
A Forward-mode evaluation

In this section, we define several operators that we will use to mathematically define operators used
within deep learning to implement gradient estimators.

To define these, we will need to distinguish how deep learning libraries evaluate their functions.
[13] handles this using a different kind of equality, denoted 7→. Unfortunately, it is not formally
introduced, making it unclear as to what rules are allowed with this equality. For instance, they
define the DiCE operator as

1. (f(θ)) 7→ 1
2. ∇θ (f(θ)) = (f(θ))∇θf(θ)

However, without a clearly defined meaning of 7→ ‘equality under evaluation’, it is unclear whether
the following is allowed:

∇θ (f(θ)) 7→ ∇θ1 = 0

This would lead to a contradiction, as by definition

∇θ (f(θ)) = (f(θ))∇θf(θ) 7→ ∇θf(θ)

. We first introduce an unambigiuous formulation for forward mode evaluation that does not allow
such inconsistencies.
Definition 2. The stop-grad operator ⊥ is a function such that ∇x⊥(x) = 0. The forward-mode
operator −→ is a function such that, for well formed formulas a and b,

1.
−−→
⊥(a) = −→a

2.
−−−→
a+ b = −→a +

−→
b

3.
−−→
a · b = −→a ·

−→
b

4.
−→
ab = −→a

−→
b

5. −→c = c, if c is a constant or a variable.

6.
−→−→a = −→a

Additionally, we define the DiCE operator (x) = exp(x−⊥(x))

When computing the results of a function f(x), Deep Learning libraries instead compute
−−→
f(x).

Importantly,
−−−−−→
∇xf(x) does not always equal ∇x

−−→
f(x). For example,

−−−−−−−→
∇x⊥(f(x)) =

−→
0 = 0, while

∇x
−−−−−→
⊥(f(x)) = ∇x

−−→
f(x).

In the last example, the derivative will first have to be rewritten to find a closed-form formula that
does not contain the −→ operator. Furthermore, ⊥(f(x)) only evaluates to a closed-form formula if
it is reduced using derivation, or if it is enclosed in −→.

We note that Ep(x)[
−−→
f(x)] =

−−−−−−−→
Ep(x)[f(x)] for both continuous and discrete distributions p(x) if

−−→
p(x) = p(x). This is easy to see for discrete distributions since these are weighted sums over
an amount of elements. For continuous distributions we can use the Riemann integral definition.

Ep(x)[
−−→
f(x)] =

∫
p(x)
−−→
f(x)

Proposition 1. 1:
−−−−−→

(f(x)) = 1 and 2: ∇x (f(x)) = (f(x)) · ∇xf(x)

Proof. 1.
−−−−−→

(f(x)) =
−−−−−−−−−−−−−−−→
exp(f(x)−⊥(f(x)))

= exp(
−−→
f(x)−

−−−−−→
⊥(f(x)))

= exp(f(x)− f(x)) = 1
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2.

∇x (f(x)) = ∇x exp(f(x)−⊥(f(x)))

= exp(f(x)−⊥(f(x)))∇x(f(x)−⊥(f(x)))

= (f(x))(∇xf(x)−∇x⊥(f(x))∇xf(x))

= (f(x))(∇xf(x)− 0 · ∇xf(x)) = (f(x))∇xf(x)

Furthermore, unlike in the DiCE paper, with this notation
−−−−−−−→
∇x (f(x)) unambiguously evaluates to

−−−−−→
∇xf(x), as

−−−−−−−→
∇x (f(x)) =

−−−−−−−−−−−→
(f(x))∇xf(x) =

−−−−−→
(f(x)) ·

−−−−−→
∇xf(x) =

−−−−−→
∇xf(x). Note that, although

this is not a closed-form formula, by finding a closed-form formula for∇xf(x), this can be reduced
to ∇xf(x).

Proposition 2. For any two functions f(x) and l(x), it holds that for all n ∈ (0, 1, 2, ...),
−−−−−−−−−−−−→
∇(n)
x (l(x)f(x)) =

−−−−→
g(n)(x).

where g(n)(x) = ∇xg(n−1)(x) + g(n−1)(x)∇xl(x) for n > 0, and g(0)(x) = f(x).

For this proof, we use a similar argument as in [13].

Proof. First, we show that (l(x))g(n)(x) = ∇(n)
x (l(x))f(x). We start off with the base case,

n = 0. Then, (l(x))g(0)(x) = (l(x))f(x).

Next, assume the proposition holds for n, that is, (l(x))g(n)(x) = ∇(n)
x (li)f(x). Consider n+1.

(l(x))g(n+1)(x) = (l(x))(∇xg(n)(x) + g(n)(x)∇xl(x))

= ∇x (l(x))g(n)(x)

= ∇x(∇(n)
x ( (l(x))f(x)))

= ∇(n+1)
x (l(x))f(x)

Where from line 1 to 2 we use the DiCE proposition in the reversed direction. From 2 to 3 we use
the inductive hypothesis.

We use this result, (l(x))g(n)(x) = ∇(n)
x (l(x))f(x), to prove our proposition. Since −→a =

1 · −→a =
−−−→

(li)
−→a =

−−−−→
(li)a,

−−−−→
g(n)(x) =

−−−−−−−−−−→
(l(x))g(n)(x) =

−−−−−−−−−−−−→
∇(n)
N (l(x))f(x)

Definition 3. We say a function f is identical under evaluation if for all n ∈ (0, 1, 2, ...),
−−−−−−→
∇(n)
x f(x) = ∇(n)

x f(x). Furthermore, we say that two functions f and g are equivalent under

evaluation, denoted f−→≡g, if for all n ∈ (0, 1, 2, ...),
−−−−−−→
∇(n)
x f(x) =

−−−−−−→
∇(n)
x g(x).

Every function that does not contain a stop-grad operator (⊥) is identical under evaluation, although
functions that are identical under evaluation can have stop-grad operators (for example, consider
f(x)−→≡f(x) + ⊥(f(x) − f(x))). Note that

−−→
f(x) = f(x) does not necessarily mean that f is

identical under evaluation, since for instance the function f ′(x) = (2x)f(x) has
−−−→
f ′(x) = f(x),

but
−−−−−→
∇xf ′(x) =

−−−−−−−−−−−−−−→
(2x)(∇xf(x) + 2) = ∇xf(x) + 2 6= ∇xf ′(x) = (2x)(∇xf(x) + 2).

Proposition 3. If f(x) and l(x) are identical under evaluation, then all g(n)(x) from n = 0, ..., n
as defined in Proposition 2 are also identical under evaluation.
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Proof. Consider n = 0. Then g(0)(x) = f(x). Since f(x) is identical under evaluation, g(0) is as
well.

Assume the proposition holds for n, and consider n + 1. Let m be any positive number.
−−−−−−−−−−→
∇(m)
x g(n+1)(x) =

−−−−−−−−−−−−−−−−−−−−−−−−−→
∇(m)
x (∇xg(n)(x) + g(n)(x)∇xl(x)). Since g(n)(x) is identical under evalua-

tion by the inductive hypothesis,
−−−−−−−−−−−→
∇(m)
x ∇xg(n)(x) =

−−−−−−−−−−→
∇(m+1)
x g(n)(x) = ∇(m+1)

x g(n)(x).

Next, using the general Leibniz rule, we find that
−−−−−−−−−−−−−−→
∇(m)
x g(n)(x)∇xl(x) =∑m

j=0

( m
j∇(m−j)

x g(n)(x)

)−−−−−−−→
∇(j+1)
x l(x). Since both g(n)(x) and l(x) are identical under evalua-

tion, this is equal to
∑m
j=0

(
m
j

)
∇(m−j)
x g(n)(x)∇(j+1)

x l(x)) = ∇(m)
x g(n)(x)∇xl(x).

