
What Breaks the Curse of Dimensionality
in Deep Learning?

Anonymous Author(s)
Affiliation
Address
email

Abstract

Although learning in high dimensions is commonly believed to suffer from the1

curse of dimensionality, modern machine learning methods often exhibit an as-2

tonishing power to tackle a wide range of challenging real-world learning prob-3

lems without using abundant amounts of data. How exactly these methods break4

this curse remains a fundamental open question in the theory of deep learning.5

While previous efforts have investigated this question by studying the data (D),6

model (M), and inference algorithm (I) as independent modules, in this paper7

we analyzes the triple (D, M, I) as an integrated system. We examine the basic8

symmetries of such systems, focusing on four of the main architectures in deep9

learning: fully-connected networks (FCN), locally-connected networks (LCN), and10

convolutional networks with and without pooling (GAP/VEC). By computing an11

eigen-decomposition of the infinite-width limits (aka Neural Kernels) of these12

architectures, we characterize how inductive biases (locality, weight-sharing, pool-13

ing, etc) and the breaking of spurious symmetries can affect the performance of14

these learning systems. Our theoretical analysis shows that for many real-world15

tasks it is locality rather than symmetry that provides the first-order remedy to the16

curse of dimensionality. Empirical results on state-of-the-art models on ImageNet17

corroborate our results.18

1 Introduction19

Statistical problems with high-dimensional data are frequently plagued by the curse of dimensionality,20

in which the number of samples required to solve the problem grows rapidly with the dimensionality21

of the input. Classical theory explains this phenomenon as the consequence of basic geometric and22

algebraic properties of high-dimensional spaces; for example, the number of ε-cubes inside a unit23

cube in Rd grows exponentially like ε−d, and the number of degree r polynomials in Rd grows like a24

power-law dr. Since for real-world problems d is typically in the hundreds or thousands, classical25

wisdom suggests that learning is likely to be infeasible. However, starting from the groundbreaking26

work AlexNet [1], practitioners in deep learning have tackled a wide range of difficult real-world27

learning problems ([2–6]) in high dimensions, once believed by many to be out-of-scope of current28

techniques. The astonishing success of modern machine learning methods clearly contradicts the29

curse of dimensinonality and therefore poses the fundamental question: mathematically, how do30

modern machine learning methods break the curse of dimensionality?31

To answer this question, we must trace back to the most fundamental ingredients of machine learning32

methods. They are the data (D), the model (M), and the inference algorithm (I).33

Data (D) is of course central in machine learning. In the classical learning theory setting, the learning34

objective usually has a power-law decay m−β as the function of the number of training samples35

m. The theoretical bound on β is usually tiny, owing to the curse of dimensionality, and is of36

Submitted to 35th Conference on Neural Information Processing Systems (NeurIPS 2021). Do not distribute.

limited practical utility for high-dimensional data. On the other hand, empirical measurements of37

β in state-of-the-art deep learning models typically reveal values of β that are not at all small (e.g.38

β = 0.43 for ResNet in Fig.4) even though d is quite large (e.g. d ∼ 105 for ImageNet). This39

example suggests that the learning curve must have important functional dependence onM and I.40

Indeed, as we will observe later, many of the best performing methods exhibit learning curves for41

which β = β(m) actually increases as m becomes larger, i.e. data makes the usage of data more42

efficient. We call this phenomenon DIDE, for data improves data efficiency.43

Designing machine learning models (M) that maximize data-efficiency is critical to the success44

of solving real-world tasks. Indeed, breakthroughs in machine learning are often driven by novel45

architectures LeNet [7], AlexNet[1], Transformer [2], etc. While some of the inductive biases of these46

methods are clear (e.g. translation symmetries of CNNs), others tend to build off of prior empirical47

success and are less well-understood (e.g. the implicit bias of SGD). To build our understanding of48

these biases and how they affect learning, we conduct a theoretical analysis of them in the infinite-49

width setting [8–12], which preserves most salient aspects of the architecture while enabling tractable50

calculations. We classify all phenomena that could be explained by infinite networks alone as the51

consequences of inductive biases.52

The inference procedure (I) is what enables learning in machine learning methods. It is widely53

believed that modern inference methods, specifically gradient descent and variants, ‘implicitly‘ bias54

the solutions of the networks towards those that generalize well and away from those that generalize55

poorly [13–15]. The effects of the inference algorithm are intimately tied to the specifics of the model56

(e.g. weight-sharing) and the data (e.g. augmentation), and might not be fully understood with a57

fixed-data, fixed-model analysis. Indeed, good performance may derive from interactions between58

(M, I), or (D, I), or even (D,M, I). In Sec. 3.1, we demonstrate the DIDE effect for a particular59

choice of (D,M, I) and show that this effect disappears if any one of D,M, or I is altered.60

