
A Finding an Initial Good Center

In this section we give, for completeness, the ρ-zCDP version of the algorithms for approximating
P ’s optimal radius up to a constant factor and finding some θ0 which is sufficiently close to the center
of P ’s MEB. The algorithm itself is ridiculously simple, and has appeared before implicitly. We
bring it here for two reasons: (a) completeness and (b) in its LDP-version, this algorithm’s utility
depends solely on

√
n. Thus, combining this algorithm with the Algorithm 5 of Section 5, we obtain

a LDP-fPTAS for the MEB problem who’s utility depends on
√
n rather than the n0.67-bound of

[31] (at the expense of worse dependency on other parameters). This gives a clear improvement on
previous algorithms for approximating the MEB problem when n→∞. Our algorithm requires a
starting point θ0 which is Rmax away from all points in P (namely, P ⊂ B(θ0, Rmax), and a lower
bound rmin on ropt; and its overall utility bounds depends on log(Rmax/rmin). In a standard setting,
where P ⊂ [−B,B]d and where all points lie on some grid Gd whose step-size is τ , we can set θ0
as the origin and set Rmax = B

√
d and rmin = τ/2, resulting in O(log(Bd/τ))-dependency. In the

specific case where ropt = 0 and all datapoints in P lie on the exact same grid point we can just
return the closest grid point to the resulting θ once it get to a radius of r = rmin = τ/2.

Algorithm 6 Noisy Average and Radius (GoodCenter)
Input: a set of n points P and parameters θ0, Rmax and rmin, such that P ⊂ B(θ0, Rmax) and

ropt ≥ rmin. Failure parameter β ∈ (0, 1), privacy parameter ρ.

1: Set T ← dlog2(Rmax/rmin)e+ 1, X ←
√

2T ln(4T/β)
ρ

2: Set σ2
count ← T

ρ , σ2
sum ← T

ρ .
3: Init P 0 ← P , θ0 ← θ0, ncur ← n and rcur ← Rmax.
4: for (t = 0, 1, 2, ..., T − 1) do
5: P t ← P t ∩B(θt, rcur).
6: ∆sum ∼ N (0, 4r2curσ

2
sumId)

7: µ̃t ← (
∑

x∈P t x+∆sum)/ncur

8: ∆count ← N (0, σ2
count)

9: if (|P t \B(µ̃t, 1
2rcur)|+∆count ≥ X) then return B(θt, rcur)

10: Update: rcur ← 1
2rcur, ncur ← ncur − 2X , θt+1 ← µ̃t.

11: return B(θT , rcur)

Theorem A.1. Algorithm 6 is ρ-zCDP.

Proof. The proof follows immediately from the fact that the L2-global sensitivity of a count query is
1, and that the L2-global sensitivity of a sum of datapoints in a ball of radius rcur is at most 2rcur.
The rest of the proof relies on the composition of 2T queries, each answered with a “budget” of
ρ
2T -zCDP.

Theorem A.2. W.p. ≥ 1 − β, given a set of points P of size n where n ≥
max{16T

√
2T ln(4T/β)

ρ , 16
√

T
ρ (
√
d+
√
2 ln(4T/β))}, Algorithm 6 returns a ball B(θ∗, r∗) where (i)

the set P ′ = P ∩B(θ∗, r∗) contains at least n−
√

8T 3 ln(4T/β)
ρ , and (ii) denoting B(θ(P ′), ropt(P

′))

as the MEB of P ′, we have that r∗ ≤ 6ropt.

Proof. Let E be the event where for any of the ≤ T draws of the ∆sum and ∆count it holds that

|∆count| ≤

√
2T ln(4T/β)

ρ
and ‖∆sum‖ ≤ 2rcur

√
T

ρ
(
√
d+

√
2 ln(4T/β))

where again, standard union bound and Gaussian / χ2-distribution concentration bounds give that
Pr[E] ≤ β. So we continue the proof under the assumption that E holds.

In this case, in any iteration it must hold that |P \B(µt, 1
2rcur)| ≤ 2X =

√
8T ln(4T/β)

ρ . It follows
that all in all we remove in the process of Algorithm 6 at most 2XT points, and since n ≥ 16XT

14

we have that in any iteration t it always holds that n ≥ |P t| ≥ n − 2Xt = ncur ≥ 7n
8 ≥ 14XT .

