
A Incremental step pulse programming

The Incremental Step Pulse Programming (ISPP) scheme [1],[2, pp. 72-74] described in Alg. 1 is
an iterative scheme for programming a group of cells from a single WL to a given vth target. The
algorithm is composed of two basic operations:

1. The programming pulse is an operation that increases the vth value stored in flash cells. It
can be applied to a sub-set of cells I from a single WL w.

2. Verify is an operation that checks whether the threshold voltages of cells from a given WL
are above a certain reference voltage t, or below it. Formally, if vth represents the vector of
threshold voltages stored in the cells of WL w, the output of the verify function fverify for
the ith cell in the WL is

[fverify (vth, t)]i =

{
1 vith < t

0 vith ≥ t

The ISPP algorithm receives an inhibit vector I where Ii = 0 if we want to program the ith cell of
the WL and 1 otherwise. Considering the inhibit vector I , the algorithm performs a series of at most
M pulses starting from a pulse with magnitude vpgm_start, where in each iteration it increases the
pulse magnitude by ∆pgm. After each pulse a verify operations at vverify is applied, and all the cells
above vverify are inhibited, i.e., they will not be affected by the pulse at the next step. We note that
the ISPP parameters vpgm_start, ∆pgm and vverify are a function of the vth target.

Algorithm 1 ISPP
Input inhibit vector I0and ISPP parameters vpgm_start, ∆pgm and vverify.

1. for j in [M ] do

(a) vjpgm = vpgm_start + j ∗∆vpgm

(b) apply a prog. pulse with parameters vjpgm, Ij

(c) apply verify operation at voltage vverify, and denote result as f j
verify(vverify)

(d) create an updated inhibit vector Ij+1 where Ij+1
i = ¬f j

verify(vverify)i|I0i , meaning
that cell i was not inhibited in I0and also below vverify.

2. end for

B Programming the learned targets

The following sub-sections describe the two steps we perform in order to reduce the additional
programming latency caused by our neural modulator.

B.1 Targets quantization

The quantization step is done by clustering the set of targets the modulator produces for each WL
into Q := 4 ∗ (NLevels − 1) groups, where NLevels is 16 for QLC flash and 8 for TLC flash. We
cluster the targets using a one dimensional K-means model with Q clusters. Let T q

wl be the set of
cluster means. Once all the targets are clustered, each target tcell the modulator outputs is replaced by
the mean of the cluster it belongs to, becoming the new cell target tqcell ∈ T q

wl. We note that the one
dimensional K-means problem can be solved using an exact polynomial time dynamic programming
algorithms [3, 4].

The number of quantized targets was a compromise between two important considerations - the WL
programming time and the quantization loss. Fig. 1 shows the BER achieved by the quantized QLC
neural modeulator as a function of the number of quantization levels. We see that programming 60
targets, which is equivalent to ~4 targets per symbol (for QLC modulation), preserves most of the
gain of the model, while avoiding most of the programming overhead of the full (non-quantized)
target range.

1



Figure 1: The BER achieved by the quantized QLC modulator, as a function of the number of
quantization levels. We see that quantizing the modulator output to 60 targets preserves most of the
gain of the model.

B.2 Shared Pulses Incremental Pulse Programming

After the quantization step, we are left with a set of Q program targets for each WL. Since the vth
difference between consecutive targets is relatively small, we can use the same programming pulses to
simultaneously program several targets at once. Similar to the ISPP algorithm (See appendix A), our
programming scheme, which is fully described in Alg 2, uses incremental step pulse programming
to program each symbol. However, since we now program cells to several different targets at once,
we need to distinguish between cells with the same symbol but different targets. To that end, our
algorithm performs extra verify operations after each pulse - one for each target we program together.
This means that if the quantizer chose to allocate four targets for a certain symbol we will perform four
verify operations after each pulse (instead of the single verify of the ISPP). As the proposed scheme
shares all pulses between targets of cells from the same symbol, it does not increase the number of
pulses required to program each WL. Note that the latency overhead of performing successive verify
operations with close vverify values, is small compared to a single verify operation [5], which ensures
our scheme preserves the original programming latency.

Algorithm 2 ISPP with shared pulses
Input A list of vth targets T that share pulses between them, a list of inhibit vectors I0 , where each
I0t ∈ {0, 1}size(wl) is the inhibit vector for target t ∈ T . The ISPP parameters vpgm_start, ∆pgm and
vverify.