Therefore,
−−−−−−−−−−→
∇(m)
x g(n+1)(x) = ∇(m)

x (∇xg(n)(x) + g(n)(x)∇xl(x)) = ∇(m)
x g(n+1)(x), which shows

that g(n+1)(x) is identical under evaluation.

We next introduce a very useful proposition that we will use to prove unbiasedness of the Storchastic
framework. This result was first used without proof in [10].

Proposition 4. For any three functions l1(x), l2(x) and f(x), (l1(x) +
l2(x))f(x)−→≡ (l1(x)) (l2(x))f(x). That is, for all n ∈ (0, 1, 2, ...).

−−−−−−−−−−−−−−−−−−→
∇(n)
x (l1(x) + l2(x))f(x) =

−−−−−−−−−−−−−−−−−−−→
∇(n)
x (l1(x)) (l2(x))f(x)

Proof. Start with the base case n = 0. Then,
−−−−−−−−−−−−−−−→

(l1(x) + l2(x))f(x) =
−−→
f(x) = 1 · 1 ·

−−→
f(x) =

−−−−−−−−−−−−−−−→
(l1(x)) (l2(x))f(x).

Next, assume the proposition holds for n. Then consider n+ 1:

−−−−−−−−−−−−−−−−−−−−−→
∇(n+1)
x (l1(x)) (l2(x))f(x)

=
−−−−−−−−−−−−−−−−−−−−−→
∇(n)
x ∇x (l1(x) (l2(x))f(x))

=
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
∇(n)
x (l1(x)) (l2(x))(f(x)∇xl1(x) + f(x)∇xl2(x) +∇xf(x))

=
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
∇(n)
x (l1(x)) (l2(x))(f(x)∇x(l1(x) + l2(x)) +∇xf(x))

Define function h(x) = f(x)∇x(l1(x) + l2(x)) + ∇xf(x). Since the proposition works for any
function, we can apply the inductive hypothesis replacing f(x) by h(x):

−−−−−−−−−−−−−−−−−−−→
∇(n)
x (l1(x)) (l2(x))h(x)

−−−−−−−−−−−−−−−−−−→
∇(n)
x (l1(x) + l2(x))h(x)

Finally, we use Proposition 2 with g(1)(x) = h(x) and l(x) = l1(x) + l2(x):

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
∇(n)
x (l1(x) + l2(x))f(x)∇x(l1(x) + l2(x)) +∇xf(x)

=
−−−−−−−−−−−−−−−−−−−−−→
∇(n)
x ∇x (l1(x) + l2(x))f(x) =

−−−−−−−−−−−−−−−−−−−−→
∇(n+1)
x (l1(x) + l2(x))f(x)

It should be noted that it cannot be proven that ∇(n)
x (

∑k
i=1 li(x))f(x) =

∇(n)
x (

∑k−1
i=1 li(x)) (lk(x))f(x) because the base-case cannot be proven without the −→

operator interpreting the operator.

Also note the parallels with the exponential function, where el1(x)+l2(x) = el1(x)el2(x).
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B The Storchastic framework (formal)

In this section we formally introduce Storchastic to provide the mathematical machinery needed to
prove our results. Let S1, . . . ,Sk be a partition of S≺F . Assume the sets S1, . . . ,Sk are topolog-
ically sorted, that is, there is no i < j such that there exists a stochastic node S ∈ Sj that is also
in S<i =

⋃j−1
j=1 Sj . We use assignment xi to denote a set that gives a value to each of the random

variables S ∈ Si. That is, xi ∈
∏
S∈Si ΩS . We additionally use x<i to denote a set that gives

values to all random variables in S<i. In the same vein, Xi denotes a set of sets of values xi, that is
Xi = {xi,1, ...,xi,|Xi|}.
Definition 4. For each partition Si there is a gradient estimator 〈qi, wi, li, ai〉 where q(Xi|x<i) is
a distribution over a set of values Xi conditioned on x<i, wi :

∏
S∈Si ΩS → R+ is the weighting

function that weights different values xi, li :
∏
S∈Si ΩS → R is the gradient function that provides

the gradient produced by each xi, and the control variate ai :
∏i
j=1

∏
S∈Sj ΩS → R is a function

of both xi and x<i.

q(Xi|x<i) is factorized as follows: Order stochastic nodes Si,1, . . . , Si,m ∈ Si topologically, then
q(Xi|x<i) =

∏m
j=1 q(Xi,j |Xi,<j ,x<i).

In the rest of this appendix, we will define some shorthands to declutter the notation, as follows:

• wi = wi(xi) and Wi =
∏i
j=1 wi

• li = li(xi) and Li =
∑i
j=1 li

• ai = ai(x<i,Xi)
• q1 = q(X1) and qi = q(Xi|x<i) (for i > 1)

These interfere with the functions and distributions themselves, but it should be clear from context
which of the two is meant.

Proposition 5. Given a topologically sorted partition S1, ...,Sk of S≺F and corresponding gradient
estimators 〈qi, wi, li, ai〉 for each 1 ≤ i ≤ k, the evaluation of the n-th order derivative of the

Storchastic surrogate loss
−−−−−−−−−→
∇(n)
N SLStorch of Equation 2 is equal in expectation to

Eq1
[ ∑
x1∈X1

−−−−−−→
∇(n)
N w1a1 + . . .Eqk

[ ∑
xk∈Xk

−−−−−−−−−−−−−−→
∇(n)
N Wk (Lk−1)ak +

−−−−−−−−−−−→
∇(n)
N Wk (Lk)F

]
. . .

]
(3)

where the i-th term in the dots is Eqi [
∑

xi∈Xi

−−−−−−−−−−−→
∇(n)
N Wi Li−1ai + (. . . )]

Proof. By moving the weights inwards and using the Li notation,

−−−−−−−−−→
∇(n)
N SLStorch =

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
∇(n)
N

∑
x1∈X1

w1

[
a1 + · · ·+

∑
xk∈Xk

wk

[
(Lk−1)ak + (Lk)C

]
. . .
]]

=
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
∇(n)
N

∑
x1∈X1

w1a1 + · · ·
∑

xi∈Xi

Wi (Li−1)ai + . . .

−−−−−−−−−−−−−−−−−−−−−−−−−−−→
+
∑

xk∈Xk

Wk (Lk−1)ak +Wk (Lk)C

=
∑

x1∈X1

−−−−−−→
∇(n)
N w1a1 + · · ·

∑
xi∈Xi

−−−−−−−−−−−−−→
∇(n)
N Wi (Li−1)ai + . . .

+
∑

xk∈Xk

−−−−−−−−−−−−−−→
∇(n)
N Wk (Lk−1)ak +

−−−−−−−−−−−→
∇(n)
N Wk (Lk)C

This is all under sampling X1 ∼ q(X1),X2 ∼ q(X2|x1), ...,Xk ∼ q(Xk|x<k). Taking expectations
over these distributions before the respective summation over X i gives the result.
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In the Storchastic framework, we require that E[F ] is identical under evaluation, that is,
−−−−−−→
∇(n)
N E[F ] =

∇(n)
N E[F ]. This in practice means that the probability distributions and functions in the stochastic

computation graph contain no stop gradient operators (⊥).

Using Proposition 2, we give a recursive expression for
−−−−−−−−−−−−−−−−−−→
∇(n)
N wi

(
ai + (li)f(xi)

)
.