Denoting in any iteration t the true mean of the points (remaining) in P t as µt =
1

|P t|
∑

x∈P t x, and
the center of the MED of P t as θt, it follows that

‖µ̃t − µt‖ = ‖µ̃t − θt − (µt − θt)‖ =
∥∥∥∥∆sum +

∑
x∈P t(x− θt)

ncur
−
∑

x∈P t(x− θt)

|P t|

∥∥∥∥
≤
∥∥∥∥∆sum

ncur

∥∥∥∥+
∥∥∥∥∥
(∑

x∈P t(x− θt)
)
(|P t| − ncur)

|P t|ncur

∥∥∥∥∥ ≤ 8‖∆sum‖
7n

+ ‖µt − θt‖
2XT

ncur

≤
8 · 2rcur

√
T
ρ (
√
d+

√
2 ln(4T/β))

7n
+

ropt(P
t)

7
≤ rcur + ropt(P

t)

7

Since we assume n ≥ 16
√

T
ρ (
√
d+

√
2 ln(4T/β)). Moreover, since ‖µt− θt‖ ≤ ropt(P

t) it follows

that ‖µ̃t − θt‖ ≤ rcur+8ropt(P
t)

7 . Now, as long as rcur ≥ 6ropt(P
t) we have that

rcur
2
≥ rcur

7
+

5rcur
14

≥ rcur
7

+
30ropt(P

t)

14
≥ ropt(P

t) +
rcur + 8ropt(P

t)

7
≥ ropt(P

t) + ‖µ̃t − θt‖

thus B(θt, ropt(P
t)) ⊂ B(µ̃t, rcur

2) which implies that |P t \B(µt, 1
2rcur)| = 0, and so under E we

continue to the next iteration.

And so, when we halt it must hold that rcur (which is the r∗ we return) must satisfy that rcur <
6ropt(P

t).

Corollary A.3. Algorithm 6 is a ρ-zCDP algorithm that, given n points on a grid G ⊂ [−B,B]d of

side-step τ where n = Ω(
√

log(Bd/τ)
ρ (

√
d +

√
log(Bd/τβ))) returns w.p. ≥ 1 − β a ball B(θ∗, r∗)

where for P ′ = P \B(θ∗, r∗) it holds that both n− |P ′| = O(log(
Bd/τ)√
ρ

√
log(Bd/τβ))) and that w.r.t

to B(θopt, ropt) which is the true MEB of P ′ we have that ‖θ∗ − θopt‖ ≤ 6ropt(P
′).

A.1 A Local-DP Version of Finding an Initial Good Center

Algorithm 7 LDP Noisy Average and Radius (LDP-GoodCenter)
Input: a set of n points P and some parameter Rmax, θ0 and rmin, such that P ⊂ B(θ0, Rmax)

and ropt ≥ rmin. Failure parameter β ∈ (0, 1), privacy parameter ρ.

1: Set T ← dlog2(Rmax/rmin)e+ 1, X ←
√

2nT ln(4T/β)
ρ

2: σ2
count ← T

ρ , σ2
sum ← T

ρ .
3: Init θ0 ← θ0, and rcur ← Rmax.
4: for (t = 0, 1, 2, ..., T − 1) do
5: Denote Πt as the projection onto B(θt, rcur).
6: for each x ∈ P do
7: Send Yx ∼ N (Πt(x), 4r2curσ

2
sumId)

8: µ̃t ← 1
n

∑
x Yx

9: for each x ∈ P do
10: if (x /∈ B(µ̃t, 1

2rcur)) then
11: Send Zx ∼ N (1, σ2

count)
12: else Send Zx ∼ N (0, σ2

count)

13: if (
∑

x Zx ≥ X) then return B(θt, rcur)

14: Update: rcur ← 1
2rcur, θt+1 ← µ̃t.