The above discussion highlights the insufficiency of treating D,M, and I as separate non-interacting61

modules. They must be considered as an integrated system. Throughout this paper, we will refer to62

the triplet (D,M, I) as a (machine) learning system and the tuple (M, I) as the learning algorithm63

of the system that operates on D. We summarize our contributions below.64

1. We surface the basic symmetries of various (D,M, I)associated to four of the main ar-65

chitectures in deep learning FCNn (fully-connected networks), LCNn (locally-connected66

networks), VECn/GAPn (convolution networks with a flattening /a global average pooling67

readout layer), their infinite width counterparts FCN∞/LCN∞/VEC∞/GAP∞. Treating68

FCNn/∞ as the baseline model, we show that the locality from LCNn and the weight-sharing69

from VECn/GAPn break spurious symmetries and lead to better systems. Empirically, we70

examine the relation between the symmetries and the performance of the systems in the71

infinite width setting and finite width setting with various of interventions. Surprisingly,72

we observe that state-of-the-art learning system (EfficientNet[16]) on ImageNet can learn73

almost equally well even the coordinate of the data are transformed by the symmetry group74

defined by LCNn.75

2. We show that although the weight-sharing from VECn provides coordinate information of76

the data to the system, as the width gets larger, it becomes harder for the learning algorithm77

to explore such information and at infinite width, the system restores the symmetry group78

that is identical to LCNn, and is completely unaware of the coordinate information. As a79

consequence, the performance of the network, as a function of width, monotonically decays80

[12]. This is in stark contrast to recent finding that the performance of network is positively81

correlated to its width. We show that this phenomenon continues to hold even with various82

interventions (larger learning rate and l2 regularization) to the training procedures. However,83

with more data (e.g. data augmentation) VECn can be on par with GAPn.84

3. The function space defined by LCNn is a super set of that defined by VECn. We prove the85

opposite is true. Therefore, VECn is able to express functions in the space with a stronger86

inductive bias GAPn (translation invariance) and functions in a seemingly much larger87

class LCNn. We hypothesize that as the dataset grows, the learned functions using VECn is88

transitioned away from those learned using LCNn and become closer to those learned using89

GAPn. This suggests, even though the prior (provided by human) is not 100% correct, with90

the help of more data, gradient descent might be able to correct it, a possible explanation of91

DIDE.92

2

4. When the input space is the product of hyperspheres, we eigendecompose the kernels93

associated to one-hidden layer infinite width network, FCN∞, VEC∞ = LCN∞ and GAP∞.94

We treat FCN∞ as the baseline, whose order r eigenspace has dimension of order dr95

and eigenvalues of order d−r for r ≥ 0 [17]. We show that locality alone (i.e. VEC∞)96

dramatically reduces the dimension of the r-eigenspace for r ≥ 2 and the spectral gap97

between all r-eigenspaces but r = 0 and r = 1, making learning of higher order eigenspaces98

feasible with dramatically fewer samples and gradient steps. In addition, pooling (i.e.99

GAP∞) reduces the dimension of r-eigenspace for r ≥ 1 by a factor equal to the size of the100

pooling window, but it does not change the spectra in an essential way.101

Our empirical and theoretical results surface the importance of locality which, we believe, provides102

the first-order remedy to the curse of dimensionality for many real-world tasks and which has been103

largely overlooked.104

2 Preliminary and Notation105

2.1 Neural Networks106

We focus our presentation on the supervised learning setting and more concretely, on image107

recognition. Let D ⊆ (Rd)3 × Rk ≡ R3d × Rk denote the data set (training and test) and108

X = {x : (x, y) ∈ D} and Y = {y : (x, y) ∈ D} denote the input space (images) and label space,109

respectively. Here d is the spatial dimension (e.g. d = 32× 32 for CIFAR-10) of the images and 3 is110

the total number of channels (i.e. RGB). We use FCNn to denote a L-hidden layer fully-connected111

network with identical hidden widths nl = n ∈ N for l = 1, ..., L and with readout width nL+1 = k112

(the number of logits). For each x ∈ R3d = (Rd)3, we use hl(x), xl(x) ∈ Rnl to represent the pre-113

and post-activation functions at layer l with input x. The recurrence relation FCNn is given by114 {
hl+1 = xlW l+1

xl+1 = φ
(
hl+1

) and W l
i,j =

1
√
nl
ωlij , ωlij ∼ N (0, 1) (1)

where φ is a point-wise activation function, W l+1 ∈ Rnl×nl+1 are the weights and ωlij are the115

trainable parameters, drawn i.i.d. from a standard Gaussian∼ N (0, 1) at initialization. For simplicity116

of the presentation, the bias terms and the hyperparameters (the variances of the weights) are omitted.117