Proposition 6. For any gradient estimator 〈qi, wi, li, ai〉 it holds that
−−−−−−−−−−−−−−−−−−−−−−−−→
∇(n)
N wi

(
(Li−1)ai + (li)f(xi)

)
=
−−−−−−−−−−−−−−−−−−−−−→
∇(n)
N wi (Li−1)ai + g

(n)
i (xi)

where g(n)
i (xi) = ∇Ng(n−1)

i (xi) + g
(n−1)
i ∇N li for n > 0, and g(0)

i (xi) = wif(xi).

Proof. Using Proposition 2, we find that
−−−−−−−−−−−−−−−−−−−−−→
∇(n)
N wi (Li−1)ai + g

(n)
i (xi) =

−−−−−−−−−−−−→
∇(n)
N wi (Li−1)ai +

−−−−−−−−−−−−→
∇(n)
N wi (li)f(xi)

=
−−−−−−−−−−−−−−−−−−−−−−−−→
∇(n)
N wi( (Li−1)ai + (li)f(xi))

Proposition 6 is useful because it gives a fairly simple recursion to proof unbiasedness of any-order
estimators with, when the gradient estimator is implemented in Storchastic. Note that it doesn’t
itself show that such gradient estimators are unbiased in any-order derivatives.

B.1 Unbiasedness of the Storchastic framework

In this section, we use the equivalent expectation from Proposition 5
Theorem 1. Let 〈qi, wi, li, ai〉 for i = 1, ..., k be a sequence of gradient estimators. Let the stochas-
tic computation graph E[F ] be identical under evaluation2. The evaluation of the nth-order deriva-
tive of the Storchastic surrogate loss is an unbiased estimate of∇(n)

N E[F ] , that is

∇(n)
N E[F ] = Eq1

[ ∑
x1∈X1

−−−−−−→
∇(n)
N w1a1 + . . .Eqk

[ ∑
xk∈Xk

−−−−−−−−−−−−−−→
∇(n)
N Wk (Lk−1)ak +

−−−−−−−−−−−→
∇(n)
N Wk (Lk)F

]
. . .

]

if the following conditions hold for all estimators i = 1, ..., k and all preceding orders of differenti-
ation n ≥ m ≥ 0:

1. Eqi [
∑

xi∈Xi

−−−−−−−−−−−−−→
∇(m)
N wi (li)f(xi)] =

−−−−−−−−−−−→
∇(m)
N ESi [f(xi)] for any deterministic function f ;

2. Eqi [
∑

xi∈Xi

−−−−−−→
∇(m)
N wiai] = 0;

3. for n ≥ m > 0, Eqi [
∑

xi∈Xi

−−−−−→
∇(m)
N wi] = 0;

4.
−−−−−−→
q(Xi|x<i) = q(Xi|x<i).

Proof. In this proof, we make extensive use of the general Leibniz rule, which states that

∇(n)
x f(x)g(x) =

n∑
m=0

(
n

m

)
∇(n−m)
x f(x)∇(m)

x g(x).

We consider the terms Eqi
[∑

xk∈Xk

−−−−−−−−−−−−−→
∇(n)
N Wi (Li−1)ai

]
and the term

Eqk
[∑

xk∈Xk

−−−−−−−−−−−→
∇(n)
N Wk (Lk)F

]
separately, starting with the first.

2In other words, all deterministic functions, and all probability measures associated with the stochastic
nodes are identical under evaluation.
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Lemma 1.1. For any positive number 1 ≤ j ≤ k,

Eq1
[ ∑
x1∈X1

. . .Eqj
[ ∑
xj∈Xj

−−−−−−−−−−−→
∇(n)
N Wj (Lj)aj

]
. . .

]
= 0.

Proof. We will prove the lemma using induction. First, let j = 1. Then, using condition 2,

Eq1
[ ∑
x1∈X1

−−−−−−→
∇(n)
N w1a1

]
= 0

Next, assume the inductive hypothesis holds for j, and consider the inner expectation of j + 1:

=Eqj+1

[ ∑
xj+1∈Xj+1

−−−−−−−−−−−−−−−→
∇(n)
N (Lj)aj+1Wj+1

]
= Eqj+1

[ ∑
xj+1∈Xj+1

−−−−−−−−−−−−−−−−−→
∇(n)
N wj+1aj+1 (Lj)Wj

]

=Eqj+1

[ ∑
xj+1∈Xj+1

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
n∑

m=0

(
n

m

)
∇(m)
N wj+1aj+1∇(n−m)

N (Lj)Wj

]
Next, note that Wj and Aj are both independent of xj+1. Therefore, they can be moved out of
the expectation. To do this, we implicitly use condition 4 to move the −→ operator through the
expectation.

Eqj+1

[ ∑
xj+1∈Xj+1

n∑
m=0

(
n

m

)−−−−−−−−−−−−−−−−−−−−−−−→
∇(m)
N wj+1aj+1∇(n−m)

N (Lj)Wj

]

=

n∑
m=0

(
n

m

)−−−−−−−−−−−−→
∇(n−m)
N (Lj)WjEqj+1

[ ∑
xj+1∈Xj+1

−−−−−−−−−−→
∇(m)
N wj+1aj+1

]

By condition 2 of the theorem, Eqj+1

[∑
xj+1∈Xj+1

−−−−−−−−−−→
∇(m)
N wj+1aj+1

]
= 0. Therefore, we can re-

move this term and conclude that

Eq1
[ ∑
x1∈X1

. . .Eqj+1

[ ∑
xj+1∈Xj+1

−−−−−−−−−−−−−−−→
∇(n)
N Wj+1 (Lj)aj+1

]
. . .

]
= 0.

Next, we consider the term Eqk
[∑

xk∈Xk

−−−−−−−−−−−→
∇(n)
N Wk (Lk)F

]
and prove using induction that

Lemma 1.2. For any 1 ≤ j ≤ k, it holds that

Eq1
[ ∑
x1∈X1

. . .Eqj
[ ∑
xj∈Xj

−−−−−−−−−−−→
∇(n)
N Wj (Lj)F

′
]
. . .

]
= ∇(n)

N E[F ]

where F ′ = ESj+1,...,Sk [F ]. Furthermore, for 1 < j ≤ k, it holds that

Eq1
[ ∑
x1∈X1

. . .Eqj
[ ∑
xj∈Xj

−−−−−−−−−−−→
∇(n)
N Wj (Lj)F

′
]
. . .

]

=Eq1
[ ∑
x1∈X1

. . .Eqj−1

[ ∑
xj−1∈Xj−1

−−−−−−−−−−−−−−−−−−−→
∇(n)
N Wj−1 (Lj−1)ESj [F ′]

]
. . .

