
ResMLP: Feedforward networks for image classification with
data-efficient training

Appendix

A Report on our exploration phase

As discussed in the main paper, our work on designing a residual multi-layer perceptron was inspired
by the Vision Transformer. For our exploration, we have adopted the recent CaiT variant [57] as
a starting point. This transformer-based architecture achieves state-of performance with Imagenet-
training only (achieving 86.5% top-1 accuracy on Imagenet-val for the best model). Most importantly,
the training is relatively stable with increasing depth.

In our exploration phase, our objective was to radically simplify this model. For this purpose, we
have considered the Cait-S24 model for faster iterations. This network consists of 24-layer with a
working dimension of 384. All our experiments below were carried out with images in resolution
224×224 and N = 16× 16 patches. Trained with regular supervision, Cait-S24 attains 82.7% top-1
acc. on Imagenet.

SA → MLP. The self-attention can be seen a weight generator for a linear transformation on the
values. Therefore, our first design modification was to get rid of the self-attention by replacing it
by a residual feed-forward network, which takes as input the transposed set of patches instead of
the patches. In other terms, in this case we alternate residual blocks operating along the channel
dimension with some operating along the patch dimension. In that case, the MLP replacing the
self-attention consists of the sequence of operations

(·)T — linear N × 4N — GELU — linear 4N ×N — (·)T

Hence this network is symmetrical in N and d. By keeping the other elements identical to CaiT, the
accuracy drops to 80.2% (-2.5%) when replacing self-attention layers.

Class-attention → class-MLP. If we further replace the class-attention layer of CaiT by a MLP as
described in our paper, then we obtain an attention-free network whose top-1 accuracy on Imagenet-
val is 79.2%, which is comparable to a ResNet-50 trained with a modern training strategy. This
network has served as our baseline for subsequent ablations. Note that, at this stage, we still include
LayerScale, a class embedding (in the class-MLP stage) and positional encodings.

Distillation. The same model trained with distillation inspired by Touvron et al. [56] achieves
81.5%. The distillation variant we choose corresponds to the “hard-distillation”, whose main
advantage is that it does not require any parameter-tuning compared to vanilla cross-entropy. Note
that, in all our experiments, this distillation method seems to bring a gain that is complementary and
seemingly almost orthogonal to other modifications.

Activation: LayerNorm → X. We have tried different activations on top of the aforementioned
MLP-based baseline, and kept GeLU for its accuracy and to be consistent with the transformer choice.

Activation top-1 acc.

GeLU (baseline) 79.2%
SILU 78.7%
Hard Swish 78.8%
ReLU 79.1%

I

Ablation on the size of the communication MLP. For the MLP that replaced the class-attention,
we have explored different sizes of the latent layer, by adjusting the expansion factor e in the sequence:
linear N × e×N — GELU — linear e×N ×N . For this experiment we used average pooling to
aggregating the patches before the classification layer.

expansion factor ×e ×0.25 ×0.5 ×1 ×2 ×3 ×4
Imnet-val top-1 acc. 78.6 79.2 79.2 79.3 78.8 78.8

We observe that a large expansion factor is detrimental in the patch communication, possibly because
we should not introduce too much capacity in this residual block. This has motivated the choice of
adopting a simple linear layer of size N ×N : This subsequently improved performance to 79.5% in a
setting comparable to the table above. Additionally, as shown earlier this choice allows visualizations
of the interaction between patches.

Normalization. On top of our MLP baseline, we have tested different variations for normalization
layers. We report the variation in performance below.

Pre-normalization top-1 acc.

Layernorm (baseline) 79.2%
Batch-Norm +0.8%
ℓ2-norm +0.4%
no norm (Aff) +0.4%

For the sake of simplicity, we therefore adopted only the Aff transformation so as to not depend on
any batch or channel statistics.

Position encoding. In our experiments, removing the position encoding does not change the results
when using a MLP or a simple linear layer as a communication mean across patch embeddings. This
is not surprising considering that the linear layer implicitly encodes each patch identity as one of the
dimension, and that additionally the linear includes a bias that makes it possible to differentiate the
patch positions before the shared linear layer.

B Analysis of interaction layers in 12-layer networks

In this section we further analyze the linear interaction layers in 12-layer models.

In Figure B.1 we consider a ResMLP-S12 model trained on the ImageNet-1k dataset, as explained in
Section 3.1, and show all the 12 linear patch interaction layers. The linear interaction layers in the
supervised 12-layer model are similar to those observed in the 24-layer model in Figure 2.

We also provide the corresponding sparsity measurements for this model in Figure B.2, analogous to
the measurements in Figure 3 for the supervised 24-layer model. The sparsity levels in the supervised
12-layer model (left panel) are similar to those observes in the supervised 24-layer model, cf. Figure 3.
In the right panel of Figure B.2 we consider the sparsity levels of the Distilled 12-layer model, which
are overall similar to those observed for supervised the 12-layer and 24-layer models.

II

Layer 1 Layer 2 Layer 3

Layer 4 Layer 5 Layer 6

Layer 7 Layer 8 Layer 9

Layer 10 Layer 11 Layer 12

Figure B.1: Visualisation of the linear interaction layers in the supervised ResMLP-S12 model. For each
layer we visualise the rows of the matrix A as a set of 14× 14 pixel images, for sake of space we only show the
rows corresponding to the 6×6 central patches.