Adding them back won’t affect the conclusion of the paper.118

For convolutional networks or locally-connected networks, the inputs are treated as tensors in (Rd)3.119

The recurrent relation of convolutional networks can be written as120

xl+1
α,j = φ(hl+1

α,j) and hl+1
α,j ≡

1√
(2k + 1)nl

nl∑
j=1

k∑
β=−k

xlα+β,iω
l
ij,β (2)

Here α ∈ [d] denote the spatial location, i/j ∈ [n] denotes the fanin/fanout channel indices. For121

notational convenience, we assume circular padding and stride equal to 1 for all layers. The features122

of the penultimate layer are 2D tensors and there are two commonly used approaches to map them123

to the logit layer: stack a dense layer after either vectorizing the 2D tensor to a 1D vector or124

applying a global average pooling layer to each channel. We use VECn/GAPn to denote the network125

obtain from the former/latter, which are known to be equipped with the inductive biases translation126

equivariant/invariant. The readout layer of VECn/GAPn could be written as127

xL+1
j =

1√
dn

∑
α∈[d]

xLα,iw
L+1
α,ij , xL+1

j =
1√
n

∑
i∈[n]

1

d

∑
α∈[d]

xLα,i

wL+1
ij (3)

We briefly remark the the key difference between the two. In VECn, each pixel in the penultimate128

layer has its own (independent random) variable while pixels within the same channel shared the129

same (random) variable in GAPn. It is clear that the function space of VECn contains that of GAPn.130

Locally Connected Networks LCNn [18, 19] are convolutional network without weight sharing131

between spatial locations. LCNn preserve the connectivity pattern, and thus topology, of a convnet.132

Mathematically, the current formula is defind as in Equation 2 with all the shared parameters ωlij,β133

replaced by unshared ωlij,α,β ∼ N (0, 1)134

3

In this note, we assume that the LCNn are always associated with a vectorization readout layer and it135

is clear, as a function space, LCNn is a super set of VECn. Interestingly,the opposite is also true.136

Theorem 2.1 (Sec. B). Let VECn/LCNn/GAPn denote the set of functions that can be represented137

by L-hidden layer VECn/LCNn/GAPn networks with hidden width n. Then138

GAPn ⊆ VECn ⊆ LCNn ⊆ VECdn (4)

The significance of this theorem is that if we consider the function space VECn as a soft prior,139

gradient descent could move it closer to a better prior GAPn (translation invariance) if the average140

pooling is (approximately) learned in the readout layer or it might remain close to LCNn.141

2.2 Gradient Descent Training142

We use f to denote any functions defined by the architectures above and θ to denote the collection143

of all parameters. Denote by θt the time-dependence of the parameters and by θ0 their initial144

values. We use ft(x) ≡ f(x, θt) ∈ Rk to denote the output (or logits) of the neural network at145

time t. Let `(ŷ, y) : Rk × Rk → R denote the loss function where the first/second argument is146

the prediction/true label. By applying continuous time gradient descent to minimize the objective147

L =
∑

(x,y)∈D `(ft(x, θ), y), the evolution of the parameters θ and the logits f can be written as148

θ̇t = −∇θft(XT)
T∇ft(XT)L , ḟt(XT) = ∇θft(XT) θ̇t = − Θ̂t(XT ,XT)∇ft(XT)L (5)

where ft(XT) = vec
(
[ft (x)]x∈XT

)
, the k|D|× 1 vector of concatenated logits for all examples, and149

∇ft(XT)L is the gradient of the loss with respect to the model’s output, ft(XT). Θ̂t ≡ Θ̂t(XT ,XT)150

is the tangent kernel at time t, which is a k|D| × k|D| kernel matrix151

Θ̂t = ∇θft(XT)∇θft(XT)
T (6)

One can define the tangent kernel for general arguments, e.g. Θ̂t(x,XT) where x is test input. At152

finite-width, Θ̂ will depend on the specific random draw of the parameters and evolve with time. As153

such, for a test point x the prediction ft(x) depends on the random initalization and is also stochastic.154

Note that the parameters are initialized randomly and the randomness will be carried out through the155

training procedure. As a consequence, the prediction functions are stochastic.156

2.3 Infinite Network: Gaussian Processes and the Neural Tangent Kernels157

Neural Networks as Gaussian Processes (NNGP). As the width n → ∞, at initialization the158

output f0(X) forms a Gaussian Process f0(X) ∼ GP(0,K(X ,X)), known as the NNGP [8, 20, 21].159

HereK is the GP kernel and can be computed in closed form for a variety of architectures. By treating160

this infinite width network as a Bayesian model (aka Bayesian Neural Networks) and applying161

