
APPENDIX A
RELATED WORK

Large language models and vision-language models.
Recent developments in various domains and applications have
been greatly influenced by the substantial progress achieved
through large language models (LLMs) and vision language
models (VLMs) [8, 39, 40, 4, 7, 1, 41, 22, 42, 23]. While these
models can already solve various tasks in a zero-shot man-
ner [1], well-designed prompts still serve an important role in
further eliciting more advanced capabilities. As demonstrated
by Brown et al. [4], few-shot prompting can match or surpass
the performance of fine-tuning on LLMs. Additionally, other
prompting techniques [50, 57, 19, 55] have been proposed
to improve LLMs’ reasoning capabilities. Although these
methodologies may initially appear enigmatic, they have been
empirically validated to consistently demonstrate scalability
across various models [4, 7, 1, 54]. Apart from the language
prompts, recent vision models [18, 58, 21] are capable of
supporting visual prompts, including points, boxes, masks,
and texts. Such visual prompts exhibit greater diversity in
both form and content, harnessing vision-language models
for various application scenarios like perception [53], image
editing [44] and reasoning [51].

To build an autonomous agent capable of making decisions
in an unstructured environment, the incorporation of robust
visual reasoning capabilities becomes imperative. Although
the current generation of VLMs cannot seamlessly engage in
zero-shot reasoning, they can still be effectively harnessed
across a diverse spectrum of tasks. Prior work SoM [51]
draws visual marks on the objects in an image using numbers
and segmentation masks, and demonstrates the mark-based
visual prompting scheme unleashes the reasoning capabilities
of GPT-4V, such as object counting and inferring spatial
relationship. Different from SoM [51], we want to leverage
GPT-4V for open-vocabulary robot manipulation. We represent
each manipulation phase with a set of affordance points and
motion waypoints. Instead of using object segmentation masks,
we use keypoints and grid cells as visual prompts as shown
in Fig. 1, and then query GPT-4V to choose the affordance
points and motion waypoints from the visual marks, followed
by executable point-based motion plans.

Foundation models in robotics. Building upon the suc-
cesses of large language models, the field of robotics is
currently witnessing a rising interest in utilizing LLMs in
various application scenarios. LLMs is capable of generat-
ing high-level task plan in natural language [2, 16, 15, 5],
executable programs [25, 45, 49] or value function [17, 26]
for low-level behaviours, environmental reward and feedback
for reinforcement learning [28, 20, 30, 56]. However, these
approaches necessitate the conversion of both the task and
the observations into the textual form. While this can be
easily accomplished in simulated environments with ground-
truth object state, tasks in real world require the utilization
of robust and precise perception modules. To perform open-
ended navigation and manipulation in real world [46, 5, 10],

open-vocabulary vision foundation models [18, 58, 21, 27,
34, 24] are often used to extract visual scene information
before converting the observation to textual form. However,
the process of converting an image into text may result in
the loss of important details, such as shape and geometric
information. With the recent advancements in vision language
models (VLMs), it is now conceivable that the role of state
estimation combined with language models can be replaced by
a single, powerful VLM, such as GPT-4V, which is leveraged
by MOKA. Hu et al. [14] utilizes GPT-4V to get semantic
language plans and convert each language plan to a set of
pre-defined low-level skills. Different from Hu et al. [14],
we represent manipulation affordance and motion using a
set of points, and query GPT-4V to select the corresponding
points (e.g. grasping point, function point) in each task, which
can be directly translated to low-level point-based motions.
While preserving the visual reasoning capabilities of VLMs,
MOKA provides a framework with more general and flexible
low-level motion, which doesn’t require prior knowledge about
a specific task compared to pre-defined skills.