]

Proof. The base case j = 1 directly follows from condition 1:

Eq1
[ ∑
x1∈X1

−−−−−−−−−−→
∇(n)
N w1 (li)F

′
]

=
−−−−−−−−→
∇(n)
N ES1 [F ′] = ∇(n)

N E[F ],

since E[F ] = ES1,...,Sk [F ] and by the assumption that E[F ] is identical under evaluation.
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Assume the lemma holds for j < k and consider j + 1. First, we use Proposition 4 and reorder the
terms:

Eqj+1

[ ∑
xj+1∈Xj+1

−−−−−−−−−−−−−−−→
∇(n)
N Wj+1 (Lj+1)F ′

]

=Eqj+1

[ ∑
xj∈Xj

−−−−−−−−−−−−−−−−−−−−−−−−−→
∇(n)
N Wj+1 (Lj+1)wj+1 (lj+1)F ′

]
Next, we again use the general Leibniz rule:

Eqj+1

[ ∑
xj+1∈Xj+1

−−−−−−−−−−−−−−−−−−−−−→
∇(n)
N Wj (Lj)wj+1 (lj+1)F ′

]

=Eqj+1

[ ∑
xj+1∈Xj+1

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
n∑

m=0

(
n

m

)
∇(n−m)
N Wj (Lj)∇(m)

N wj+1 (lj+1)F ′
]

where we use for the general Leibniz rule f = Wj (Lj) and g = wj+1 (lj+1)F ′. Note that
∇(n−m)
N Wj (Lj) does not depend on xj+1. Therefore,

Eqj+1

[ ∑
xj+1∈Xj+1

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
n∑

m=0

(
n

m

)
∇(n−m)
N Wj (Lj)∇(m)

N wj+1 (lj+1)F ′
]

=

n∑
m=0

(
n

m

)−−−−−−−−−−−−→
∇(n−m)
N Wj (Lj)Eqj+1

[ ∑
xj+1∈Xj+1

−−−−−−−−−−−−−−→
∇(m)
N wj+1 (lj+1)F ′

]

=

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
n∑

m=0

(
n

m

)
∇(n−m)
N Wj (Lj)∇(m)

N ESj+1
[F ′]

=
−−−−−−−−−−−−−−−−−→
∇(n)
N Wj (Lj)ESj+1

[F ′]

From lines 2 to 3, we use condition 1 to reduce the expectation. In the last line, we use the general
Leibniz rule in the other direction. We showed that

Eq1
[ ∑
x1∈X1

. . .Eqj+1

[ ∑
xj+1∈Xj+1

−−−−−−−−−−−−−−−→
∇(n)
N Wj+1 (Lj+1)F ′

]
. . .

]

=Eq1
[ ∑
x1∈X1

. . .Eqj
[ ∑
xj∈Xj

−−−−−−−−−−−−−−−−−→
∇(n)
N Wj (Lj)ESj+1

[F ′]

]
. . .

]
= ∇(n)

N E[F ]

where we use the inductive hypothesis from step 2 to 3, using that ESj+1
[F ′] = ESj+1,...,Sk [F ].

Using these two lemmas and condition 4, it is easy to show the theorem:

Eq1
[ ∑
x1∈X1

. . .Eqk
[ ∑
xk∈Xk

−−−−−−−−−−−−−−−−−−→
∇(n)
N Wk

(
Ak + (Lk)F

)]
. . .

]
=Eq1

[ ∑
x1∈X1

. . .Eqk
[ ∑
xk∈Xk

−−−−−−−→
∇(n)
N WkAk

]
. . .

]
+Eq1

[ ∑
x1∈X1

. . .Eqk
[ ∑
xk∈Xk

−−−−−−−−−−−→
∇(n)
N Wk (Lk)F

]
. . .

]
=0 +∇(n)

N E[F ] = ∇(n)
N E[F ]

Note that we used in the proof that condition 1 implies that ∇(n)
N Eqi [

∑
xi∈Xi

−−−−−→
wi (li)] = 0, which

can be seen by taking f(xi) = 1 and noting that∇(m)
N ESi [1] = 0 for n > 0.
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C Any-order control variate

Many gradient estimators are combined with control variates to reduce variance. We consider control
variates for any-order derivative estimation. [33] introduces an any-order baseline in the context
of score functions, but only provides proof that this is the baseline for the second-order gradient
estimate. We use the Storchastic framework to prove that it is also the correct baseline for any-order
derivatives3. Furthermore, we generalize the ideas behind this baseline to all control variates, instead
of just score-function baselines.

The control variate that implements any-order baselines is:

ai(x<i,Xi) = (1− (li))bi(x<i,Xi \ {xi}).

First, we show that baselines satisfy condition 2 of Theorem 1. We will assume here that we take
only 1 sample with replacement, but the result generalizes to taking multiple samples in the same
way as for the first-order baseline. For n = 0, the any-order baseline evaluates to zero which can be
seen by considering

−−−−−−→
1− (li). If n > 0, then noting that bi is independent of xi,

Eqi [
−−−−−−−−−−−−→
∇(n)
N (1− (li))bi] =Exi [

−−−−−−−−−−−→
−bi∇(n)

N − (li)] =
−→
−bi∇(n)

N Exi [1] = 0

We next provide a proof for the validity of this baseline for variance reduction of any-order gradient
estimation. To do this, we first prove a new general result on the operator:

Proposition 7. For any sequence of functions {l1, ..., lk}, (Lk) is equivalent under evaluation for
orders of differentiation n > 0 to

∑k
i=1( (li)−1) (Li−1). That is, for all positive numbers n > 0,

−−−−−−−→
∇(n)
N (Lk) =

−−−−−−−−−−−−−−−−−−−−−→

∇(n)
N

k∑
i=1

(
(li)− 1

)
(Li−1)

Proof. We will prove this using induction on k, starting with the base case k = 1. Since n > 0,

−−−−−−−−−−−−−−−→
∇(n)
N ( (l1)− 1) (0) =

−−−−−−−−−−→
(0)∇(n)

N (l1) =
−−−−−−→
∇(n)
N (l1)

Next, assume the proposition holds for k and consider k + 1. Then by splitting up the sum,

−−−−−−−−−−−−−−−−−−−−→

∇(n)
N

k+1∑
i=1

( (li)− 1) (Li−1) =

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

∇(n)
N ( (lk+1)− 1) (Lk) +∇(n)

N

k∑
i=1

( (li)− 1) (Li−1)

=
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
∇(n)
N ( (lk+1)− 1) (Lk) +∇(n)

N (Lk)

where in the second step we use the inductive hypothesis.

We will next consider the first term using the general Leibniz rule:

−−−−−−−−−−−−−−−−−−→
∇(n)
N ( (lk+1)− 1) (Lk) =

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
n∑

m=0

(
n

m

)
∇(m)
N ( (lk+1)− 1)∇(n−m)

N (Lk)

We note that the term corresponding to m = 0 can be ignored, as
−−−−−−−−→

(lk+1)− 1 = (1 − 1) = 0.

Furthermore, for m > 0,
−−−−−−−−−−−−−→
∇(m)
N ( (lk+1)− 1) =

−−−−−−−−−→
∇(m)
N (lk+1). Therefore,

−−−−−−−−−−−−−−−−−−→
∇(n)
N ( (lk+1)− 1) (Lk) =

−−−−−−−−−−−−−−−−−−−−−−−−−−−→
n∑

m=1

(
n

m

)
∇(m)
N (lk+1)∇(n−m)

N (Lk)

3We use a slight variant of the baseline introduced in [33] to solve an edge case. We will explain in the end
of this section how they differ.
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Finally, we add the other term ∇(n)
N (Lk) again. Then using the general Leibniz rule in the other

direction and Proposition 4,

=

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
n∑

m=1

(
n

m

)
∇(m)
N (lk+1)∇(n−m)

N (Lk) +∇(n)
N (Lk)

=

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
n∑

m=1

(
n

m

)
∇(m)
N (lk+1)∇(n−m)

N (Lk) + (lk+1)∇(n)
N (Lk)

=

−−−−−−−−−−−−−−−−−−−−−−−−−−−→
n∑

m=0

(
n

m

)
∇(m)
N (lk+1)∇(n−m)

N (Lk) =
−−−−−−−−−−−−−→
∇(n)
N (lk+1) (Lk) =

−−−−−−−−−→
∇(n)
N (Lk+1)

Next, we note that we can rewrite the expectation of the Storchastic surrogate loss in Equation (3) to

Eq1
[ ∑
x1∈X1

+ . . .Eqk
[ ∑
xk∈Xk

−−−−−−−−−−−−−−−−−−→
∇(n)
N Wk

(
Ak + (Lk)F

)]
. . .