Bayesian inference, the posterior is also a GP162

N
(
K(X∗,XT)K−1(XT ,XT)YT ,K(X∗,X∗)−K(X∗,X)K(X ,X)−1K(X∗,X)T

)
(7)

Neural Tangent Kernelss(NTK). Recent advance in global convergence theory of over-163

parameterized networks [22–25, 12] has shown that under certain assumptions, the tangent kernels is164

almost stationary over the course of training and is concentrated on its infinite width limit Θ in the165

sense there is a constant C independent of t and the network’s width n such that166

sup
t≥0
‖Θ̂t(XT ,XT)−Θ(XT ,XT)‖F + ‖Θ̂t(XT ,X∗)−Θ(XT ,X∗)‖F ≤

C√
n
. (8)

where is the infinite width limit of Θ at initialization, whose existence has been proved in [22, 26].167

As such, when the loss is the mean squared error (MSE), the mean prediction (marginarized over168

random initialization) has the following closed form169

f(X∗) = Θ (X∗,XT) Θ−1(XT ,XT)
(
I − e−ηΘ(XT ,XT)t

)
Y , (9)

Letting t → ∞, the above solution is the same as that of the kernel ridgeless regression using the170

infinite width tangent kernel Θ. We use FCN∞(x), LCN∞(x), VEC∞(x) and GAP∞(x) to denote171

the infinite width solutions (either the GP inference or the NTK regression) for the corresponding172

architectures, where we have suppressed the dependence on the training data (XT ,YT).173

4

3 Symmetries of Machine Learning Systems174

Symmetry is fundamental in physical systems. So is it in machine learning systems. We explore175

symmetries of various machine learning systems in this section. Given D = (X ,Y) and a transforma-176

tion on the input space τ : R3d → R3d, we set τ(D) = (τ(X),Y). Let O(3d) denote the orthogonal177

group on the flatten input space R3d. The subgroup O(3)d ≤ O(3d) operates on the un-flattened178

input (Rd)3, whose element rotates each pixel xα ∈ R3 by an independent element τα ∈ O(3). The179

smaller subgroup O(3)⊗ Id ≤ O(3)d applies the shared rotation (i.e. τα = τ to all xα for α ∈ [d]).180

We use P(3d) to denote the permutation group on R3d and P(3)d and P(3)⊗ Id are defined similarly.181

Note that rotating X by τ is equivalent to transfer the original coordinate system by the adjoint182

tranformation τ∗ = τ−1.183

For a deterministic (stochastic) learning algorithmA = (M, I), we useA(DT) to denote the learned184

function (distribution of the learned functions) using training set DT . We use Aτ (DT) to denote185

the learned function(s) using τ(DT) and makes prediction on the transformed test point τ(X∗). In186

another word, the learning algorithm is conducted in the input space whose coordinate system is187

transformed by τ−1.188

Definition 1. Let G be a group of transformations R3d → R3d. We say a deterministic (stochastic)189

learning algorithm A = (M, I) is g-invariant if A = Ag (A =d Ag). In this case, we say the190

system (D,M, I) is g-invariant and use the notation (D,M, I) = (gD,M, I). If this holds for all191

g ∈ G, then we say the algorithm and the system are G-invariant.192

If (M, I) is the algorithm of minimum norm linear regressor, then (D,M, I) is O(3)d-invariant;193

see Sec.F for more details. Note that the symmetry (invariance) in our definition is a property of a194

system and is different from the notion of symmetry that are commonly used in the machine learning195

community, which is a property of a function (e.g. translation invariance).196

Theorem 3.1 (Sec.C). If the parameters of the networks are initialized with iid N (0, 1), then197

• FCNn/∞ are O(3d)-invariant.198

• LCNn/∞ are O(3)d-invariant.199

• VECn is O(3)⊗Id-invariant and VEC∞200

is O(3)d-invariant.201

• GAPn/∞ are O(3)⊗ Id-invariant.202

The O(3d)-invariant of FCN∞ is because the NTK/NNGP kernel is an inner product kernel, namely,203

there is a function k such that the kernels have the form k(〈x, x′〉). The O(3d)-invariant of finite204

width FCNn is due to the Gaussian initialization of the first layer which was first observed and205

proved in [27]. Rotating the input by τ ∈ O(3d) is equivalent to rotating the weight matrix ω of206

the first layer by τ∗. Since for ω ∈ N (0, 1)3d τ∗ω =d ω, at random initialization, the distribution207

of the output functions (the prior) are unchanged if all inputs are rotated by the same element in208

O(3d). This property continues to hold throughout the course of (continue/discrete) gradient descent209

training with/without L2-regularization and Bayesian posterior inference. For the same reason, LCNn210

is O(3)d-invariant because each patch of the image uses independent Gaussian random variables.211