Affordance reasoning for robotic control. The psycholo-
gist James J. Gibson, along with Eleanor J. Gibson, introduced
the concept of an affordance [11], which refers to the ability to
perform a certain action with an object in a given environment.
Much of the research related to affordances has concentrated
on predicting how to interact with objects, as demonstrated
by [47, 12, 3]. In the field of robot manipulation, keypoints are
often used to provide compact information about the environ-
ment and the objects [6, 9, 48, 31, 33, 32, 38], representing the
affordance in a structured way. Among these works, the most
related one to ours is KETO [38], which predicts affordance
and functional keypoints on the tool objects by learning from
interactions with a trajectory optimization formulation as in
Manuelli et al. [32]. In contrast to KETO [38], our keypoints
selection procedure doesn’t require any model training. We
design an automated process to annotate keypoints as visual
marks on a 2D image, and leverage the broad knowledge
from GPT-4V to select affordance and motion keypoints for
manipulation.

APPENDIX B
EXPERIMENT DETAILS

A. Environment
Our experiments are conducted in a real-world table-top

manipulation environment, which involves a 7-DoF Franka
Emika robot arm with a 2F-85 Robotiq gripper interacting with
various objects on the table at 5Hz. Our tabletop environment
has two fixed ZED 2.0 cameras and one ZED mini wrist
camera that can take RGBD images.

The top-down camera, which is the primary camera used in
this paper, provides RGB and the depth images for MOKA and
other baseline methods.

In addition, we also set up the front camera and the wrist
camera for more complete observation to distill the collected
robot experiences to the learned Octo policy [35]. The action
space of the robot is 7-dimensional, consisting of the 6DoF

end-effector twist defined in the Cartesian space with an
additional dimension of gripper position. Each task can consist
of multiple stages, each terminates within a fix horizon of 100
steps.

B. Task Design

We design various table-top manipulation tasks with a
diverse set of daily objects. Tab. II shows the language
description of the full list of tasks.

Table Wiping 1. Move the glasses into the glasses case
2. Sweep the trash with the broom

Watch Cleaning 1. Put the watch into the ultrasound cleaner
2. Press the power button

Gift Preparation 1. Put the golden filler in the gift box
2. Put the perfume in the gift box

Laptop Packing 1. Unplug the cable
2. Close the lid of the laptop

Fur Removing 1. Grasp the fur remover
2. Sweep the fur on the sweater with the remover

Drawer Closing 1. Close the drawer

Scissor Handing 1. Grasp the scissor
2. Hand the scissor to a human

Flower Arrangement 1. Grasp the pink roses on the table
2. Insert the roses into the vase

TABLE II: The language description of all the proposed tasks.
Each of the tasks consists of two stages except for the drawer
closing task.

We provide the comparative evaluation on the top four
tasks (Table Wiping, Laptop Packing, Gift Preparation and
Untrasound Cleaning) in the main paper, with additional
results of MOKA on other 4 tasks in our supplementary video.

C. Success Checking

To count the failure modes and collect successful trajecto-
ries, we first query VLM with task instruction and obtain the
point-based motion prediction. If the prediction is correct, it
will be executed on the robot. Otherwise, it will be counted
as the VLM reasoning failure as mentioned in Sec. III-B.
After executing the motion prediction from VLM, the human
expert will manually check if the task succeeds or not. If
the task is not successfully finished, it will be counted as an
execution failure. All the successful trajectories will be saved
as demonstrations for policy distillation.

APPENDIX C
IMPLEMENTATION DETAILS

We introduce the overview of MOKA in Alg. 1, and the
implementation details of each component in the following
sections.

A. High-level Task Reasoning

Given the initial observation image s0 and the language task
description l, we first query the VLM M with the language
instruction to produce the decomposed subtask, which con-
tains the structured information for the K subtasks, including

Algorithm 1 MOKA Pipeline
1: Input: Vision-language Model M, Task instruction l, text

prompt for high-level reasoning phigh, text prompt for
low-level reasoning plow, initial observation s0

2: Query M for high-level task reasoning, obtain yhigh =
M([phigh, l, s0]) which decompose the task into N sub-
tasks.