15: return B(θT , rcur)

Theorem A.4. Algorithm 7 is a LDP algorithm in which each user maintains ρ-zCDP. Forthermore,

w.p. ≥ 1 − β, given a set of point P of size n where n ≥ max{16T
√

2nT ln(4T/β)
ρ , 16

√
nT
ρ (
√
d +

15

√
2 ln(4T/β))}, Algorithm 7 returns a ball B(θ∗, r∗) where the set P ′ = {ΠB(θ∗,r∗)(x) : x ∈

P} contains no more than 2T
√

2T ln(4T/β)
ρ points for which x 6= ΠB(θ∗,r∗)(x); and denoting

B(θ(P ′), ropt(P
′)) as the MEB of P ′, it holds that ‖θ∗ − θ(P ′)‖ ≤ 8r∗.

The proof of Theorem A.4 is completely analogous to the proof of Theorems A.1 and A.2 using the
fact that in each iteration t of the algorithm∑

x

Yx ∼ N

(∑
x

Πt(x), 4nr2curσ
2
sumId

)
∑
x

Zx ∼ N
(
|{x ∈ P : x /∈ B(µ̃t, rcur/2)}|, nσ2

count

)
Corollary A.5. Algorithm 7 is a ρ-zCDP algorithm in the local-model that, given n points on
a grid G ⊂ [−B,B]d of side-step τ where n = Ω(log(

Bd/τ)
ρ (

√
d +

√
log(Bd/τβ))2) returns w.p.

≥ 1 − β a ball B(θ∗, r∗) where for the set P ′ = {ΠB(θ∗,r∗)(x) : x ∈ P} it holds that at most

O(
√
n·log(Bd/τ)√

ρ

√
log(Bd/τβ)) points are shifted in the projection (and the rest remain as they are in

P) and that w.r.t to B(θopt, ropt) which is the true MEB of P ′ we have that ‖θ∗ − θopt‖ ≤ 6r∗.

Note that comparing Corollary A.5 with the approximation of [31], we have that they may omit
O(n0.67 log(n/τ))-many points whereas we may omit only

√
n log3/2(d/τ) points. But, of course,

they deal with a bounding ball for t points out of giving n, whereas we deal with the MEB problem.

B Using Noisy Mean

Here we continue the analysis detailed in Section 3.1. For completeness, we also bring the SQ-
model version of the algorithm where in each iteration we obtain an approximated center µ̃t where
∆t = µ̃t

w − µt
w is of magnitude propostional to γr. We modify Algorithm 2 so that our update scale

shrinks by a constant factor to γ2/8, namely we set θt+1 ← (1− γ2

8)θt + γ2

8 µ̃t
w. We now prove that

the revised algorithm still converges to a point close to θopt.

Lemma B.1. Applying Algorithm 2 with any 4ropt ≥ r ≥ ropt and any θ0 where ‖θ0 − θopt‖ ≤
10ropt, where in each iteration we use an approximated mean µ̃t

w = µt
w +∆t where ‖∆t‖ ≤ γr

16 ≤
γropt

4 we obtain a θ where ‖θ − θopt‖ ≤ γropt in at most 16T = 64
γ2 ln(100/γ2) iterations.

Proof. First, analogously to Lemma 3.2 we have that in each update step we get

‖θt+1 − θopt‖2 =

∥∥∥∥((1− γ2

8
)θt +

γ2

8
µ̃t
w

)
− θopt

∥∥∥∥2 = (1− γ2

8
)2 · ‖θt − θopt‖2

+ 2
γ2

8
(1− γ2

8
)
(
〈θt − θopt, µ

t
w − θopt〉+ 〈θt − θopt,∆

t〉
)
+ (

γ2

8
)2 · ‖µt

w − θopt +∆t‖2

≤ (1− γ2

8
)2 · ‖θt − θopt‖2 + 2(

γ2

8
− γ4

64
) ·
(
1

2
‖θt − θopt‖2 + ‖θt − θopt‖ ·

γropt
4

)
+ (

γ2

8
)2 ·

(
2‖µt

w − θopt‖2 + 2
γ2r2opt
42

)