However, weight-sharing in VECn and GAPn breaks the O(3)d symmetry, reducing it to O(3)⊗ Id.212

For infinite networks, LCN∞ = VEC∞ [28–31]. The kernels of VEC∞ and GAP∞ are of the forms213

ΘVEC(x, x′) = k({〈xα, x′α〉}α∈[d]) and ΘGAP(x, x′) = k({〈xα, x′α′〉}α,α′∈[d]), (10)

resp. The former depends only on the inner product between pixels in the same spatial location,214

breaking the O(3d) symmetry and reducing it to O(3)d. In addition, the latter depends also on the215

inner products of pixels across different spatial locations due to pooling, which breaks the O(3)d216

symmetry and reduces it to O(3)⊗ Id.217

Note that dim(O(3d)) = 3d(3d− 1)/2, dim(O(3)d) = 3d and dim(O(3)⊗ Id) = 3. LCNn/VEC∞218

dramatically reduces the dimension of the symmetry group. It is worth mentioning that while219

dim(O(3d)) many pairs of rotated and unrotated images are needed to recover the exact rotation in220

O(3d), only 3 pairs are sufficient for O(3)d, same as that of O(3) ⊗ Id. The results of the paper221

are presented in the most vanilla setting. Our methods can easily extend to more complicated222

architectures like ResNet[32], MLP-Mixer[33] and etc. The symmetry groups of such systems223

need to be computed in a case-by-case manner by identifying the invariant group of the random224

initialization and training procedures.225

5

O(3d) P(3d) P(d) I3 O(3)d O(3) Id I
0.55

0.60

0.65

0.70

0.75

NTK

FCN

VEC

LAP4

LAP8

GAP

O(3d) P(3d) P(d) I3 O(3)d O(3) Id I
0.4

0.5

0.6

0.7

0.8

0.9
NN

O(3d) P(3d) P(d) I3 O(3)d O(3) Id I
0.4

0.5

0.6

0.7

0.8

0.9
NN+

FCNn
VECn
LAP4

n

LAP8
n

GAPn
LCNn

O(3d) P(3d) P(d) I3 O(3)d O(3) Id I
0.4

0.5

0.6

0.7

0.8

0.9
NN++

FCNn
VECn

GAPn
LCNn

Figure 1: Performance vs Symmetry. Machine learning systems are equipped with various kinds of
symmetries. Transforming the system by the associated symmetry does not affect the performance
of the system. However, injecting spurious symmetries beyond the associated symmetries could
dramatically degrade their performance for both finite and infinite networks.

0.0 0.2 0.4 0.6 0.8 1.0
Strength of O(3)d-Rotation

0.65

0.70

0.75

0.80

Ac
cu

ra
cy

Accuracy vs Strength of Rotation

n=64
n=128
n=256
n=512

0.0 0.2 0.4 0.6 0.8 1.0
Strength of O(3)d-Rotation

0.005

0.010

0.015

||V
E
C

t n
-G

A
P

Id n
||2 2

Distance between VEC tn and GAPn

0.0 0.2 0.4 0.6 0.8 1.0
Strength of O(3)d-Rotation

0.005

0.010

0.015

||V
E
C

t n
-V

E
C

||2 2

Distance between VEC tn and VEC

Figure 2: Even in the NN+ setting, VECn is closer to GAPn for small n and moves towards VEC∞
with more symmetries and/or larger n and accuracy drops.

3.1 Empirical Supports and Observations226

Performance under Rotations. We examinate the performance of: FCN,VEC, LCN,GAP and227

LAP4/8, when the coordinates of the data are transformed by six different groups (x-axis in Fig.1)228

using the standard dataset CIFAR-10. , Here LAP4/8 is the same as GAP except the readout layer is229

replaced by the Local Average Pooling with window size 4×4/8×8. We consider 4 types of training230

methods: (1) NTK, i.e. infinite networks (2)NN, our baseline for finite width neural network which231

is trained with momemtum using a small learning rate and without L2 regularizer and the network232

is centered (+C) to reduce the variance from random initialization (3)NN+= NN+LR+L2−C, i.e.233

using a larger learning rate (+LR), adding L2 regularization (+L2)) and removing the centering (−C)234

(4) NN++=NN++DA, adding MixUp[34] data augmentation (+DA) to NN+. Overall, we observe235

that, for most of the cases in NTK/NN/NN+, adding spurious symmetry to a system (D,M, I)236

degrades the performance towards that of the system invariant to that symmetry. Surprisingly, in the237

baseline NN, performance of VECn+ O(3)⊗ Id rotation is slightly worse than that of VECn+ O(3)d238

and than that of LCNn, indicating that the system with M = VECn is likely operating closely239

on the O(3)d symmetry. The interventions −C+L2+LR in NN+ distinguishes the performance of240