]

where Ak =
∑k
i=1

(∑i−1
j=1 lj

)
ai. This can be seen by using Condition 1 and 4 of Theorem 1 to

iteratively move the
(∑i−1

j=1 lj

)
ai terms into the expectations, which is allowed since they don’t

depend on S>i.
Theorem 2. Under the conditions of Theorem 1,

Ak + (Lk)F−→≡
k∑
i=1

(Li−1)(ai + ( (li)− 1)F ) + F,

where Ak =
∑k
i=1

(∑i−1
j=1 lj

)
ai.

Proof.

−−−−−−−−−−−−−−→
∇(n)
N (Ak + (Lk)F ) =

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
∇(n)
N Ak +

n∑
m=0

(
n

m

)
∇(m)
N (Lk)∇(n−m)

N F (4)

=

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
∇(n)
N Ak +

n∑
m=1

(
n

m

)
∇(m)
N (Lk)∇(n−m)

N F +∇(n)
N F (5)

=

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

∇(n)
N Ak +

n∑
m=1

(
n

m

)
∇(m)
N

k∑
i=1

( (li)− 1) (Li−1)∇(n−m)
N F +∇(n)

N F

(6)

=

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

∇(n)
N

( k∑
i=1

(Li−1)ai +

k∑
i=1

( (li)− 1) (Li−1)F + F
)

(7)

=

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

∇(n)
N

( k∑
i=1

(Li−1)(ai + ( (li)− 1)F ) + F
)

From (4) to (5), we use that m = 0 evaluates to∇(n)
N F . From (5) to (6), we use Proposition 7. From

(6) to (7), we do a reversed general Leibniz rule on the second term. To be able do that, we use that
setting m = 0 in the second term would evaluate to 0 as

−−−−−−→
(li)− 1 = 0.
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Next, consider the inner computation of the Storchastic framework in which all ai use a baseline of
the form in Equation C. Note that ai = 0 is also in this form by setting bi = 0. Assume n > 0 and
without loss of generality4 assume∇(m)

N wi = 0 for all m and i. Then using Proposition 7,

k∏
i=1

wi

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

∇(n)
N

( k∑
i=1

(1− (li)) (Li−1)bi + (Lk)F
)

=

k∏
i=1

wi

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

∇(n)
N

(
−

k∑
i=1

( (li)− 1) (Li−1)bi +

k∑
i=1

( (li)− 1) (Li−1)F
)

=

k∏
i=1

wi

−−−−−−−−−−−−−−−−−−−−−−−−−−−→

∇(n)
N

k∑
i=1

( (li)− 1) (Li−1)(F − bi)

The intuition behind the variance reduction of this any-order gradient estimate is that all terms of the
gradient involving li, possibly multiplied with other lj such that j < i, use the i-th baseline bi. This
allows modelling baselines for each sampling step to effectively make use of background knowledge
or known statistics of the corresponding set of random variables.

We note that our baseline is slightly different from [33], which instead of (Li−1) = (
∑i−1
j=1 lj)

used (
∑
Sj≺Si lj). Although this might initially seem more intuitive, we will show with a small

counterexample why we should consider any stochastic nodes ordered topologically before i instead
of just those that directly influence i.

Consider the stochastic computation graph with stochastic nodes p(S1|N) and p(S2|N) and cost
function f(x1, x2). For simplicity, assume we use single-sample score function estimators for each
stochastic node. Consider the second-order gradient of the cost function using the recursion in
Proposition 2:

∇2
NES1,S2

[f(x1, x2)] =ES1,S2
[

−−−−−−−−−−−−−−−−−−−−−−−→

∇2
N (

2∑
i=1

log p(xi|N))f(x1, x2)]

=ES1,S2
[f(x1, x2)

( 2∑
i=1

∇2
N log p(xi|N) + (∇N log p(xi|N))2

+ 2∇N log p(x1|N)∇N log p(x2|N)))
)
]

Despite the fact that x1 does not directly influence x2, higher-order derivatives will have terms that
involve both the log-probabilities of x1 and x2, in this case 2∇N log p(x1|N)∇N log p(x2|N). Note
that since a does not directly influence b, the baseline generated for the second-order derivative using
the method in [33] would be

−−−−−−→

∇2
N

2∑
i=1

ai =

−−−−−−−−−−−−−−−−−−−−−−−−−−→
2∑
i=1

∇2
N (1− (log p(xi|N))) (0)bi = −

2∑
i=1

∇2
N log p(xi|N)))bi

This baseline does not have a term for 2∇N log p(x1|N)∇N log p(x2|N), meaning the variance of
that term will not be reduced through a baseline. The baseline introduced in Equation C will include
it, since

−−−−−−→

∇2
N

2∑
i=1

ai =
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
∇2
N (1− (log p(x1|N)))bi + (1− (log p(x2|N))) (log p(x1|N))bi

=−
2∑
i=1

∇2
N log p(xi|N)))bi − 2∇N log p(x1|N)∇N log p(x2|N)

4This is assumed simply to make the notation clearer. If the weights are differentiable, the same thing can
be shown using an application of the general Leibniz rule.
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Designing a good baseline function bi,j(x<i,j ,Xi \ {xi,j}) that will reduce variance significantly
is highly application dependent. Simple options are a moving average and the leave-one-out base-
line, which is given by bi(x<i,Xi \ {xi}) = 1

m−1

∑m
j′=1,j′ 6=j ⊥(◦)f(x<i, xi,j′)) [22, 35]. More

advanced baselines can take into account the previous stochastic nodes S1, ...,Si−1 [48]. Here, one
should only consider the stochastic nodes that directly influence Si, that is, S≺i. Another popular
choice is self-critical baselines [42, 21] that use deterministic test-time decoding algorithms to find
x̂i and then evaluate it, giving bi(x<i,Xi \ {xi}) = f(x̂i).

D Examples of Gradient Estimators

In this section, we prove the validity of several gradient estimators within the Storchastic framework,
focusing primarily on discrete gradient estimation methods.

D.1 Expectation

Assume p(xi) is a discrete (ie, categorical) distribution with a finite amount of classes 1, ..., Ci.
While this is not an estimate but the true gradient, it fits in the Storchastic framework as follows:

1. wi(xi) = p(xi|x<i)
2. q(Xi|x<i) = δ{1,...,Ci}(Xi) (that is, a dirac delta distribution with full mass on sampling

exactly the sequence {1, ..., Ci})
3. li(xi) = 0

4. ai(xi) = 0

Next, we prove the individual conditions to show that this method can be used within Storchastic,
starting with condition 1:

Eqi [
∑
xi∈X i

−−−−−−−−−−−−→
∇(n)
N wi (li)f(xi)] =

Ci∑
j=1

−−−−−−−−−−−−−−−−−−−−→
∇(n)
N p(xi = j|x<i) (0)f(j)

=

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Ci∑
j=1

n∑
m=0

∇(n−m)
N p(xi = j|x<i)∇(m)

N (0)f(j)

Using the recursion in Proposition 2, we see that
−−−−−−−−−−→
∇(m)
N (0)f(j) = ∇(m)

N f(j), since ∇N li =
∇N0 = 0. So,
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Ci∑
j=1

n∑
m=0

∇(n−m)
N p(xi = j|x<i)∇(m)

N f(j) =

−−−−−−−−−−−−−−−−−−−→
Ci∑
j=1

∇(n)
N p(xi = j|x<i)f(j) = ∇(n)

N Exi [f(xi)].

Condition 2 follows simply from ai(xi) = 0, and condition 3 follows from the fact that∑Ci
j=1 p(xi = j|x<i) = 1, that is, constant. Condition 4 follows from the SCG being identical

under evaluation, ie
−−−−−−−−−→
p(xi = j|x<i) = p(xi = j|x<i).