3: for subtask k = 0 · · ·N � 1 do
4: Get observation sk from the top-down camera
5: Propose keypoint and waypoint candidates and get

annotated image f(sk)
6: Query M for low-level motion reasoning, obtain

yklow = M([plow, ykhigh, f(sk)])
7: Execute yklow on the real robot
8: end for

descriptions of objects and desired motion. We provide the
high-level reasoning we used across all the tasks in Tab. III.

The response contains fields “object grasped”,
“object unattached” and “motion direction”, which will
be used for later stages in our pipeline, such as keypoint
proposal and motion prediction.

B. Point-based Affordance Proposal

After obtaining the high-level reasoning results, we can
know the objects involved in each subtask. Since VLM cannot
directly generate keypoints and waypoints, we need to propose
some candidate points and let VLM select corresponding
points through a visual question-answering way.

Keypoint proposal. We leverage GroundedSAM [43] to
extract segmentation masks conditioned on a text prompt,
which is designed to be a string of object names involved
in the current subtask (e.g. “trash, broom”). Given an image
of current observation and such a text prompt about the
involved object names, we first employ GroundingDINO [27]
to generate bounding boxes for the objects by conditioning
on the text prompt. Later, the annotated boxes given by
GroundingDINO [27] serve as the box prompts for SAM [18]
to generate corresponding segmentation masks for the objects.
We define the keypoints of each object to be a set of boundary
keypoints with a center keypoint. To extract them, we sample
K points on the contour of each object using farthest point
sampling [37], and also include the geometric mean point
of the object segmentation mask. We then plot these K + 1
keypoints on the 2D image as our keypoint proposals to the
VLM.

Waypoint proposal. Unlike keypoints, waypoints are often
the points in the free space that are not attached to any objects.
To perform waypoint selection, we evenly divide the full image
into 5 ⇥ 5 grid tiles, which mark the column as a, b, c, d, e
from left to right and rows as 1, 2, 3, 4, 5 from bottom to top,
as shown in Fig. 3. The waypoints will be sampled from the
predicted tile from VLM.

The input request contains:
• A string describes the multi-stage task.
• An image of the current table-top environment captured from a top-down camera.
• List of object candidates in the scene.

The output response is a list of dictionaries in the JSON form. Each dictionary specifies the information of a subtask, following the correct order of
executing the subtasks to solve the input task. Each dictionary contains these fields:

• instruction: A string to describe the subtask in natural language forms.
• object grasped: A string to describe the name of the object that the robot gripper will hold in hand while executing the task (e.g., the object to

be picked or used as a tool to interact with other objects). This field can be empty if there is no such object involved in this subtask.
• object unattached: A string to describe the name of the object that the robot gripper will interact with directly or via another object without

holding it in hand (e.g., the object to be touched by the tool, the target object where “object grasped” will be moved onto). This field can be
empty if there is no such object involved in this subtask.

• motion direction: A string to describe the direction of the robot gripper motion while performing the task (e.g., “from right to left”, “backward”,
“downward”).

TABLE III: The high-level reasoning prompt for all the tasks. It will decompose a multi-stage task into subtasks. The specified
output fields can be used for later low-level reasoning stage.

Fig. 3: The affordance proposal for the table wiping task
in stage 1 and stage 2. The keypoints are plotted on corre-
sponding objects for different stages based on the high-level
reasoning results. The annotated grid cells are used for VLM
to select the position of potential waypoints.

C. Low-level Motion Reasoning

After annotating the observation image using object key-
points and grid cells as described in the above section, we can
query VLM about low-level motion with annotated image and
text prompts. Firstly, we describe the text and image inputs to
the VLM using prompt IV.

Then we first explain the definition of keypoints and way-
points using prompt V.

After that, we can specify the output format and further
explain the role of each field using prompt VI. We can also
provide some step-by-step guidance about how the reason-
ing procedure should be done (similar to chain-of-thought
prompting [50]). Our complete low-level reasoning prompts
are covered in Tab. IV, V and VI.

D. Motion Execution

We can decompose a manipulation subtask into an optional
grasping phase and a manipulation phase. For some tasks like
tool using, the robot needs to first grasp an object before
making contact with another object. For other tasks where the
robot can directly interact with target objects (e.g. pushing,
pressing button), the “grasp keypoint” field will be empty. For
such tasks, we will skip the execution of grasping phase.

