
A Appendix1

A.1 Toy problem2

In order to further understand how running statistics and current statistics with Gaussian noise as3

input compare against real data, we consider the following toy problem of binary classification of 2D4

points distributed as concentric circles (real data). We take a simple Multilayer perceptron (MLP)5

with 2 hidden layers and 2 BatchNorm layers. This is done to restrict the input and embedding space6

(output from penultimate layer) to 2 dimensions each which can be directly visualized, rather than7

looking at their distributions. Figure 1 shows the real data on which the MLP is trained, the input8

Gaussian noise samples, and the embeddings in each of the three cases, respectively from left to right.9

We see that, although the distribution of Gaussian noise is considerably different from real data, the10

embeddings are close to the embeddings of real data while using current statistics as compared to11

using running statistics.12

Figure 1: (Left) Circles data on which the MLP is trained. (Middle) Gaussian noise used as input to
the trained MLP. (Right) Scatter plot for embeddings in different cases.

A.2 Handling different number of BatchNorm layers13

Here we consider CIFAR10 dataset on which teacher is trained and the teacher-student pair of14

ResNet34-ResNet18. While performing distillation using Gaussian noise, we randomly choose a15

given percentage of BatchNorm layers (P) from the teacher network and restrict those layers to16

use running statistics, whereas the remaining BatchNorm layers use current statistics. We vary the17

percentage of such layers and report the result in Table 1. We observe that as the percentage of18

number of BatchNorm layers using running statistics increases, the student accuracy decreases. Note19

that, the number of BatchNorm layers in the teacher network remains same.20

Table 1: Varying percentage of BatchNorm layers (P) that uses running statistics. As the percentage
of number of BatchNorm layers using running statistics increases, the student accuracy decreases.

P Student accuracy

100 (Running statistics) 13.49
90 18.26
75 57.73
50 79.54
25 82.24

0 (Current statistics) 89.4

A.3 Adjusting the student21

From Figure 2, we observe that the student activations for original data with running statistics (which22

are adapted to Gaussian noise) follows a very different distribution compared to other two, and23

does not output meaningful information. Neurons in that case either explode or rarely activate. As24

described in Section 4.4 of the paper, the remedy is to use current statistics while inference or adjust25
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(a) Unclipped student activations (b) Distribution of student activations

Figure 2: Unclipped scatter plot (linked to Figure 3 (Right) of the paper) and accompanying distribu-
tion plot for ‘avgpool’ layer of the student network trained for CIFAR10 using our approach.

(a) (b)

Figure 3: (a) Varying number of batches to adjust student’s running statistics. We found that the
number of batches should be sufficient enough to get good student accuracy. (b) Varying teacher’s
batch size during distillation. We observe that the larger the batch size, the more accurate the
estimates, hence better distillation. The batch size does not need to be too large. Standard batch size
for the given dataset should result in good distillation.

the running statistics to make them adapt to real data distribution using a small subset of evaluation26

data. Figure 3a further shows the number of batches of evaluation data used to adjust the running27

statistics vs the student’s accuracy when those adjusted running statistics are used. Note that the28

batch size is kept constant at 16. We found that, similar to how the batch size needs to be just large29

enough while using current statistics, here as well, the number of batches or data in general needs to30

be sufficient enough to get a good performance out of the student model.31

A.4 Significance of Batch size during distillation32

As stated in Section 5.1 of the paper, as opposed to the traditional knowledge distillation, the teacher33

in our approach needs to rely on the current statistics of the input. In order to get the correct estimates34

in the BatchNorm layer, the batch size during distillation should be large enough. A comparison is35

shown in Figure 3b for the case of CIFAR10, where teacher is ResNet-34 and student is ResNet-18.36

Here, the distillation is performed with the given batch size for both teacher and student models, and37

the same batch size is used while inference to calculate current statistics.38

A.5 Experiments with Dead Leaves39

We conduct additional experiments to understand the potential of the proposed approach. In particular40

we notice the missing spatial consistency among pixels in the samples randomly drawn from a41

Gaussian distribution. We, therefore, consider random samples obtained using the Dead leaves42
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Figure 4: Dead leave samples used for KD during the experiment with CIFAR10

Table 2: CIFAR10 distillation in different cases (input fed to the networks and state of BatchNorm in
teacher network) across various Student network architectures. The numbers are accuracy obtained
on the test data. The teacher network here is a ResNet-34, which has an accuracy of 93.29%. The
BatchNorm layers in the student model use current statistics during evaluation. Note that RS is
running statistics and CS is current statistics.