VECn + O(3)⊗ Id from VECn + O(3)d and +DA eventually closes the performance gap between241

VECn + O(3)⊗ Id and GAPn + O(3)⊗ Id, helping the system to be aware of the smaller symmetry242

O(3)⊗ Id and escaping from the O(3)d symmetry.243

Symmetry Breaking of VECn. Assuming Equation 8, namely, the network is in the NTK regime,244

lim
n→∞

|EVECn(x)− VEC∞(x)|+ lim
n→∞

|EVECn(x)− EVECτn(x)| ≤ Cn− 1
2 (11)

where the expectation E is over random initialization and VECn(x) is the prediction of the test point245

x when t = ∞, i.e. training loss is 0. VECτn is the prediction of the τ -rotated system, τ ∈ O(3)d.246

The O(3)d symmetry is restored as n → ∞. As such, for large n, the system is approximately247

O(3)d-invariant. In Figs. 2, we randomly sample a τ ∈ O(3)d and use the exponential map to248

construct a continuous interpolation τt ∈ O(3)d between τ0 = Id and τ1 = τ . We train the249

network as in NN+ (+LR+L2−C) using different n and τt and average the predictions over 10250

random initialization as an approximation of EVECτtn (x). Not surprisingly, as n increases and/or t251

increases, (1) test performance decays monotonically (left panel in Fig.2), (2) the distance to EGAPn252

increases monotonically (middle panel) and (3) distance to VEC∞ decrease monotonically (right253

panel). Clearly, the coordinate information from the data is utilized by smaller width VECn.254

6

26 29 211 215

Training Set Size

2-6

2-5

2-4

M
SE

+FlipUnaugmented

GAPn
GAP

VECn

VEC

LCNn

Figure 3: Data Bends Learning Curve of VECn. We
study the effect of training set size to the network’s perfor-
mance for various models. In the small dataset regime, the
slope of the learning curve (in the log-log plot) of VECn
is similar to that of VEC∞ and FCNn. However, as the
dataset gets larger, the slope increases significantly. This
is hinted by Theorem 2.1.

0.70 0.72 0.74 0.76 0.78 0.80 0.82 0.84
ImageNet Top-1 Accuracy(%)

0.60

0.64

0.68

0.72

0.76

0.80

0.84

O
(3

)d -I
m

ag
eN

et
 T

op
-1

 A
cc

ur
ac

y(
%

)

B0

B1

B3

B5
B7

ResNet18

ResNet34

ResNet50

ResNet101
ResNet200

O(3)d Images

Clean Images

f(x) = x

105 106

Training Set Size

1

2

3

4
5
6

Cr
os

s E
nt

ro
py

= 0.43
= 0.32
= 0.49

ResNet50 + Clean Images
ResNet50 + O(3)d-Images

105 106

Training Set Size

1

2

3

4

5
6

Cr
os

s E
nt

ro
py

= 0.45
= 0.36
= 0.17
= 0.08

ResNet101 + Clean Images
ResNet101 + O(3)d-Images
MixerSmall + Clean Images
MixerSmall + O(3)d-Images

Figure 4: With coordinate of the input data rotated by O(3)d, state of the art models learn as good as
without rotation. middle/right: slopes of the learning curves increases due to more data. DIDE

DIDE for VECn. To understand the role of data, we vary the training set size of Cifar10 from about255

26 to 50k (the whole un-augmented training set) and to 100k (adding left-right flip augmentation) and256

plot the learning curves in Fig.3. We observe dramatic speedup of learning for VECn in the larger257

data set regime, which isn’t the case for VEC∞ (kernel), LCNn, GAP∞ and even for GAPn after258

m = 212. We argue that this is due to the prior (the function space defined by the model) is too large259

(and not optimal) for the task and the coupled effect of more data together with inference procedures260

corrects the prior, as it is suggested by Theorem 2.1.261

DIDE for SOTA models. In the middle and right panels of Fig.4, we provide additional evidence262

in a larger scale setting. We generate learning curves of ImageNet using ResNet50 and (MLP-)Mixer263

[33], a very recent architecture that contains no convolution layers except the first layer, which264

is a convolution with filter size and stride equal to (16, 16) (patches are disjoint). The symmetry265

group associated to (first layer of) ResNet (O(22 × 3) ⊗ Id112×112) is similar to that of GAPn266

which is relatively small. However, the symmetry group induced by the first layer of the Mixer is267

O(3× 162)⊗ I142 , where 3× 162 is number of entries in the (16, 16, 3) patch (RGB channels) and268