Grasping phase. We first sample 30 antipodal 4DoF grasp
proposals based on the primary camera’s depth image, which
is cropped by the bounding box of object grasped. Here, we
use the same antipodal grasp proposal method used in DexNet
2.0 [29]. We then lift the VLM-predicted grasp point from
2D image to the robot frame based on the primary camera’s
intrinsic and extrinsic parameters. After that, we can select
the nearest grasp proposal based on the lifted grasp point, and
execute the 4DoF grasp on the robot.

Manipulation phase. After obtaining the pre-contact tile
and post-contact tile, we first sample pre-contact waypoint
and post-contact waypoint from the predicted tiles. Since the
waypoints are in the free space, its 3D position cannot be
determined given its 2D projection on the image. So we also
assign the VLM-predicted height to them. We only consider
the cases where the waypoints are in same height with target
point (e.g. pushing), or above the target point (e.g. placing) in
most common table top manipulation scenarios.

We then sequentially move the function keypoint to the pre-
contact waypoint, target keypoint and post-contact waypoint to
perform a contact motion.

After both phases are successfully done, the robot need to
get the motion prediction for the next subtask. In order to
obtain a clean and non-occuluded image to perform low-level
reasoning, we first move the robot to the neural pose, get an
observation image from the top-down camera, and then resume
the robot. Subsequently, the robot will execute the predicted
motion until the multi-stage task is finished.

E. Evaluation
We evaluate MOKA in both zero-shot and in-context learn-

ing settings. For the zero-shot setting, we keep all the above
prompts unchanged but only change the language task de-
scription (e.g. “sweep the garbage”, “pick up the perfume”,
“press the button”).

For in-context learning settings, we first collect two exam-
ples from VLM’s successful predictions in different scenes
with scene and object variations. As shown in Fig. 4,
MOKA can be improved from such simple and intuitive in-
context examples, without intricate prompt engineering.

Please describe the robot gripper’s motion to solve the task by selecting keypoints and waypoints.
The input request contains:

• The task information with these fields:
– instruction: The task in natural language forms.
– object grasped: The object that the robot gripper will hold in hand while executing the task.
– object unattached: The object that the robot gripper will interact with either directly or via another object without holding it in hand.
– motion direction: The motion direction of the robot gripper or the in-hand object while performing the task.

• An image of the current table-top environment captured from a top-down camera, annotated with a set of visual marks:
– candidate keypoints on object grasped: Red dots marked as P [i] on the image.
– candidate keypoints on object unattached: Blue dots marked as Q[i] on the image.
– grid for waypoints: Grid lines that uniformly divide the images into tiles. The grid equally divides the image into columns marked as

a, b, c, d, e from left to right and rows marked as 1, 2, 3, 4, 5 from bottom to top.

TABLE IV: The description about image and text inputs in the low-level motion reasoning stage.

The motion consists of an optional grasping phase and a manipulation phase, specified by grasp keypoint, function keypoint, target keypoint,
pre contact waypoint, and post contact waypoint.
The definitions of these points are:

• grasp keypoint: The point on “object grasped” indicates the part where the robot gripper should hold.
• function keypoint: The point on “object grasped” indicates the part that will make contact with “object unattached”.
• target keypoint: If the task is pick-and-place, this is the location where “object grasped” will be moved to. Otherwise, this is the point on

“object unattached” indicating the part that will be contacted by “function keypoint”.
• pre contact waypoint: The waypoint in the free space that the functional point moves to before making contact with the “target keypoint”.
• post contact waypoint: The waypoint in the free space that the functional point moves to after making contact with the “target keypoint”.

TABLE V: The explanation about the defination of keypoints and waypoints.