It should be noted that this proof is not completely trivial, as it shows how to implement the ex-
pectation so that it can be combined with other gradient estimators while making sure the pathwise
derivative through f also gets the correct gradient.

D.2 Score Function

The score function is the best known general gradient estimator and is easy to fit in Storchastic.

D.2.1 Score Function with Replacement

We consider the case where we take m samples with replacement from the distribution p(xi|x<i),
and we use a baseline bi(x<i,Xi \ {xi}) for the first-order gradient estimate.
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1. wi(xi) = 1
m

2. qi =
∏m
j=1 p(xi,j |x<i). That is, xi,1, ..., xi,m ∼ p(xi|x<i).

3. li(xi) = log p(xi|x<i)
4. ai(x<i,Xi) = (1− (li))bi(x<i,Xi\{xi}), where bi(x<i,Xi\{xi}) is not differentiable,

that is,
−−−−−−−−−−−−−−−−→
∇(n)
N bi(x<i,Xi \ {xi}) = 0 for n > 0.

We start by showing that condition 1 holds. We assume p(xi|x<i) is a continuous distribution and
note that the proof for discrete distributions is analogous.

We will show how to prove that sampling a set of m samples with replacement can be reduced in
expectation to sampling a single sample. Here, we use that xi,1, ..., xi,m are all independently (line
1 to 2) and identically (line 2 to 3) distributed.

Eqi [
m∑
j=1

−−−−−−−−−−−−−−−−−−→
∇(n)
N

1

m
(li,j)f(x<i, xi,j)] =

1

m

m∑
j=1

Exi,j∼p(xi)[
−−−−−−−−−−−−−−−−→
∇(n)
N (li,j)f(x≤i, xi,j)]

=
1

m

m∑
j=1

Exi∼p(xi)[
−−−−−−−−−−−−→
∇(n)
N (li)f(x≤i)] = Exi

[−−−−−−−−−−−−→
∇(n)
N (li)f(x≤i)

]

A proof that Exi
[−−−−−−−−−−−−→
∇(n)
N (li)f(x≤i)

]
= ∇(n)

N Exi [f(x≤i)] was first given in [13]. For completeness,
we give a similar proof here, using induction.

First, assume n = 0. Then, Exi [
−−−→

(li)f(x≤i)] = Exi [
−−−−→
f(x≤i)] = Exi [f(x≤i].

Next, assume it holds for n, and consider n + 1. Using Proposition 2, we find that g(n+1)(x≤i) =

∇Ng(n)(x≤i) + g(n)(x≤i)∇N log p(xi|x<i). Writing the expectation out, we find

Exi [
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
∇Ng(n)(x≤i) + g(n)(x≤i)∇N log p(xi|x<i)]

=

∫ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
p(xi|x<i)(∇Ng(n)(x≤i) + g(n)(x≤i)

∇Np(xi|x<i)
p(xi|x<i)

)dxi

=

∫ −−−−−−−−−−−−−−−−→
∇Np(xi|x<i)g(n)(x≤i)dxi =

−−−−−−−−−−−−→
∇NExi [g(n)(x≤i)]

By Proposition 3, g(n)(xi) is identical under evaluation, since by the assumption of Theorem 1

both p(xi|x<i) and f(x≤i) are identical under evaluation. As a result,
−−−−−−−−−−−−→
∇NExi [g(n)(x≤i)] =

∇NExi [
−−−−−−→
g(n)(x≤i)]. Therefore, by the induction hypothesis,

Eqi [
−−−−−−−−→
g(n+1)(x≤i)] = ∇NExi [

−−−−−−→
g(n)(x≤i)] = ∇(n+1)

N Exi [f(x≤i)]

Since the weights ( 1
m ) are constant, condition 3 is satisfied.

D.2.2 Importance Sampling

A common use case for weighting samples is importance sampling [44]. In the context of gradient
estimation, it is often used in off-policy reinforcement-learning [32] to allow unbiased gradient
estimates using samples from another policy. For simplicity, we consider importance samples within
the context of score function estimators, single-sample estimates, and use no baselines. The last two
can be introduced using the techniques in Section D.2.1 and C.

1. wi = ⊥(p(xi|x<i)q(xi|x<i) ),

2. q(xi|x<i) is the sampling distribution,
3. li(xi) = log p(xi|x<i),
4. ai(x<i,Xi) = 0.
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Condition 3 follows from the fact that ∇(n)
N wi = 0 for n > 0, since the importance weights are

detached from the computation graph. Condition 1:

Eqi [
−−−−−−−−−−−−−−−−−−−−−−−→
∇(n)
N ⊥

(p(xi|x<i)
q(xi|x<i)

)
(li)f(x≤i)] =

∫
Ωi

q(xi|x<i)
p(xi|x<i)
q(xi|x<i)

−−−−−−−−−−−−→
∇(n)
N (li)f(x≤i)dxi

=ESi [
−−−−−−−−−−−−→
∇(n)
N (li)f(x≤i)] =

−−−−−−−−→
ESi [f(x≤i)]

where in the last step we use the proven condition 1 of D.2.1. Note that this holds both for n = 0
and n > 0.

D.2.3 Discrete Sequence Estimators

Recent literature introduced several estimators for sequences of discrete random variables. These
are quite similar in how they are implemented in Storchastic, which is why we group them together.

The sum-and-sample estimator chooses a set of sequences X̂i ⊂ Ωi and chooses k − |X̂i| > 0

samples from Ωi \ X̂i. This set can be the most probable sequences [30] or can be chosen randomly
[25]. This is guaranteed not to increase variance through Rao-Blackwellization [6, 30]. It is often
used together with deterministic cost functions f , which allows memorizing the cost-function evalu-
ations of the sequences in X̂i. In this context, the estimator is known as Memory-Augmented Policy
Optimization [28].

1. wi(xi) = I[xi ∈ X̂i]p(xi|x<i) + I[xi 6∈ X̂i]p(xi 6∈X̂i)k−|X̂i|

2. q(Xi) = δX̂i(xi,1, ...,xi,|X̂i|) ·
∏k
j=|X̂i|+1 p(xi,j |xi,j 6∈ X̂i,x<i)

were p(xi 6∈ X̂i) = 1 −
∑

xi′∈X̂i p(xi
′|x<i). This essentially always ‘samples’ the set X̂i using

the Dirac delta distribution, and then samples k more samples out of the remaining sequences, with
replacement. The estimator resulting from this implementation is

Eqi [
|X̂i|∑
j=1

p(xi,j |x<i)f(x<i,xi,j) +

k∑
j=|X̂i|+1

p(xi 6∈ X̂i)
k − |X̂i|

(li)f(x<i,xi,j)]

Using the result from Section D.1, we see that
−−−−−−−−−−−−−−−−−−−−−−−−−−→

∇(n)
N Eqi [

|X̂i|∑
j=1

p(xi,j |x<i)f(x<i,xi,j)] =

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

∇(n)
N p(xi ∈ X̂i)Eqi [

|X̂i|∑
j=1

p(xi,j |xi,j ∈ X̂i,x<i)f(x<i,xi,j)]

=∇(n)
N p(xi ∈ X̂i)Ep(xi|xi∈X̂i,x<i)[f(x≤i)].

Similarly, from the result for sampling with replacement of score functions in Section D.2.1,
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

∇nNEqi [
k∑

j=|X̂i|+1

p(xi 6∈ X̂i)
k − |X̂i|

(li)f(x<i,xi,j)] = ∇(n)
N p(xi 6∈ X̂i)Ep(xi|xi 6∈X̂i,x<i)[f(x≤i)]

Added together, these form∇(n)
N ESi [f(x≤i)], which shows that the sum-and-sample estimator with

the score function is unbiased for any-order gradient estimation. The variance of this estimator can
be further reduced using a baseline from Section C, such as the leave-one-out baseline.