142 = 2242/162 is the number of patches. Although the dimension of O(3× 162) ⊗ I142 is quite269

large (about (3×162)2/2), it is still dramatically smaller than that of applying a fully-connected layer270

to the flatten images, which O(3× 2242) (whose dimension is (3× 2242)2/2). In the middle panel271

of Fig.4, we observe an almost perfect power-law scaling for the learning curve for the ResNet50272

system with unrotated images. When the images are rotated by O(3)d (d = 2242), the learning curve273

is relatively flat in the smaller data regime (green dashed line). However, as the data set grows, it274

eventually catches up (purple dashed line) as that of the unrotated setting; see Sec.E for ResNet34/101.275

In the third panel, we see the learning curves are much flatter (red) for the Mixer and even more so276

for the rotated images (green). Again, these curves are bent towards that of ResNet50 with unrorated277

images as data increases, indicating the prior was being corrected.278

Finally, in the left panel of Fig.4, we compare the accuracy of state-of-the-art models trained on both279

unrotated and O(3)d rotated images. Surprisingly, the gap between the two are not large and becomes280

smaller for better performant models. For EfficientNet B7 1, the top-1 accuracy of the rotated system281

is only 1.2% off from the unrotated one. See Fig.S7, S8 and S9 for rotated and unrotated images.282

4 Eigenecomposition of Neural Kernels283

To gain insight into the inductive biases of various architectures, we eigendecompose the kernels using284

spherical harmonics. We assume the input space X = {ξ = (ξ0, . . . , ξp−1) ∈ (
√
d0S(d0−1))p} ⊆285

1Still under training

7

Rd0p, i.e. the p-product of (d0 − 1)-sphere with radius
√
d0. We call ξi ∈

√
d0S(d0−1) a mini-patch286

and (ξi, ξi+1, . . . , ξi+s−1) ∈ (
√
d0S(d0−1))s} a patch for i ∈ [p], where circular boundary condition287

is assumed. We consider the asymptotic limit when d0 = dα, p = d1−α and d = pd0 → ∞ and288

treat 0 < α < 1 and s as fixed constant. The input space X is associated with the product measure289

µ ≡ σpd0 , where σd0 is the normalized uniform measure on
√
d0S(d0−1). The kernels associated to290

the one-hidden layer infinite networks (NNGP and NTK) have the following general forms291

k

1

p

∑
i∈[p]

ξTi ηi/d0

 ,
1

p

∑
i∈[p]

k

1

s

∑
b∈[s]

ξTi+bηi+b/d0

 ,
1

p2

∑
i,j∈[p]

k

1

s

∑
b∈[s]

ξTi+bηj+b/d0

 ,

(12)

for KFCN,KVEC and KGAP, resp. Note that the exact form of the (positive definite) kernel function292

k : R→ R depends on the type of the kernels (NNGP vs NTK), activations, hyperparameters and etc.293

We assume the kernel is sufficiently smooth in (−1, 1) and the Tayor expansion of k(r) converges294

uniformly in [−1, 1] for sufficiently many r ∈ N. We use the notation that A ∼ B if there are positive295

constants c and C independent of d such that cA ≤ B ≤ CA for d sufficiently large. We use K to296

represent any kernels above and consider it as a Hilbert–Schmidt operator on L2(X , µ)297

Kf(ξ) =

∫
X
K(ξ, η)f(η)dµ , f ∈ L2(X , µ), (13)

which is well-defined since µ is a probability measure and k is bounded. Let ~r = (r0, . . . , rp−1) ∈ Np,298

τ the shifting operator τ~r = (rp−1, r0, . . . , rp−2). The s-banded subset of Np is defined to be299

B(Np, s) = {~r ∈ Np : dist(argmaxjrj 6= 0, argminjrj 6= 0) ≤ s− 1} (14)

which is a quantifier used to restrict the support of a function on a patch. Here dist(i, j) = min{|i−300

j|, p− |i− j|}, a distance defined on the cyclic group [p] = Z/pZ. The quotient space B(Np, s)/τ301

denotes a subset of B(Np, s) by identifying ~v = ~v′ as the same element if ~v = τa~r′ for some a ∈ [p].302

Finally, Yrj ,lj (ξj) is used to denote the lj-th spherical harmonic of degree rj in the unit sphere303

S(d0−1) and has unit norm under the normalized measure on S(d0−1). As such Yrj ,lj (ξj/
√
d0) ∈304

L2(
√
d0S(d0−1), σd0) has unit norm. Recall that the total number of spherical harmonic of degree rj305

in S(d0−1) is N(d0, rj) = (2rj + d0 − 2)
(
d0+rj−3
rj−1

)
/rj ∼ d

rj
0 /rj ! as d0 →∞. We use N(d0, ~r) =306 ∏

j∈[p]N(d0, rj) and [N(d0, ~r)] =
∏
j∈[p][N(d0, rj)], resp. Let307

Y~r,~l(ξ) =
∏
j∈[p]

