachpi is an object name with the
correct type corresponding to the unground event, or an un-
defined parameter denoted by⊥.
A given parameter list and unground event represents a
ground event. Using the undefined parameter,⊥, we are
able to express a set of parameters where⊥ could be any
object. The use of⊥ is appropriate when a parameter does
not affect the truth value of a proposition. It is important to
only consider relevant subsets of parameters to avoid expo-
nential blow up.
Definition 5.2 Let ψ be a map from an event,E, an un-
ground proposition,P , a stateS, a set of parameter lists,
K0, to a set of parameter lists,K. WhereK is the set of pa-
rameter lists forE given byK0 that satisfyP in S, written:

ψ(E,P, S,K0) = K.

To calculate the triggered ground events of an unground
event,E, in stateS, we calculateψ(E,PE , S,K0) where
PE is the precondition ofE andK0 has one parameter list
where every parameter is undefined.

LetE be an event,P an unground proposition,S a state,
K0 a set of parameter lists then we defineψ(E,P, S,K0) as
follows depending on the structure ofP :

Literal If P is a literal thenK is the set of parameter lists
derived fromK0 such thatP has truth value true. We calcu-
late this by checking in the state which literals are true and
then check that these literals can be derived fromK0.

Disjunction If P is a disjunction, ∨iXi, then
ψ(E,∨iXi, S,K0) = ∪iψ(E,Xi, S,K0). That is, the
set of parameter lists given by every disjunct.

Conjunction If P is a conjunction,∧i=1···nXi, thenK is
the set of parameter lists derived fromK0 such thatP has
truth value true. If we letξ(Q,K0) = ψ(E,Q, S,K0) then
this is calculated by evaluating

ξ(Xn, ξ(Xn−1, · · · ξ(X2, ξ(X1,K0)))).
That is, we calculate the parameter lists derived fromK0

that satisfyX1, then pass the result on to calculate which of
these satisfyX2, and so on.

This is the most important technique used to calculate
which ground events are triggered. If each conjunct refers to
a parameter withm possible values, then there areO(mn)
conditions to check. Using the above method we only con-
sider at mostO(mn) conditions.

Negation If P is a negation thenψ is applied to the NNF
of P . The negation of a literal is slightly more problematic
than a positive one, as it is not as easy to exploit the closed
world assumption in the state representation. However, it is
still straightforward to calculate the parameter lists.

Comparison If P is a comparison thenψ returns the list
of parameters that satisfy the comparison, where the set of
parameter lists is derived fromK0. Crucially, the parame-
ters that affect the comparison cannot be considered sepa-
rately since they all affect the same atomic proposition. This
implies that we must test the comparison for every set of pa-
rameter lists derived fromK0 which affects the comparison.
Provided comparisons are limited to only one or two PNEs
then this is not a problem.

6 Examples
6.1 Grounding Events Example
Consider a domain with the following event with 20 param-
eters and 400 possible objects for each parameter, which re-
sults in over1052 ground events.

(:event grounding-example-event

:parameters (?x1 ?x2 ... ?x20)

:precondition (and (property1 ?x1) (property2 ?x2)

... ... (property20 ?x20))

:effect (not (property1 ?x1)))

Suppose that in a state(property n object n) is
true for n = 2 · · · 20, then executing an action to add
(property1 object1) triggers one ground event. VAL
executes this plan in around 0.009 seconds. The same plan
executed without the unground event present is around 0.007
seconds, showing no significant change.

However, if a conjunct has more satisfied values then
more events are triggered. The table below shows timings
when conjuncts have more satisfied values. In practice we
only expect a few events to be executed together at any given
time, so grounding events does not pose a problem. (In fact
the events in this example are mutex, the chances of a huge
number of non-mutex events triggering together is remote.)

No. Events Triggered Time
1 0.009
400 0.10
160 000 30.97

6.2 Solar Power on Mars
Using events and processes it is possible to model the back-
ground behaviour of the environment. In this example we
consider a model of the solar power on Mars. Although it
is possible to model this situation inPDDL2.1 as described
in (Fox, Long, & Halsey 2004), this model is very succinct
and is, importantly, part of the domain description and not
the plan. During the day it is given by a quartic (polynomial
of degree 4) peaking at midday, and throughout the night it
is zero, see figure 4. Our model inPDDL uses processes for
the day and night, and events for sunset and sunrise:

(:process day-time

:parameters ()

:precondition (daylight)

:effect (and (increase (daytime) (* #t 1))

(increase (solar-power) (* #t (* (* (* (constantA)

(daytime)) (constantB))

(- (* (* (daytime) (daytime)) (constantB)) 1))))))



-Time

6
Solar Power

0 2 Martian Days
0

70

Figure 4: Solar power modelled by processes and events

(:event sunset

:parameters ()

:precondition (>= (daytime) (quarterday))

:effect (and (not (daylight))

(assign (daytime) (-(quarterday)))))

(:process night-time

:parameters ()

:precondition (not (daylight))

:effect (and (increase (nighttime) (* #t 1))))

(:event sunrise

:parameters ()

:precondition (>= (nighttime) (halfday))

:effect (and (daylight) (assign (nighttime) 0)))

The table below shows the timeVAL takes to validate an
empty plan for a certain number of Martian days. The plan
may be empty, but there is still a lot of processes and events
to account for from the solar power model. The table shows
that execution time is linear to plan length, and in practice
we would not expect a plan with over104 events.