Student ResNet34 ResNet18 MobileNetV2 WRN-28-10 WRN-16-8

Original data + RS (Oracle) 92.74 92.44 90.57 92.41 91.32
Gaussian noise + RS 13.18 13.49 12.43 14.56 14.35
Gaussian noise + CS (Ours) 87.11 85.98 82.47 88.12 88.76
Dead leaves + RS 42.45 37.04 31.53 37.59 37.14
Dead leaves + CS (Ours) 89.7 89.4 86.94 90.75 89.96

(Shapes)1 model. Figure 4 shows some of the Dead leave samples. We repeat the distillation43

experiments on CIFAR10 dataset with Dead leaves samples. We use the same hyperparameter44

values as the Guassian noise distillation experiments. In addition to ResNet-34, ResNet-18, and45

MobileNetV2, we consider WRN-28-10 and WRN-16-8 as student networks. Table 2 shows the46

obtained results. We observe a considerable improvement in the performance of the proposed47

approach with Dead leave samples. In particular, for MobileNetV2, test accuracy improves more48

than 4%. Furthermore, for WRN-28-10, the proposed noise-based KD (90.75%) is very close to49

the real data-based KD (92.41%). Moreover, we consider batch size varying from 32 to 512 and50

distill ResNet-34, pretrained on CIFAR10, into ResNet-18 using the proposed approach with Dead51

leaves samples. We observe test accuracy of the student distilled with batch size of 32, 64, 128, 256,52

and 512 as 88.09%, 88.21%, 89.35%, 89.4%, and 89.19%, respectively. This shows that the further53

improvements can be obtained by adjusting the nature of random samples.54

For further evaluation, we consider DenseNet169-DenseNet121 as teacher-student combination for55

CIFAR10 dataset, and perform distillation using the proposed approach with Dead leaves samples.56

Table 3 shows the obtained results where we observe similar improvements as with the previous57

experiments.58

1https://mbaradad.github.io/learning_with_noise/

Table 3: Results on CIFAR10 teacher - student pair of DenseNet169-DenseNet121.

Dataset CIFAR10

Teacher DenseNet169
Student DenseNet121

Teacher supervised 86.23

Original data + RS (Oracle) 86.23
Gaussian noise + RS 10.79
Gaussian noise + CS (Ours) 76.57
Dead leaves + RS 23.5
Dead leaves + CS (Ours) 78.33

3



A.6 Activation distributions59

This section contains the distributions of activations of the teacher networks with respect to the model60

architectures and datasets that they were trained on.61

A.6.1 CIFAR1062

(a) layer1 (b) layer2

(c) layer3 (d) layer4

Figure 5: Distributions for average activation value in ResNet-34 teacher network trained on CIFAR-
10 for different layers. Note that the layers follow the standard ResNet naming convention.

In Figure 5, we observe a similar trend in the activation distribution of all layers. The red curve63

denotes the activation distribution of original data with running statistics, which is the ideal case.64

However, the trivial use of Gaussian noise with running statistics (blue) results in a significantly65

different activation distribution. Our proposed approach makes sure that between Gaussian noise66

with running statistics and Gaussian noise with current statistics (black), the activation distribution67

of the latter is comparatively similar to the ideal case, thus reducing the shift. We observe a similar68

trend throughout all the following plots for SVHN (Figure 6), Food101(Figure 7), and CIFAR10069

(Figure 8).70
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A.6.2 SVHN71

(a) layer1 (b) layer2

(c) layer3 (d) layer4

(e) Avgpool

Figure 6: Distributions for average activation value in ResNet-18 teacher network trained on SVHN
for different layers. Note that the layers follow the standard ResNet naming convention.
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A.6.3 Food10172

(a) layer1 (b) layer2

(c) layer3 (d) layer4

(e) Avgpool

Figure 7: Distributions for average activation value in ResNet-101 teacher network trained on Food101
for different layers. Note that the layers follow the standard ResNet naming convention.
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A.6.4 CIFAR10073

(a) block1 (b) block2

(c) block3 (d) avgpool

Figure 8: Distributions for average activation value in WideResNet-28-10 teacher network trained
on CIFAR100 for different layers. Note that the layers follow the standard Wide-ResNet naming
convention.

A.7 Experiment settings74

In all of the experiments, we have used standard datasets and model architectures. For Food101, we75

use PyTorch built-in architectures. For SVHN and CIFAR10, we use a custom implementation2 of76

ResNet architectures, which is tailored towards low-resolution images by making the initial kernel77

shape smaller. For CIFAR100, we use an open-source implementation3 of Wide-ResNets.78

In all cases we have used Adam optimizer with a standard learning rate of 0.001, except for the79

training of CIFAR100 teacher, where we use SGD with learning rate of 0.1, momentum of 0.9, and80

weight decay of 0.0005. In all experiments, learning rate scheduler strategy is a standard one to81

reduce learning rate when a plateau hits. We train teacher and student models in each experiment for82

100 epochs and 200 epochs respectively, and wherever not specified we use a batch size of 256.83

2https://github.com/kuangliu/pytorch-cifar
3https://github.com/xternalz/WideResNet-pytorch
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All of the datasets used have predefined train-test splits with labels available for both, hence the same84

are used. Note that the train split is used only in case of training the teacher, and test split is used as85

evaluation data.86

State of BatchNorm. Handling BatchNorm layers to calculate either running statistics or current87

statistics is straightforward that can be done by putting the model in one of the two PyTorch modes88

- train and eval. Traditionally, during distillation using real data, we put the teacher in eval mode89

where BatchNorm layers use running statistics. For our approach to distill using Gaussian noise, we90

need the teacher to use current statistics, which is done by putting the teacher in train mode. Note91

that, even though the teacher is in train mode, it only allows calculation of current statistics for the92

BatchNorm layers. No update happens to the teacher’s weights as there is no optimizer bound to the93

teacher’s weights.94

All of the experiments are performed on a system with 16-core Intel x86 CPU with 128 GB RAM95

and NVIDIA RTX 3090 GPU.96
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