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A.1 Tiny ImageNet325

We used the Tiny ImageNet dataset for model training and evaluating model clean accuracy [34].326

Tiny ImageNet training dataset contains 100.000 colored images of 200 classes (500 for each class)327

at a resolution of 64⇥64 pixels. In addition, there are 50 additional images per class for validation.328

Tiny ImageNet is publicly available at https://www.kaggle.com/c/tiny-imagenet.329

A.2 Common Image Corruptions330

Tiny ImageNet-C is a dataset that contains the validation images from Tiny ImageNet under multiple331

forms of corruption [37]. Tiny ImageNet-C contains 15 different types of corruption at 5 levels of332

severity. These corruptions are Gaussian noise, shot noise, impulse noise, defocus blur, glass blur,333

motion blur. zoom blur, snow. frost, fog, brightness. contrast, elastic transform, pixelation, and JPEG334

compression. See Figure A.1 for examples.335

Figure A.1: Common image corruptions at Tiny ImageNet resolution. All 15 types of common
image corruptions with a severity of 3.
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A.3 Models336

The following VOneNet and ResNet18 descriptions in the present paper are derived from Baidya et337

al. 2021 [36].338

A.3.1 VOneNet339

VOneNet [18] is a convolutional neural network with a front-end (VOneBlock) simulating the primary340

visual cortex (V1). In the present study, we used a modified ResNet18 architecture as the architecture341

back-end. The VOneBlock contains a fixed weight Gabor filter bank (GFB) [38] used to mimic342

the receptive fields found in V1. Each Gabor filter is constructed using parameters generated from343

empirically observed distributions in preferred orientation, spatial frequency, and size of receptive344

fields [39], [40], [41]. The Gabor filters are generated to simulate 256 simple and 256 complex cell345

receptive fields. Several changes were made to the VOneNet for compatibility with Tiny ImageNet as346

the original model was built for ImageNet. Importantly, the field-of-view of the model corresponding347

to the 64⇥64px inputs was adjusted to 2deg, giving the model a resolution of 32 pixels per degree348

(ppd). Further details on these changes can be found in [36]. Code for the VOneNet is publicly349

available at https://github.com/dicarlolab/ vonenet under GNU General Public License v3.0.350

A.3.2 ResNet18351

We used a modified Resnet18 architecture as both a base model and as a back-end for VOneNet. The352

Resnet18 architecture was modified such that the stride of the first convolutional layer was changed353

from two to one and the first maxpool layer was kept at a stride of two. This results in a combined354

stride of two in the first block, which is the same as the VOneBlock. Baidya et al. [36] found that this355

modification leads to a significant improvement in accuracy, with the modified ResNet18 achieving356

an accuracy of 58.93% when trained and evaluated on Tiny ImageNet in comparison to 50.45% prior357

to the modification.358

A.4 Adding Divisive Normalization to VOneNet359

The implementation of divisive normalization in this study was based on its generalized form which360

features in Burg et al. [32]. Neuronal responses of a neuron l to stimulus x (yl(x)) are normalized by361

the a factor that depends on the responses of each neuron k in a pool of K neurons (yk(x) for k 2 K),362

according to the following equation:363

zl(x) =
ynl
l (x)

�nl
l + ⌃k2KPkl · ynk

k (x)
(1)

where zl represents the normalized response of neuron l, �l is a semi-saturation constant, nl repre-364

sents a learned parameter relative to neuron l to exponentiate yl(x) and �l, and Pkl represents the365

normalization weights of neuron k onto neuron l.366

We adapted this formulation to create the DNBlock to serve as a divisive normalization module367

directly following VOneBlock (see Figure ??). The output of the VOneBlock consists of 512 32⇥32368

response channels per image. For an image x and a Gabor filter l, the response channel is Zl(x). To369

divisively normalize the response channel Zl(x) with respect to each response channel Zk(x) in a370

pool of K response channels, we used the following version of the previous equation 1:371

Z̄l(x) =
Zl(x)

� +
P

k2K ↵kl · Zk(x)
(2)

where Z̄l(x) represents the divisively normalized response channel Zl(x), � is a bias term and ↵kl372

represents the normalization weights of response channel Zk(x) onto response channel Zl(x). The373

exponential term n has not been included as, in training, caused significant instability. In [32], the374

normalization weights Pkl were learned without constraint and covered 0.5 degrees of the visual375

field, which leads to only local interactions being captured. In our modified implementation, the376

normalization weights ↵kl were constrained to a two-dimensional Gaussian kernel, greatly reducing377

the number of parameters to be learned, and covered about two degrees of the visual field, thus378

capturing more distal interactions. The equation for building the Gaussian kernel is the following:379
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+
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�2

�◆
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where380

xrot = xcos(✓) + ysin(✓)

yrot = �xsin(✓) + ycos(✓)

Each parameter of this kernel is optimized during training. Each kernel is unique to each combination381

of channel being normalized and channel normalizing it, resulting in 5122 = 262, 144 total Gaussian382

kernels.383

A.5 Training384

Extensive details on image preprocessing, loss functions, and optimization, can be found in Baidya et385

al. [36]. In summary, image preprocessing consisted of randomly scaling each image by a factor of386

1-1.2 and randomly rotating each image between 30 and -30 degrees. Images were shifted between387

-5% and 5% of the images total height and width the vertical and horizontal directions respectively.388

Images were normalized by subtraction and division by [0.5, 0.5, 0.5]. The model was optimized389

using Stochastic Gradient Descent with a momentum of 0.9, a weight decay of 0.0005, and an initial390

learning rate of 0.1. The learning rate was reduced by a factor of 10 whenever 5 training epochs391

passed simultaneously with no improvement in accuracy. Models were trained with an image batch392

size of 128 over 60 epochs. Weight decay was disabled for all parameters in the DNBlock.393