≤ (1− γ2

8
)2‖θt − θopt‖2 + 2(

γ2

8
− γ4

64
) · ‖θt − θopt‖

(
1

2
‖θt − θopt‖+

γropt
4

)
+

3γ4

64
r2opt

It follows that in each iteration where ‖θt − θopt‖ ≥ γropt we get that

‖θt+1 − θopt‖2 ≤ (1− 2γ2

8
+

γ4

64
)‖θt − θopt‖2 + 2(

γ2

8
− γ4

64
) · 3

4
‖θ − θopt‖2 +

3γ4r2opt
64

< (1− γ2

16
)‖θt − θopt‖2 +

3γ2

64
‖θt − θopt‖2 = (1− γ2

64
)‖θt − θopt‖2

16

suggesting that after 16T = 64
γ2 ln(100/γ

2) iteration at most it must hold that

‖θ16T − θopt‖2 ≤ exp(−64

γ2
ln(100/γ2) · γ

2

64
)‖θ0 − θopt‖2 ≤

γ2

100
· 100r2opt = γ2r2opt

As required. Similarly, if at some iteration t it holds that ‖θt − θopt‖ < γropt then we get that

‖θt+1 − θopt‖2 ≤ (1− γ2

8
)2γ2r2opt + 2(

γ2

8
− γ4

64
) · 3

4
γ2r2opt +

3γ4ropt2

64

≤ γ2r2opt

(
1− 2γ2

8
+

γ4

64
+

3γ2

2 · 8
− 3γ4

2 · 64
+

3γ2

64

)
≤ (1− γ2

64
)γ2r2opt

suggesting yet again that ‖θτ − θopt‖ < γropt for all τ ≥ t.

C Missing Proofs: DP Algorithm

C.1 Privacy Analysis

Lemma C.1. Algorithm 4 satisfies ρ-zCDP.

Proof. At each one of the RT iterations of the algorithm, we answer two queries to the input data:
a counting query and a summation query. It is known that the L2-sensitivity of a counting query
is 1, therefore using the Gaussian mechanism theorem while setting σ2

count = R(T+1)
ρ satisfies

ρ
2R(T+1) -zCDP. Secondly, we know that all the points are bounded by a ball of radius 11r0 ≤
44ropt ≤ 44r around θ0, hence the summation query has L2-sensitivity of ≤ 88r. Thus, by setting
σ2
sum = RT (88r)2

ρ we have that we answer each summation query using ρ
2T -zCDP. Due to sequential

composition of zCDP [9], it holds that in all T iteration together we preserve
(
ρ(1− 1

2R(T+1))
)

-
zCDP. Lastly, we apply one last counting query which we answer using the Gaussian mechanism
while satisfying ρ

2R(T+1) -zCDP, thus, overall we are ρ-zCDP.

Corollary C.2. Algorithm 3 satisfies ρ-zCDP.

Proof. Since Algorithm 3 invokes B = dlog2(log1+γ(4))e calls to Algorithm 4 each preserving
ρ
B -zCDP, Algorithm 3 is ρ-zCDP overall.

C.2 Utility Analysis and Sample Complexity

Corollary C.3. [Corollary 4.2 restated] Given r0 where ropt ≤ r0 ≤ 4ropt and a point θ0

where ‖θ0 − θ∗‖ ≤ 10ropt, w.p. ≥ 1 − β Algorithm 3 is a O(n · log2(1/γ) log(1/β)
γ2)-time al-

gorithm that returns a ball B(θ∗, r) where r ≤ (1 + 3γ)ropt and where |P \ B(θ∗, r∗)| =

O(

(√
d+

√
log(log(1/β)/γ)

)√
log(1/γ) log(1/β)

γ
√
ρ).

Proof. The result follows directly from the fact that Algorithm 3 invokes B = O(log(1/γ)) calls
to Algorithm 4, with a privacy budget of O(ρ/ log(1/γ)) each and with a failure probability of
O(β/ log(1/γ)) each. Plugging those into the bound of Lemma 4.1 together with the fact that
T = O(γ−2 log(1/γ)) yields the resulting bound. Note that, denoting the “correct” i∗ = min{i ≥
0 : r0

4 (1 + γ)i ≥ ropt}, under the event that no invocation of Algorithm 4 fails, each time we
execute the binary search with a value of icur ≥ i∗ we obtain some θcur 6= ⊥. Due to the nature
of the binary search and the fact that upon finding θcur 6= ⊥ we set imax = icur, it must follows
that we return a ball of radius (1 + γ)r∗ = (1 + γ) · r0

4 · (1 + γ)i for some i ≤ i∗, and so
r∗ ≤ (1 + γ)2ropt ≤ (1 + 3γ)ropt. Lastly, the runtime of Algorithm 4 is O(nRT) making the
runtime of Algorithm 3 to be O(nRTB) = O(n log2(1/γ) log(1/β)

γ2) as required.