1. for j in [M ] do

(a) vjpgm = vpgm_start + j ∗∆vpgm

(b) Create a unified inhibit vector I = Ij1& . . .&Ijt , i.e. all the cells which are not inhibited
by one of the inhibit vectors.

(c) Apply a prog. pulse with parameters vjpgm, I
(d) for t in T do

i. apply verify operation at voltage t, and denote result as fverify(t)
ii. set Ij+1

t = Ijt |¬fverify(t), i.e. add cells that reached the target to their inhibit
vector.

(e) end for
2. end for

2



C Wasserstein distance

C.1 Definition

The Wasserstein distance, is a distance function defined between two probability measures over a
given metric space. Formally, given a metric space (M,d) and two probability measures µ and ν
over M , the pth Wasserstein distance between µ and ν is defined as

Wp (µ, ν) :=

=
(
infγ∈Γ(µ,ν)

�
M×M

d (x, y) pdγ (x, y)
)1/p

=
(
inf γ∈Γ(µ,ν)E(x,y)∼γ [d(x, y)

p]
)1/p

(1)

where Γ (µ, ν) denotes the set of probability measures over M ×M with marginals µ and ν. The
intuition to the above definition comes from the optimal transport problem - γ (x, y) indicates how
much “mass” must be transported from x to y in order to transform the distributions of µ into the
distribution of ν.

In this paper we measure the 1-Wasserstein distance which is also known as the Earth-Movers
distance. Therefore, from now we will use W (µ, ν) instead of W1 (µ, ν)

C.2 Empirical estimation of the Wasserstein distance in the 1D case

In the special case where µ and ν are probability measures over R, the Wasserstein distance has an
analytic solution

W (µ, ν) =

� 1

0

(∣∣F−1
µ (z)− F−1

ν (z)
∣∣ dz)

where Fµ (z) and Fν (z) are the cumulative distribution functions of µ and ν. This closed form
allow us to estimate the Wasserstein distance between µ and ν given n drawn samples from each
distribution. The mth element in a sorted sample from µ approaches F−1

µ (m/n) when n → ∞. With
that we can easily use numerical integration to evaluate the above integral.

D Model parameters

D.1 cWGAN Channel model

The model and training configuration of the cWGAN NAND channel model are presented in Table 1.
Both generator and critic are multi-layer perceptron (MLP) NNs. Each trainning step is composed of
five critic updated followed by a single update of the generator.

D.2 Neural modulator and demodulator

The neural modulator and demodulator parameters are presented in Table 2. Both the modulator and
the critic are MLP NNs with the same hidden layers and activations.

3



Table 1: The exact parameters of the cWGAN channel model

parameter value

learning rate 5 · 10−5

batch size 20000

generator hidden layer sizes [128, 64, 64, 16]

generator condition input
size 5

generator nz (number of
noise inputs) 1

noise input (z) N (0, 1)

generator out layer size 1

generator activation tanh

critic hidden layer sizes [128, 128, 64, 64, 16]

critic input layer size 6

critic out layer size 1

critic activation ReLU

gradient penalty coefficient 0.1

optimizer Adam

Table 2: The exact parameters of the neural-modulation system

parameter value

learning rate 5 · 10−5

batch size 5000

modulator hidden layer sizes [128, 128, 64]

modulator input layer sizes 5

modulator out layer size 1

modulator activation ReLU

demodulator hidden layer
sizes [128, 128, 64]

demodulator input layer size 3

demodulator out layer size 1

demodulator activation ReLU

optimizer Adam

4



References
[1] Kang-Deog Suh et al. A 3.3 V 32 Mb NAND flash memory with incremental step pulse

programming scheme. IEEE Journal of Solid-State Circuits, 30(11):1149–1156, 1995. A

[2] Rino Micheloni (Ed.). 3D Flash memories. Springer, 2016. A

[3] Allan Grønlund, Kasper Green Larsen, Alexander Mathiasen, and Jesper Sindahl Nielsen. Fast
exact k-means, k-medians and bregman divergence clustering in 1d. CoRR, abs/1701.07204,
2017. B.1

[4] Xiaolin Wu. Optimal quantization by matrix searching. Journal of Algorithms, 12(4):663–673,
1991. B.1

[5] Seungjae Lee et al. A 1Tb 4b/cell 64-stacked-WL 3D NAND flash memory with 12MB/s program
throughput. In 2018 IEEE International Solid - State Circuits Conference - (ISSCC), pages
340–342, 2018. B.2

5