A.6 Brain-Score Benchmarks394

The Brain-Score platform [35, 7] offers several benchmarks to test the biological accuracy. These395

benchmarks may be found at https://www.brain-score.org/. To compare the models with and396

without divisive normalization, we used benchmarks that measure the alignment of model to V1 at397

the level of single-neuron response properties. These benchmarks measure the similarity between398

the distributions of single neuron response properties in the model and V1. Detailed description399

of 22 of these benchmarks can be found in Marques, et al. 2021 [15]. These are grouped in seven400

categories: orientation tuning, spatial frequency tuning, receptive field size, surround modulation,401

texture modulation, response selectivity, and response magnitude. Here, we also included eight new402

benchmarks from contrast and luminance response property categories described in a study under403

review (will be updated to include citation).404

A.6.1 Contrast405

For these benchmarks, achromatic sinusoidal gratings of varying contrast are presented at the preferred406

orientation and spatial frequency of each model neuron. Then, for each neuron, its responses to407

different contrasts are fit using the hyperbolic function: R = Rmax
cn

cn+cn50
408

Distributions of four response properties were used to compare the fits of brain and model neu-409

rons; the number of standard contrast responses, the maximum response Rmax, the semisaturation410

constant(cn50), and the exponent n of the function.411

A.6.2 Luminance412

For luminance benchmarks, uniform stimuli varying from 0.1 cd/m2 to 100 cd/m2 in seven steps on a413

logarithmic scale were presented. For each neuron, luminance tuning curves were calculated and the414

responses to dark (below 3 cd/m2) and bright (above 3 cd/m2) stimuli were fitted logarithmically.415

Four response properties were used in these benchmarks: the number of surface luminance response416

neurons, the slope of the firing rate versus log(luminance) for dark and bright stimuli and the417

normalized difference between the two slopes.418

A.7 Detailed Results419

420
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Contrast
Benchmark VOneResnet18 Performance VOneResnet18 DN Perfor-

mance
Standard Neuron 1.000 0.996
Maximum Response 0.161 0.689

Semisaturation Constant 0.192 0.345

Exponent 0.677 0.736

Luminance
Benchmark VOneResnet18 Performance VOneResnet18 DN Perfor-

mance
Surface Responsive 0.762 0.852

Dark Slope 0.846 0.756
Bright Slope 0.385 0.367
Delta Slope Norm 0.746 0.706

Orientation Tuning
Benchmark VOneResnet18 Performance VOneResnet18 DN Perfor-

mance
Circular Variance 0.766 0.731
Or. Bandwidth 0.923 0.956

Orth. Pref. Ratio 0.725 0.675
OR. Selective 1.000 0.994
CV Bandwidth Ratio 0.770 0.793

Opr. CV Diff 0.886 0.883
Preferred Orientation 0.991 0.994

Spatial Frequency Tuning
Benchmark VOneResnet18 Performance VOneResnet18 DN Perfor-

mance
Peak SF. 0.981 0.929
SF. Selectivity 0.981 0.984

SF. Bandwidth 0.937 0.977

Receptive Field Size
Benchmark VOneResnet18 Performance VOneResnet18 DN Perfor-

mance
Grating Summation Field 0.589 0.426
Surround Diameter 0.370 0.392

Table A.1: Single neuron response property V1 benchmarks (Contrast, Luminance, Orientation

Tuning, Spatial Frequency Tuning, and Receptive Field Size categories).

421

422
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Surround Modulation
Benchmark VOneResnet18 Performance VOneResnet18 DN Perfor-

mance
Surround Suppression Index 0.385 0.954

Texture Modulation
Benchmark VOneResnet18 Performance VOneResnet18 DN Perfor-

mance
Texture Modulation Index 0.898 0.836
Absolute Texture Modula-
tion Index

0.944 0.880

Response Selectivity
Benchmark VOneResnet18 Performance VOneResnet18 DN Perfor-

mance
Texture Selectivity 0.795 0.958

Texture Sparseness 0.927 0.783
Texture Variance Ratio 0.719 0.674
Modulation Ratio 0.723 0.718

Response Magnitude
Benchmark VOneResnet18 Performance VOneResnet18 DN Perfor-

mance
Max DC 0.838 0.976

Max Texture 0.914 0.688
Max Noise 0.923 0.725

Table A.2: Single neuron response property V1 benchmarks (Surround Modulation, Texture

Modulation, Response Selectivity, and Response Magnitude categories).

Noise Blur

Clean Gaussian Shot Impulse Defocus Glass Motion Zoom
Model [%] [%] [%] [%] [%] [%] [%] [%]

ResNet18 58.5 20.0 23.1 22.4 13.9 18.9 19.6 15.9
VOneResNet18 55.3 24.3 28.7 24.4 15.6 19.7 21.6 17.2

VOneResNet18DN 57.8 25.2 29.2 24.6 15.0 19.7 21.4 16.6

Weather Digital

Snow Frost Fog Bright. Contrast Elastic Pixelate JPEG
Model [%] [%] [%] [%] [%] [%] [%] [%]

ResNet18 24.1 25.2 21.6 27.0 9.8 24.3 37.8 32.0
VOneResNet18 27.5 27.6 22.9 28.9 9.5 28.5 36.6 37.3
VOneResNet18DN 29.0 30.1 29.2 31.6 18.3 28.5 38.5 38.2

Table A.3: Absolute accuracies (top-1) of Resnet18, standard VOneResnet18 and VOneRes-

net18DN (averaged over perturbation severities).
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Figure A.2: Absolute accuracies (top-1) on common corruptions for ResNet18, VOneResNet18,

and VOneResNet18DN. All 15 types of common corruptions at all perturbation severity levels.
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