17

C.3 Application: Subsample Stable Functions

Much like the work of [21], our work too is applicable as a DP-aggregator in a Subsample-and-
Aggregate [30] framework. We say that a point p ∈ Rd is (r, β)-stable for some function f : X ∗ →
Rd if there exists m(r, β) such that for any input S ⊂ Xn a random subsample of m entries of S input
datapoints returns w.p. ≥ 1− β a value close to p, namely, PrS′⊂S,|S|=m[‖c− f(S′)‖ ≤ r] ≥ 1− β.
Theorem C.4. Fix ρ, γ, β > 0. There exists some constant C > 0 such that the following holds.
Suppose f : X ∗ → Rd is a function that has a (r, β)-stable point. Then, there exists a ρ-zCDP
algorithm that takes an input a dataset S ⊂ Xn and w.p.≥ 1− β returns a ((1 + γ)r, β/2k)-stable

point provided that n ≥ k ·m(r, β/2k) for k =
C

(√
d+

√
log(log(1/β)/γ)

)√
log(1/γ) log(1/β)

γ
√
ρ . Furthermore,

if finding f(S′) for any S′ containing m(r, β/2k)-many datapoint takes T time, then our algorithm
runs in time O(kT+ k · log

2(1/γ) log(1/β)
γ2).

Proof. The proof simply partitions the n inputs points of S into k disjoint and random subsets
S′
1, S

′
2, ..., S

′
k. W.p. ≥ 1− β/2 it holds that ‖f(S′

i)− c‖ ≤ r for every subset S′
i, and then we apply

our (1 + γ) approximation over this dataset of k many points (with a failure probability of β/2) and
returns the resulting center-point.

This results improves on Theorem 18 of [21] in both the runtime and the required number of
subsamples, at the expense of requiring all subsamples to be close to the point p rather than just many
of the points.

D Missing Proofs: Local-DP Algorithm

Claim D.1. Algorithm 5 is a local-model ρ-zCDP.

Proof. The proof is very similar to the proof of Lemma C.1 — where we apply basically the same
accounting, noticing that each x ∈ P is in charge of randomizing her own data, making this algorithm
LDP.

Lemma D.2. W.p. ≥ 1 − β, applying Algorithm 4 with r ≥ ropt and an initial cen-
ter θ0 s.t. ‖θ0 − θopt‖ ≤ 10ropt returns a point θt where |P \B(θt, (1 + γ)r)| ≤
88
√

nRT
ρ

(√
d+

√
2 ln(4nRT/β0)

)
+
√

2R(T+1) log(4R(T+1)/β0)
ρ .

Proof. Analogously to the proof of Lemma 4.1, we use the similar definitions: in each iteration t we
denote nt

w as the true number of datapoints in P outside the ball nt
w = |{x ∈ P : x /∈ B(θt, r)}|,8

µt
w as their true mean µt

W = 1
nt
w

∑
x/∈B(θt,r) x, and vtw as the difference of the true mean and the

current center vtw = µt
w − θt = 1

nt
w

∑
x/∈B(θt,r)(x− θt). We thus define the events

E1 := in all T + 1 iterations, |ñt
w − nt

w| ≤

√
2nR(T + 1) log(4(T+1)/β)

ρ

E2 := in all T iterations, ‖
∑
x

Zt
x − nt

wv
t
w‖ ≤

88r
√
nRT
√
ρ

(√
d+

√
2 ln(4T/β)

)
Proving that both Pr[E1] ≤ β/2 and Pr[E2] ≤ β/2 is rather straight-forward. In each iteration t it
holds that

∑
x Y

t
x ∼ N (nt

w, nσ
2
count) as the sum on n independent Gaussians, and so we merely

apply standard Gaussian concentration bounds together with the union bound over all T +1 iterations.
Similarly, in each iteration t it holds that

∑
x Z

t
x ∼ N (nt

w(µ
t
x − θt), nσ2

sumId). So standard bounds
on the concentration of the χ2

d-distribution assert that the L2-distance between the random draw from
such a d-dimensional Gaussian and its mean is >

√
nσ2

sum(
√
d +

√
2 ln(4T/β) w.p. < β

2T , after
which we apply the union-bound on all T iterations. We continue the rest of the proof conditioning
on both E1 and E2 holding.