The response should be a dictionary in JSON form, which contains:
• grasp keypoint: Selected from candidate keypoints marked as P [i] on the image. This will be empty if and only if object grasped is empty.
• function keypoint: Selected from candidate keypoints marked as P [i] on the image. This will be empty if and only if object grasped or

object unattached is empty.
• target keypoint: Selected from keypoint candidates marked as Q[i] on the image. This will be empty if and only if object unattached is empty.
• pre contact tile: The tile that the pre-contact waypoint should be in. This is selected from candidate tiles marked on the image.
• post contact tile: The tile that post-contact waypoint should be in. This is selected from candidate tiles marked on the image.
• pre contact height: The height of pre-contact waypoint as one of the two options “same” or “above” (same or higher than the height of making

contact with target keypoint).
• post contact height: The height of post-contact waypoints as one of the two options “same” or “above”.
• target angle: Describe how the object should be oriented during this motion in terms of the axis pointing from the grasping point to the function

point.
Think about this problem step by step and explain the reasoning steps. First, choose grasp keypoint, function keypoint, and target keypoint on the correct
parts of the objects. Next, describe which tile the target keypoint is located in. Then choose pre contact tile, post contact tile, pre contact height,
post contact height such that the resultant motion from pre-contact waypoint to target keypoint, then to post-contact waypoint in 3D follows the
”motion direction” input. Remember that the columns are marked as ’a’, ’b’, ’c’, ’d’, ’e’ from left to right, and the rows are marked as 1, 2, 3, 4, 5
from bottom to top.

TABLE VI: The output format of the low-level motion reasoning, including some further explanations.

APPENDIX D
ADDITIONAL RESULTS

A. Qualitative Analysis
Failure breakdown We analyze the failure cases of MOKA.

Trajectories with wrong predictions from the GPT-4V are
counted as reasoning failures. The following failure cases are
illustrated in the top row of Fig. 5, including grasping the
broom upside down due to confusing the the grasp point with
the function point, pointing the room to the wrong direction
due to wrong target angle, pressing the hinge of the laptop
due to the wrong target point. The trajectories with desired
VLM prediction but fail to execute successfully are counted
as execution failures. The following failure cases are illustrated
in the bottom row of Fig. 5. From left to right, the failures

include the gripper narrowly misses the button, the filler
getting disassembled in the middle of the trajectory, and the
cable slipped through the gripper fingers.

Robustness We analyze the robustness of MOKA with
respect to instruction variations, initialization variations, and
object variations. Fig. 6 provides a pictorial illustration of
MOKA’s predictions under different instructions and obser-
vations. Each image is queried with the language prompt
on the top within the same column. The examples in the
same column share similar initialization object positions and
orientations. The example in the first row uses the same set
of objects while the second row involves objects of alternative
geometries, colors, and materials. Some of these objects are
also deformable or transparent. Fig. 6 demonstrates consistent

{
 'grasp_keypoint': 'P1',
 'function_keypoint': '',
 'target_keypoint': 'Q1',
 'pre_contact_tile': '',
 'post_contact_tile': '',
 'pre_contact_height': 'above'
 <additional attributes>
}

{
 'grasp_keypoint': 'P5',
 'function_keypoint': '',
 'target_keypoint': 'Q1',
 'pre_contact_tile': '',
 'post_contact_tile': '',
 'pre_contact_height': 'above'
 <additional attributes>
}

{
 'grasp_keypoint': 'P1',
 'function_keypoint': 'P4',
 'target_keypoint': 'Q1',
 'pre_contact_tile': 'c4',
 'post_contact_tile': 'e4',
 'pre_contact_height': 'same'
 <additional attributes>
}

{
 'grasp_keypoint': 'P1',
 'function_keypoint': 'P3',
 'target_keypoint': 'Q1',
 'pre_contact_tile': 'c4',
 'post_contact_tile': 'e4',
 'pre_contact_height': 'same'
 <additional attributes>
}

{
 'grasp_keypoint': 'P1',
 'function_keypoint': '',
 'target_keypoint': 'Q1',
 'pre_contact_tile': 'c3',
 'post_contact_tile': 'c3',
 'pre_contact_height': 'above'
 <additional attributes>
}