The unordered set estimator is a low-variance gradient estimation method for a sequence of dis-
crete random variables Si [25]. It makes use of samples without replacement to ensure that each
sequence in the sampled batch will be different. We show here how to implement this estimator
within Storchastic, leaving the proof for validity of the estimator for [25].

1. q(Xi|x<i) is an ordered sample without replacement from p(Si|x<i). For sequences, sam-
ples can efficiently be taken in parallel using ancestral gumbel-top-k sampling [24, 23]. An
ordered sample without replacement means that we take a sequence of samples, where the
ith sample cannot equal the i− 1 samples before it.
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2. wi(xi) = ⊥
(
p(xi|x<i)p(U=Xi|o1=xi,x<i)

p(U=Xi|x<i)

)
, where p(U = Xi|x<i) is the probability of the

unorderd sample without replacement, and p(U = Xi|o1 = xi,x<i) is the probability of
the unordered sample without replacement, given that, if we were to order the sample, the
first of those ordered samples is xi.

3. li(xi) = log p(xi|x<i)
4. ai(x<i,Xi) = (1− (li))bi(x<i,Xi), where bi(x<i,Xi) =∑

xi′∈Xi ⊥
(
p(xi

′|x<i)p(U=Xi|o1=xi,o2=xi
′,x<i)

p(U=Xi|o1=xi,x<i)
f(xi

′)
)

This estimator essentially reweights each sample without replacement to ensure it remains unbi-
ased under this sampling strategy. This estimator can be used for any-order differentiation, since

Eqi [
∑

xi∈Xi
−−−−−→
wif(xi)] = ESi [

−−−→
f(xi)] (see [25] for the proof) and

−−−−→
∇(n)
N wi = 0 for n > 0. The

baseline is 0 in expectation for the zeroth and first order evaluation [25]. We leave for future work
whether it is also a mean-zero baseline for n > 1.

D.2.4 LAX, RELAX and REBAR

REBAR [47] and LAX and RELAX [16] are single-sample score-function based methods that learn
a control variate to minimize variance. The control variate is implemented using reparameterization.
We start with LAX as it is simplest, and then extend the argument to RELAX, since REBAR is a spe-
cial case of RELAX. We use bi,φ to denote the learnable control variate. We have to assume there is
no pathwise dependency of N with respect to bi,φ. Furthermore, we assume xi is a reparameterized
sample of p(xi|x≤i). The control variate component then is:

ai(x<i,Xi) = bi,φ(x≤i)− (li)⊥(bi,φ(x≤i))

Since LAX uses normal single-sample score-function, we only have to show condition 2, namely
that this control variate component has 0 expectation for all orders of differentiation.

ESi
[−−−−−−−−−−−−−−−−−−→
∇(n)
N

(
bi,φ − (li)⊥(bi,φ)

)]
= 0

−−−−−−−−−→
ESi [∇

(m)
N bi,φ] is the reparameterization estimate of

−−−−−−−−−→
∇(m)
N ESi [bi,φ] and

−−−−−−−−−−−−−−−−−−−−−−−−−→
ESi [∇

(m)
N (log p(xi|x≤i))⊥(bi,φ)] is the score-function estimate under the assumption that

bi,φ has no pathwise dependency. As both are unbiased expectations of the m-th order derivative,
their difference has to be 0 in expectation, proving condition 2. Furthermore, the 0th order
evaluation is exactly 0. The parameters φ are trained to minimize the gradient estimate variance.

The control variate for RELAX [16], an extension of LAX to discrete random variables, is similar. It
first samples a continuously relaxed input q(zi|x<i), which is then transformed to a discrete sample
xi ∼ p(xi|x<i). See [16, 47] for details on how this relaxed sampling works. It also samples a
relaxed input condition on the discrete sample, ie q(z̃i|x≤i). The corresponding control variate is

ai(x<i,Xi) = bi,φ(zi)−⊥(bi,φ(zi))− bi,φ(z̃i) + (2− (li))⊥(bi,φ(z̃i))

Here, we subtract ⊥(bi,φ(zi)) to ensure the first two terms together sum to 0 during 0th order
evaluation, and add 2⊥(bi,φ(z̃i)) to ensure the last two terms sum to 0. Note that for n > 0,
−−−−−−−−−−−→
∇(n)
N ai(x<i,Xi) =

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
∇(n)
N

(
bi,φ(zi)− bi,φ(z̃i)− (li)⊥(bi,φ(z̃i))

)
. We refer the reader to [16, 47]

for details on why this control variate is zero in expectation for 1st order differentiation. We note
that the results extend to higher-order differentiation since the n-th order derivative of (li) gives
nth-order score functions which are unbiased expectations of the n-th order derivative.

D.2.5 ARM

ARM is a score-function based estimator for multivariate Bernouilli random variables. For our
implementation, we use the baseline formulation mentioned in [51], and we follow the derivation in
terms of the Logistic random variables from [9]. ARM assumes a real-valued parameter vector α,
which can be the output of a neural network. The probabilities of the Bernoulli random variable are
then assumed to be σ(α) where σ is the sigmoid function.
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1. q(Xi|x<i) is a reparameterized sample from the multivariate Bernouilli distribution. First,
it samples ε ∼ Logistic(0,1). Define zi = α+ε and z̃i = α−ε. We find xi = I[zi > 0].
Then, with this procedure, xi ∼ Bernouilli(σ(α)).

2. wi(xi) = 1

3. li(xi) = log qα(zi), where qα is the density function of Logistic(α, 1).
4. ai(x<i,Xi) = (1− li(xi)) 1

2 (f(x<i, zi > 0) + f(x<i, z̃i > 0))

Since Exi∼Bernoulli(σ(αθ))[f(xi)] = Eε∼Logistic(0,1)[f(αθ + ε > 0)] = Ezi∼Logistic(αθ,1)[f(zi >
0)], any unbiased estimate of the logistic reparameterization must also be an unbiased estimate of the
original Bernouilli formulation. This equality follows because the CDF of the logistic distribution
is the logistic function (that is, the sigmoid function). li(xi) is the (unbiased) score function of the
logistic reparameterization, which we proved to be an unbiased estimate.

The control variate has expectation 0 for zeroth and first order differentiation. This is because it relies
on the score function being an odd function [5], that is, ∇N log qα(zi) = −∇N log qα(z̃i). There-
fore, Eε[(f(x<i, zi > 0) + f(x<i, z̃i > 0))∇N log qα(zi)] = Eε[f(x<i, zi > 0)∇N log qα(zi) −
f(x<i, z̃i > 0)∇N log qα(z̃i)]. Note that, by symmetry of the logistic distribution, Eε[f(x<i, zi >
0)∇N log qα(zi)] = −Eε[f(x<i, z̃i > 0)∇N log qα(z̃i)], meaning the baseline is zero in expecta-
tion. However, this derivation only holds for odd functions! Unfortunately, the second-order score

function ∇
(2)
N qα(zi)

qα(zi)
is an even function since the derivative of an odd function is always an even

function. Therefore, the ARM estimator will only be unbiased for first-order gradient estimation.