8Where technically, in the last steps of the algorithm, nT
w = |{x ∈ P : x /∈ B(θT , (1 + γ)r)}|.

18

Again, due to our if-condition, we make an update-step only when ñt
w is large, which, under E1

implies that

nt
w ≥

88
√
nRT
√
ρ

(√
d+

√
2 ln(4RT/β0)

)
−

√
2nR(T + 1) ln(4R(T+1)/β0)

ρ
≥ 44|∆count|

and then proving that the distribution which we use to make an update-step satisfies the conditions
detailed in (2) w.h.p. is precisely the same proof (using the independence of ∆count and ∆sum and
the fact that E[∆sum] = 0).

Invoking Corollary 3.5 we have that if we make all T updates then indeed ‖θT − θ0‖ ≤ γr and so
|P \B(θT , (1 + γ)R)| = 0. So under E1 Algorithm 4 returns θT . Otherwise, at some iteration we
do not make an update step, which under E1 suggest that

nt
w = |P \B(θt, r)| ≤ 88

√
nRT

ρ

(√
d+

√
2 ln(4nRT/β0)

)
+

√
2R(T + 1) log(4R(T + 1)/β0)

ρ

Corollary D.3. Algorithm 3 altered so it invokes B = O(log(1/γ)) calls to Algorithm 5 (instead
of Algorithm 4) is a O(log(

1/β) log2(1/γ)
γ2)-rounds ρ-zCDP algorithm in the local-model that takes

O(n · log2(1/γ) log(1/β)
γ2)-time; and that returns a ball B(θ∗, r∗) such that r∗ ≤ (1 + 3γ)ropt and

|P \B(θ∗, r∗)| = O(

√
n

(√
d+

√
log(log(1/β)/γ)

)√
log(1/γ) log(1/β)

γ
√
ρ).

Proof. The proof follows from using the bound of Lemma D.2 with T = O(γ−2 log(1/γ)), and with
a privacy budget of ρ/B and failure probability of β/B in each invocation of Algorithm 5.

E Experiments

In this section we give an experimental evaluation of our algorithm on three synthetic datasets and
one real dataset. We emphasize that our experiment should be perceived merely as a proof-of-
concept experiment aimed at the possibility of improving the algorithm’s analysis, and not a thorough
experimentation for a ready-to-deploy code. We briefly explain the experimental setup below.

Goal. We set to investigate the performance of our algorithm, and seeing whether the performance
is similar across different types of input and across a range of parameters. In addition, we wondered
whether in practice our algorithm halts prior to concluding all T = O(γ−2 ln(1/γ)) iterations.

Experiment details. We conducted experiments solely with Algorithm 4 with update-step that uses
a constant learning rate of γ2

/8, feeding it the true ropt of each given dataset as its r parameter. By
default, we used the following set of parameters. Our domain in the synthetic experiments is [−5, 5]10
(namely, we work in the 10-dimensional space), and our starting point θ0 is the origin. The default
values of our privacy parameter is ρ = 0.3, of the approximation constant is 1.2 (namely γ = 0.2),
and of the failure probability is β = e−9 ≈ 0.00012. We set the maximal number of repetitions T
just as detailed in Algorithm 4, which depends on γ.

We varied two of the input parameters, ρ and γ, and also the data-type. We ran experiments with
ρ ∈ {0.1, 0.3, 0.5, 0.7, 0.9} and with γ ∈ {0.1, 0.2, 0.3, 0.4, 0.5}. Based on the values of ρ and γ we

computed n0 =
√
RT (

√
d+

√
ln(4RT/β0)√
ρ which we used as our halting parameter. In all experiments

involving a synthetic dataset, we set the input size n to be n = 640n0.

We varied also the input type, using 3 synthetically generated datasets and one real-life dataset:

• Spherical Gaussian: we generated samples from a d-dimensional Gaussian N (v, Id), where
v ∈ Rd is a random shift vector. We discarded each point that did not fall in [−5, 5]10.