{
 'grasp_keypoint': 'P1',
 'function_keypoint': '',
 'target_keypoint': 'Q1',
 'pre_contact_tile': 'c2',
 'post_contact_tile': 'c2',
 'pre_contact_height': 'above'
 <additional attributes>
}

{
 'grasp_keypoint': '',
 'function_keypoint': '',
 'target_keypoint': 'Q3',
 'pre_contact_tile': 'b3',
 'post_contact_tile': 'b3',
 'pre_contact_height': 'above'
 <additional attributes>
}

{
 'grasp_keypoint': '',
 'function_keypoint': '',
 'target_keypoint': 'Q1',
 'pre_contact_tile': 'b2',
 'post_contact_tile': 'b2',
 'pre_contact_height': 'above'
 <additional attributes>
}

{
 'grasp_keypoint': '',
 'function_keypoint': '',
 'target_keypoint': 'Q4',
 'pre_contact_tile': 'e4',
 'post_contact_tile': 'e4',
 'pre_contact_height': 'above'
 <additional attributes>
}

{
 'grasp_keypoint': '',
 'function_keypoint': '',
 'target_keypoint': 'Q1',
 'pre_contact_tile': 'c3',
 'post_contact_tile': 'e3',
 'pre_contact_height': 'above'
 <additional attributes>
}

{
 'grasp_keypoint': 'P1',
 'function_keypoint': '',
 'target_keypoint': 'Q1',
 'pre_contact_tile': 'c4',
 'post_contact_tile': 'c4',
 'pre_contact_height': 'above'
 <additional attributes>
}

{
 'grasp_keypoint': 'P1',
 'function_keypoint': '',
 'target_keypoint': 'Q1',
 'pre_contact_tile': 'b3',
 'post_contact_tile': 'b3',
 'pre_contact_height': 'above'
 <additional attributes>
}

{
 'grasp_keypoint': 'P5',
 'function_keypoint': '',
 'target_keypoint': 'Q1',
 'pre_contact_tile': 'c4',
 'post_contact_tile': 'c4',
 'pre_contact_height': 'above'
 <additional attributes>
}

{
 'grasp_keypoint': 'P1',
 'function_keypoint': '',
 'target_keypoint': 'Q1',
 'pre_contact_tile': 'b3',
 'post_contact_tile': 'b3',
 'pre_contact_height': 'above'
 <additional attributes>
}

{
 'grasp_keypoint': 'P3',
 'function_keypoint': '',
 'target_keypoint': '',
 'pre_contact_tile': 'd4',
 'post_contact_tile': 'd4',
 'pre_contact_height': 'above'
 <additional attributes>
}

{
 'grasp_keypoint': 'P4',
 'function_keypoint': '',
 'target_keypoint': '',
 'pre_contact_tile': 'a2',
 'post_contact_tile': 'a2',
 'pre_contact_height': 'above'
 <additional attributes>
}

Fig. 4: The in-context examples used in MOKA which are collected under object pose variations.

Fig. 5: Failure analysis. We breakdown the failure cases of the
variants of our approach using zero-shot prediction, distilled
policies, and in-context learning. We breakdown the failures
into reasoning failures (caused by errors in the affordance pre-
diction) and execution failures (caused by low-level motions).

point predictions within rows and columns, indicating that
MOKA is robust to the changes of the language instructions,
initialization, and objects for the same task.

B. Ablation Study
We design the following ablative studies to understand the

effectiveness of different design options in MOKA.
• MOKA w/o hierarchy: we can skip the high-level task

reasoning but directly ask for low-level motion reasoning
from GPT-4V. Here all the objects in the scene will be

Use the broom to sweep the trash
to the right side of the table.

Sweeping the trash from left to
right with the broom.

Get the trash to the right side.
There is a broom you can use.