These timings coupled with the grounding event timings
are very encouraging in thatVAL may be feasibly incorpo-
rated into planning systems to handle processes and events.

Martian Days No. Processes and Events Time
2 10 0.005

20 118 0.017
200 1 198 0.135

2 000 11 998 1.315
20 000 119 998 13.077

200 000 1 199 998 132.018

7 Conclusion
The first step to developing planners that are able to handle
planning problems with events is to present an unambiguous
semantics. This paper has discussed the semantics ofPDDL
with events and some of the issues arising. We believe that
one of the most practical expressions of the semantics of a
complex language is in an implemented form, allowing users
to interact with the semantics and explore its consequences
empirically. We have implemented the semantics in the au-
tomatic plan validation tool,VAL . Figures 2 and 4 illustrate
example output. VAL is an important and useful tool for
the development of any planner that is to handle events. Not
only can it be used to validate plans produced by the planner,
but its implementation provides many insights for extending

planners to handle events, as well as the possibility of using
VAL directly in the planning process itself.

There are various problems with the semantics and imple-
mentation of validating plans using events, but many inter-
esting problems can be modelled by making certain restric-
tions. This includes avoiding cascading events that create
an infinite number of events in finite time. The accuracy of
PNEs must also be taken into account when they are used.
The authors are currently investigating how to measure the
robustness of plans in the face of possible inaccuracy in the
timing of execution of actions and in the values of continu-
ously valued PNEs.

The availability of the automatic plan validator,VAL , to
validate plans with events is one of the first steps in build-
ing planners than can handle events. The scope of plan-
ning problems that can be captured using events is greatly
increased, supporting much more accurate models of real
world situations. The objective is ultimately to bring these
aspects together in order to have planners capable of plan-
ning with even richer domain representations than at present.

References
Aylett, R.; Soutter, J.; Petley, G.; Chung, P.; and Edwards, D.
2001. Planning plant operating procedures for a chemical plant.
Engineering Applications of Artificial Intelligence14(3).

Bacchus, F., and Kabanza, F. 2000a. Using temporal logic to
express search control knowledge for planning.Artificial Intelli-
gence116(1-2):123–191.

Bacchus, F., and Kabanza, F. 2000b. Using temporal logic to
express search control knowledge for planning.Artificial Intelli-
gence116(1-2):123–191.

Drabble, B. 1993. Excalibur: a program for planning and reason-
ing with processes.Artificial Intelligence62(1):1–40.

Fox, M., and Long, D. 2002. PDDL+ : Planning with time and
metric resources. Technical report, University of Strathclyde, UK.
Available at:planning.cis.ac.uk/competition/ .

Fox, M., and Long, D. 2003. PDDL2.1: An extension to PDDL
for expressing temporal planning domains.Journal of AI Re-
search20.

Fox, M.; Long, D.; and Halsey, K. 2004. An investigation into
the expressive power of PDDL2.1. InProceedings of ECAI’04.

Gupta, V.; Henzinger, T.; and Jagadeesan, R. 1997. Robust timed
automata. InHART’97: Hybrid and Real-time Systems, LNCS
1201, 331–345. Springer-Verlag.

Henzinger, T. 1996. The theory of hybrid automata. InProc.
of the 11th Annual Symposium on Logic in Computer Science.
Tutorial., 278–292. IEEE Computer Soc. Press.

Howey, R.; Long, D.; and Fox, M. 2004.VAL : Automatic plan
validation, continuous effects and mixed initiative planning using
PDDL. In Proceedings of 16th IEEE International Conference on
Tools with Artificial Intelligence.

McDermott, D. 2003. Reasoning about autonomous processes in
an estimated-regression planner. InProc. of Int. Conf. on Auto-
mated Planning and Scheduling (ICAPS’03).

Shin, J., and Davis, E. 2004. Continuous time in a SAT-based
planner. InProc. of AAAI-04.

Thiebaux, S., and Cordier, M.-O. 2001. Supply restoration in
power distribution systems – a benchmark for planning under un-
certainty. In6th European Conference on Planning (ECP-01).