D.2.6 GO Gradient

The GO gradient estimator [7] is a method that uses the CDF of the distribution to derive the gra-
dient. For continuous distributions, it reduces to implicit reparameterization gradients which can be
implemented through transforming the computation graph, like other reparameterization methods.
For m independent discrete distributions of d categories, the first-order gradient is given as:

Ep(xi|x≤i)
[ m∑
j=1

(f(x≤i)− f(x≤i\xi,j ,xi,j + 1))
∇N

∑xi,j
k=1 pj(k|x<i)

pj(xi,j |x<i)

]
Note that if xi,j = d, then the estimator evaluates to zero since∇N

∑d
k=1 pj(k|x<i) = 0.

We derive the Storchastic implementation by treating the GO estimator as a control variate of the
single-sample score function. To find this control variate, we subtract the score function from this
estimator, that is, we subtract f(x≤i)∇N log p(xi|x<i) = f(x≤i)

∑m
j=1∇N log p(xi,j |x<i) =

f(x≤i)
∑m
j=1

∇Np(xi,j |x<i)
p(xi,j |x<i) where we use that each discrete distribution is independent. By unbi-

asedness of the GO gradient, the rest of the estimator is 0 in expectation, as we will show.

Define fj,k = f(x≤i\xi,j ,xi,j = k), pj,k = pj(k|x<i) and Pj,k =
∑k
k′=1 pj(k

′|x<i). Then the
GO control variate is:

ai(x≤i) =

m∑
j=1

I[xi,j < d]
(
⊥
(fj,xi,j − fj,xi,j+1

pj,xi,j

)
( (Pj,xi,j )− 1)

)
−⊥(fj,d)( (log pj,d)− 1)

The first line will evaluate to the GO gradient estimator when differentiated, and the second to the
single-sample score function gradient estimator.

Note that this gives a general formula for implementing any unbiased estimator into Storchastic:
Use it as a control variate with the score function subtracted to ensure interoperability with other
estimators in the stochastic computation graph.

D.3 SPSA

Simultaneous perturbation stochastic approximation (SPSA) [46] is a gradient estimation method
based on finite difference estimation. It stochastically perturbs parameters and uses two functional
evaluations to estimate the (possibly stochastic) gradient. Let θ be the d-dimensional parameters of
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the distribution pθ(xi|x<i). SPSA samples d times from the Rademacher distribution (a Bernoulli
distribution with 0.5 probability for 1 and 0.5 probability for -1) to get a noise vector ε. We then
get two new distributions: xi,1 ∼ pθ+cε and xi,2 ∼ pθ−cε where c > 0 is the perturbation size.
The difference f(xi,1)−f(xi,2)

2cε is then an estimate of the first-order gradient. Higher-order derivative
estimation is also possible, but left for future work.

An easy way to implement SPSA in Storchastic is by using importance sampling (Appendix D.2.2).
Assuming pθ+cε and pθ−cε have the same support as p, we can set the weighting function to
⊥
(

p(xi,1|x<i)
pθ+cε(xi,1|x<i)

)
for the first sample, and ⊥

(
p(xi,2|x<i)

pθ−cε(xi,2|x<i)

)
for the second sample.

To ensure the gradients distribute over the parameters, we define the gradient function as
θ⊥
(
pθ+cε(xi,1|x<i)
2cεp(xi,1|x<i)

)
for the first sample and −θ⊥

(
pθ+cε(xi,2|x<i)
2cεp(xi,2|x<i)

)
for the second sample. This

cancels out the weighting function, resulting in the SPSA estimator.

D.4 Measure Valued Derivatives

Storchastic allows for implementing Measure Valued Derivatives (MVD) [18], however, it is only
unbiased for first-order differentiation and cannot easily be extended to higher-order differentiation.
The implementation is similar to SPSA, but with some nuances. We will give a simple overview for
how to implement this method in Storchastic, and leave multivariate distributions and higher-order
differentiation to future work.

First, define the weak derivative for parameter θ of p as the triple (cθ, p
+, p−) by decomposing

p(xi|x<i) into the positive and negative parts p+(xi
+) and p−(xi

−), and let cθ be a constant. For
examples on how to perform this decomposition, see for example [37]. To implement MVDs in
Storchastic, we use the samples from p+ and p−, and, similar to SPSA, treat them as importance
samples (Appendix D.2.2) for the zeroth order evaluation.

That is, the proposal distribution is defined over tuples Xi = (xi
+,xi

−) such that q(Xi|x<i) =
p+(xi

+)p−(xi
−). The weighting function can be derived depending on the support of the positive

and negative parts of the weak derivative. For weak derivatives for which the positive and nega-
tive part both cover an equal proportion of the distribution p(xi|x<i), the weighting function can
be found using importance sampling by ⊥

(
p(xi

+|x<i)
2p+(xi+)

)
for samples from the positive part, and

⊥
(
p(xi

−|x<i)
2p−(xi−)

)
for samples from the negative part. This gives unbiased zeroth order estimation by

using importance sampling.

We then set ai(x<i,Xi) = 0 and use the following gradient function: li(xi) = θ · ⊥(cθ
2p+(xi

+)
p(xi+|x<i) )

for positive samples and li(xi) = −θ · ⊥(cθ
2p−(xi

−)
p(xi−|x<i) ) for negative samples. This will compensate

for the weighting function by ensuring the importance weights are not applied over the gradient
estimates. For the first-order gradient, this results in the MVD∇Nθ⊥(cθ)(f(xi

+)− f(xi
−)).

For other distributions for which p+ and p− do not cover an equal proportion of p, more specific
implementations have to be derived. For example, for the Poisson distribution one can implement
its MVD by noting that p+ has the same support as p. Then, we can use one sample from p+ using
the importance sampling estimator using score function (Appendix D.2.2), and use a trick similar to
the GO gradient by defining a control variate that subtracts the score function and adds the MVD,
which is allowed since the MVD and score function are both unbiased estimators.

E Discrete VAE Case Study Experiments

We report test runs on MNIST [26] generative modeling using discrete VAEs in Table 1. We use
Storchastic to run 100 epochs on both a latent space of 20 Bernoulli random variables and 20 Cat-
egorical random variables of 10 dimensions, and report training and test ELBOs. We run these on
the gradient estimation methods currently implemented in the PyTorch library.

Although results reported are worse than similar previous experiments, we note that we only run
100 epochs (900 epochs in [25]) and we do not tune the methods. However, the results reflect the
order expected from [25], where score function with leave-one-out baseline also performed best,
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220 Bernoulli VAE 1020 Discrete VAE
Train ELBO Validation ELBO Train ELBO Validation ELBO

Score@1 191.3 191.9 206.3 206.7
ScoreLOO@5 [22] 110.8 110.4 111.2 110.4
REBAR@1 [47] 220.0 1000 155.6 154.9
RELAX@1 [16] 210.6 205.9 202.5 201.7
Unordered set@5 [25] 117.1 138.4 115.4 117.2
Gumbel@1 [19, 31] 107.0 106.6 92.9 92.6
GumbelST@1 [19] 113.0 112.9 98.3 98.0
ARM@1 [51] 131.3 130.8
DisARM@1[9] 125.1 124.3

Table 1: Test runs on MNIST VAE generative modeling. We report the lowest train and validation
ELBO over 100 epochs. The number after the ‘@’ symbol denotes the amount of samples used to
compute the estimator. We note that the ARM and DiSARM methods are specific for binary random
variables, and do not evaluate it in the 1020 discrete VAE.

closely followed by the Unordered set estimator. Furthermore, the Gumbel softmax [19, 31] still
outperforms the other score-function based estimators, although the results in [25] suggest that with
more epochs and better tuning, better ELBO than reported here can be achieved.

These results are purely presented as a demonstration of the flexbility of the Storchastic library: Only
a single line of code is changed to be able to compare the different estimators! A more thorough and
fair comparison, also in different settings, is left for future work.
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