III

0%

40%

60%

80%

90%
95%

1 2 3 4 5 6 7 8 9 10 11 12

F
ra

ct
io

n
 o

f
"s

m
al

l"
 c

o
m

p
o
n
en

ts

Layer

Linear: N->N
MLP: D->4D->D

Supervised

0%

40%

60%

80%

90%
95%

1 2 3 4 5 6 7 8 9 10 11 12

Layer

Linear: N->N
MLP: D->4D->D

Distilled from convnet

Figure B.2: Degree of sparsity (fraction of values small than 5% of the maximum) for Linear and MLP layers,
for ResMLP-S12 networks. The network trained in supervised mode and the one learned with distillation overall
have a comparable degree of sparsity. The self-supervised model, trained during 300 epochs vs. 400 for the other
ones, is less sparse on the patch communication linear layer.

IV

C Model definition in Pytorch

In Algorithm 1 we provide the pseudo-pytorch-code associated with our model.

Algorithm 1 Pseudocode of ResMLP in PyTorch-like style

No norm layer
class Affine(nn.Module):

def __init__(self, dim):
super().__init__()
self.alpha = nn.Parameter(torch.ones(dim))
self.beta = nn.Parameter(torch.zeros(dim))

def forward(self, x):
return self.alpha * x + self.beta

MLP on channels
class Mlp(nn.Module):

def __init__(self, dim):
super().__init__()
self.fc1 = nn.Linear(dim, 4 * dim)
self.act = nn.GELU()
self.fc2 = nn.Linear(4 * dim, dim)

def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.fc2(x)
return x

ResMLP blocks: a linear between patches + a MLP to process them independently
class ResMLP_BLocks(nn.Module):

def __init__(self, nb_patches ,dim, layerscale_init):
super().__init__()
self.affine_1 = Affine(dim)
self.affine_2 = Affine(dim)
self.linear_patches = nn.Linear(nb_patches, nb_patches) #Linear layer on patches
self.mlp_channels = Mlp(dim) #MLP on channels
self.layerscale_1 = nn.Parameter(layerscale_init * torch.ones((dim))) #LayerScale
self.layerscale_2 = nn.Parameter(layerscale_init * torch.ones((dim))) # parameters

def forward(self, x):
res_1 = self.linear_patches(self.affine_1(x).transpose(1,2)).transpose(1,2)
x = x + self.layerscale_1 * res_1
res_2 = self.mlp_channels(self.affine_2(x))
x = x + self.layerscale_2 * res_2
return x

ResMLP model: Stacking the full network
class ResMLP_models(nn.Module):

def __init__(self, dim, depth, nb_patches, layerscale_init, num_classes):
super().__init__()
self.patch_projector = Patch_projector()
self.blocks = nn.ModuleList([

ResMLP_BLocks(nb_patches ,dim, layerscale_init)
for i in range(depth)])

self.affine = Affine(dim)
self.linear_classifier = nn.Linear(dim, num_classes)

def forward(self, x):
B, C, H, W = x.shape
x = self.patch_projector(x)
for blk in self.blocks:

x = blk(x)
x = self.affine(x)
x = x.mean(dim=1).reshape(B,-1) #average pooling
return self.linear_classifier(x)

D Additional Ablations

Training recipe. DeiT [56] proposes a training strategy which allows for data-efficient vision
transformers on ImageNet only. In Table D.1 we ablate each component of the DeiT training to go
back to the initial ResNet50 training. As to be expected, the training used in the ResNet-50 paper [23]
degrades the performance.

Training schedule. Table D.2 compares the performance of ResMLP-S36 according to the number
of training epochs. We observe a saturation of the performance after 800 epochs for ResMLP. This
saturation is observed in DeiT from 400 epochs. So ResMLP needs more epochs to be optimal.

V

Ablation
Imagenet1k-val

top1-acc (%)

DeiT-style training 76.6

− CutMix [64] - Mixup [65] 76.0
− Random-erasing [67] 75.9
− RandAugment [13] 73.2
SGD optimizer 72.1
− Stochastic-depth [29] 70.7
− Repeated-augmentation [26] 69.4
120 epochs 67.7
Step decay 63.5
Batch size 256 69.3

ResNet-50 training 90 epochs 69.2

Table D.1: Ablations on the training strategy

Epochs 300 400 500 800 1000

Inet-val 79.3 79.7 80.1 80.4 80.3
Inet-real 85.5 85.6 85.9 85.8 85.7
Inet-V2 68.0 68.4 68.4 68.9 69.0

Table D.2: We compare the performance of ResMLP-S36 according to the number of training epochs.

Pooling layers. Table D.3 compare the performance of two pooling layers: average-pooling and
class-MLP, with different depth with and without distillation. We can see that class-MLP per-
forms much better than average pooling by changing only a few FLOPs and number of parameters.
Nevertheless, the gap seems to decrease between the two approaches with deeper models.

#layers Params Flops Training Pooling top-1 acc. on ImageNet

×10
6

×10
9 layer Inet-val Inet-real Inet-V2

12 15.4 3.0 regular average 76.6 83.3 64.4
24 30.0 6.0 regular average 79.4 85.3 67.9
36 44.7 8.9 regular average 79.7 85.6 68.4

12 17.7 3.0 regular class-MLP 77.5 84.0 66.1
24 32.4 6.0 regular class-MLP 79.8 85.6 68.6
36 47.1 8.9 regular class-MLP 80.5 86.3 69.5

12 15.4 3.0 distillation average 77.8 84.6 66.0
24 30.0 6.0 distillation average 80.8 86.6 69.8
36 44.7 8.9 distillation average 81.0 86.8 70.2

12 17.7 3.0 distillation class-MLP 78.6 85.2 67.3
24 32.4 6.0 distillation class-MLP 81.1 87.0 70.4
36 47.1 8.9 distillation class-MLP 81.4 87.3 70.7

Table D.3: We compare the performance of two pooling layers: average-pooling and class-MLP, with ResMLP-S
architecture. We compare different depth, regular training and distillation.

VI