• Product Distribution: we generated samples from a d-dimensional Bernoulli distribution
with support {−1, 1}d with various probabilities for each dimension — where for each

19

coordinate i ∈ [10] we set Pr[xi = 1] = 2−i. This creates a “skewed” distribution whose
mean is quite far from its 1-center. In order for the 1-center not to coincide with θ0 = 0̄ we
shifted this cube randomly in the grid.

• Conditional Gaussian: we repeated the experiment with the spherical Gaussian only this
time we conditioned our random draws so that no coordinate lies in the [0, 0.5]-interval.
This skews the mean of the distribution to be < 0 in each coordinate, but leaves the 1-center
unaltered. Again, we shifted the Gaussian to a random point v ∈ [−5, 5]d.

• “Bar Crawl: Detecting Heavy Drinking”: a dataset taken from the freely available UCI
Machine Learning Repository [1] which collected accelerometer data from participants in
a college bar crawl [26]. We truncated the data to only its 3 x-, y- and z-coordinates, and
dropped any entry outside of [−1, 1]3, and since it has two points (−1,−1,−1) and (1, 1, 1)
then its 1-center is the origin (so we shifted the data randomly in the [−5, 5]3 cube). This
left us with n = 12, 921, 593 points. Note that the data is taken from a very few participants,
so our algorithm gives an event-level privacy [17].

We ran our experiments in Python, on a (fairly standard) Intel Core i7 2.80 GHz with 16GB RAM
and they run in time that ranged from 15 seconds (for γ = 0.5) to 2 hours (for γ = 0.1).

Results. The results are given in Figures 2, 3, where we plotted the distance of θt to θopt for each
set of parameters across t = 10 repetitions. As evident, we converged to a good approximation of
the MEB in all settings. We halt the experiment (i) if ‖θt − θopt‖ ≤ γropt, or (ii) if there are not
enough wrong points, or (iii) if t > 2500 indicating that the run isn’t converging. Indeed, the number
of iterations until convergence does increase as γ decreases; but, rather surprisingly, varying ρ has a
small effect on the halting time. This is somewhat expected as T has no dependency on ρ whereas its
dependency on γ is proportional to γ−2, but it is evident that as ρ increases our mean-estimation in
each iteration becomes more accurate, so one would expect a faster convergence. Also unexpectedly,
our results show that even for datasets whose mean and 1-center aren’t close to one another (such
as the Conditional Gaussian or Product-Distribution), the number of iterations until convergence
remains roughly the same (see for example Figure 2 vs. 3).

Conclusions. Our experiments suggest that indeed our bound T is a worst-case bound, where in all
experiments we concluded in about 7− 50 times faster than the bound of Algorithm 4. This suggests
that perhaps one would be better off if instead of partitioning the privacy budget equally across all
T iterations, they devise some sort of adaptive privacy budgeting. (E.g., using 3ρ/4 budget on the
first T/4 iterations and then the remaining ρ/4 budget on the latter 3T/4 iterations.) Such adaptive
budgeting is simple when using zCDP, as it does not require “privacy odometers” [33].

20

(a) Spherical Gaussian (b) Conditional Gaussian

(c) Product Distribution (d) Bar Crawl: Detecting Heavy Drinking

Figure 2: The distance of θt to θopt as a function of t – the iteration number, for ρ = 0.3 and
γ ∈ {0.1, 0.2, 0.3, 0.4, 0.5}. Each curve corresponds to a different γ value. In all experiments the
number of iterations until convergence does increase as γ decreases, except for γ = 0.1 where it halts
because there were not enough wrong points. Note that for γ = 0.1 for Bar Crawl dataset (figure 2d)
we didn’t converge due to its size.

(a) Spherical Gaussian (b) Conditional Gaussian

(c) Product Distribution (d) Bar Crawl: Detecting Heavy Drinking

Figure 3: The distance of θt to θopt as a function of t – the iteration number, for γ = 0.2 and
ρ ∈ {0.1, 0.3, 0.5, 0.7, 0.9}. Each curve corresponds to a different ρ value. In all experiments
varying ρ has a small effect on the halting time.

21

	Finding an Initial Good Center
	A Local-DP Version of Finding an Initial Good Center

	Using Noisy Mean
	Missing Proofs: DP Algorithm
	Privacy Analysis
	Utility Analysis and Sample Complexity
	Application: Subsample Stable Functions

	Missing Proofs: Local-DP Algorithm
	Experiments