1

 grasp keypoint function keypoint target keypoint waypoints

1

2
3

1

2 3
1

2
3

1 2
3

3
1

2
3

1
2

different instructions, different poses

different objects

Fig. 6: Robustness analysis. We analyze MOKA’s robustness
with respect to various instructions, initial arrangements, and
objects. Each column in the image uses the same language
instruction and similar initial arrangements of objects. The two
rows involve different objects.

annotated with keypoints, and VLM is queried to generate
point-based affordance directly from the annotated image.

• MOKA w/o description of points: we can remove the
description of the definition of keypoints and waypoints
in Tab. V.

• MOKA w/o chain-of-thought prompting: we can remove
the step-by-step guidance at the last paragraph in the
prompt in Tab. VI.

The results of our ablative studies are illustrated in Tab. VII.

For each task, we report the number of reasoning successes
rate out of 10 trials. The results demonstrate that our method
can obtain consistent improvements from all the above prompt-
ing designs. Specifically, MOKA w/o hierarchy decreases the
performance by a large margin, which indicates the importance
of subtask decomposition. MOKA w/o keypoint description
and MOKA w/o CoT can preserve most of the performance,
but still worse than MOKA on most of the tasks. As illustrated
in Fig. 7, VLM can make various mistakes in terms of key-
point and waypoint predictions. Specifically, for MOKA w/o
hierarchy, the VLM can make mistakes about subtask ordering,
which can cause a complete failure of the task.

C. Additional Tasks
For our four additional tasks, please refer to our website.

Table Wiping Watch Cleaning Gift Preparation Laptop Packing

Subtask I Subtask II Subtask I Subtask II Subtask I Subtask II Subtask I Subtask II

MOKA 0.7 0.7 0.8 1.0 1.0 0.8 0.6 0.8
MOKA w/o hierarchy 0.1 0.1 0.2 0.1 0.2 0.2 0.0 0.1
MOKA w/o keypoint description 0.5 0.6 0.7 0.8 0.9 0.6 0.4 0.8
MOKA w/o CoT 0.5 0.4 0.6 0.8 0.9 0.6 0.4 0.6

TABLE VII: Ablation studies on different prompt designs. Across 4 tasks, each consists of 2 subtasks, MOKA consistently
benefits from the three prompt designs.

{
 'grasp_keypoint': 'P2',
 'function_keypoint': '',
 'target_keypoint': 'Q4',
 'pre_contact_tile': '',
 'post_contact_tile': '',
 'pre_contact_height': 'above'
 <additional attributes>
}

{
 'grasp_keypoint': 'P1',
 'function_keypoint': '',
 'target_keypoint': 'Q4',
 'pre_contact_tile': 'c3',
 'post_contact_tile': 'e2',
 'pre_contact_height': 'same'
 <additional attributes>
}

{
 'grasp_keypoint': 'P2',
 'function_keypoint': '',
 'target_keypoint': 'Q2',
 'pre_contact_tile': '',
 'post_contact_tile': '',
 'pre_contact_height': 'above'
 <additional attributes>
}

{
 'grasp_keypoint': 'P2',
 'function_keypoint': '',
 'target_keypoint': 'Q4',
 'pre_contact_tile': 'd4',
 'post_contact_tile': 'e5',
 'pre_contact_height': 'same'
 <additional attributes>
}

Fig. 7: Qualitative results of ablation studies. Without keypoint description or chain-of-thought prompting, the model can make
mistakes in keypoint prediction (left column) and waypoint prediction (right column).

	Introduction
	Marking Open-vocabulary Keypoint Affordances
	Motion with Point-based Affordances
	Affordance Reasoning with Vision-Language Models
	Mark-Based Visual Prompting

	Experiments
	Experimental Setup
	Evaluation

	Conclusion and Discussion
	Appendix A: Related Work
	Appendix B: Experiment Details
	Environment
	Task Design
	Success Checking

	Appendix C: Implementation Details
	High-level Task Reasoning
	Point-based Affordance Proposal
	Low-level Motion Reasoning
	Motion Execution
	Evaluation

	Appendix D: Additional Results
	Qualitative Analysis
	Ablation Study
	Additional Tasks