Yrj ,lj (ξj) (15)

The following theorem shows that locality (VEC∞) dramatically reduces both the dimensions of308

r ≥ 1 eigenspaces and the spectral gap between them. In addition, pooling (i.e. translation symmetry309

of GAPn) reduces their dimensions by an additional factor of p. See Sec.E for the implication of this310

theorem to learning.311

Theorem 4.1. [Sec.D] We have the following eigendecomposition for the integral operator K312

H =
⋃
r∈N

H(r) =
⋃
r∈N

⋃
~r∈Q(K,r)

H(~r), (16)

where Q(K, r) is a quantifier defined below. If r = 0, H(0) is the space of constant functions and the313

eigenvalue is ∼ k(0). For r ≥ 1, we have the following.314

(1)Baseline: K = KFCN. Q(K, r) = {~r ∈ Np : |~r| = r} and the unit eigenfunctions are315 H(~r) = span
{
Y~r,~l(

·√
d0

)
}
~l∈[B(d0,~r)]

dim(H(r)) ∼ dr and λ(H(~r)) ∼ d−rk(r)(0) if k(r)(0) 6= 0
(17)

(2)+Locality: K = KVEC. Q(K, r) = {~r ∈ B(Np, s) : |~r| = r} the unit eigenfunctions are316 H
(~r)
VEC = span

{
Y~r,~l(

·√
d0

)
}
~l∈[B(d0,~r)]

dim(H
(r)
VEC) ∼ psr−1dr0 = sr−1d1−α+rα and λ(H

(~r)
VEC) ∼ p−1(sd0)−rk(r)(0) if k(r)(0) 6= 0

(18)

8

100 101 102 103 104

Rank

10 8

10 6

10 4

10 2

100

Ei
ge

nv
al

ue

FCN : d=24
FCN : d=96
FCN : d=384

100 101 102 103 104

Rank

10 8

10 6

10 4

10 2

100

Ei
ge

nv
al

ue

VEC : d=24
VEC : d=96
VEC : d=384

100 101 102 103 104

Rank

10 8

10 6

10 4

10 2

100

Ei
ge

nv
al

ue

GAP : d=24
GAP : d=96
GAP : d=384

Figure 5: Eigenvalue Decay of Relu NTK of FCN∞, VEC∞ and GAP∞. d0 = s = 3. The
eigenvalues of GAP∞ decays faster because with m = 15k many samples, higher order eigenspace
can be covered by GAP∞ but not FCN∞/VEC∞ due to Theorem 4.1.

(3)+Locality + Shifting: K = KGAP. Q(K, r) = {~r ∈ B(Np, s)/τ : |~r| = r}, the unit eigenfunc-317

tions are318 H
(~r)
GAP = span

{
1√
p

∑
τ∈[p] Y~r,~l(

τ
·
√
d0)
}
~l∈[B(d0,~r)]

dim(H
(r)
GAP) ∼ sr−1dr0 and λ(H

(~r)
GAP) ∼ p−1(sd0)−rk(r)(0) if k(r)(0) 6= 0

(19)

5 Related Work319

The study of infinite networks dates back to the seminal work by Neal [8] who showed the con-320

vergence of single hidden-layer networks to Gaussian Processes (GPs). Recently, there has been321

renewed interest in studying random, infinite, networks starting with concurrent work on “conjugate322

kernels” [10, 35] and “mean-field theory” [9, 36], taking a statistical learning and statistical physics323

view of points, resp. Since then this analysis has been extended to include a wide range for archi-324

tectures [20, 21, 37, 29, 26, 38]. The inducing kernel is often referred to as the Neural Network325

Gaussian Process (NNGP) kernel. The neural tangent kernel (NTK), first introduced in Jacot et al.326

[22], along with followup work [12, 39] showed that the distribution of functions induced by gradient327

descent for infinite-width networks is a Gaussian Process with NTK as the kernel.328

The study of implicit bias (regularization) of gradient descent has received considerable interests.329

The work [15, 40–43] demonstrate the convergence of SGD to the maximal margin solution for330

logistic-type losses during late time training. [44–50] study the early-time SGD dynamics, spectral331

biases of neural networks. These results aim to explain the order of learning of neural networks:332

functions of less complexity are usually learned before more complex functions.333

[27] is the first to show that the prediction functions obtained from training FCN depend, in addition334

on the labels, only on the covariance of the input data. This implies our result regarding the O(3d)335

invariance of FCN. By utilizing this symmetry, recent work [51] constructs a particular task where336

the label function is a second order polynomial of the inputs and show that orthogonal invariance337

algorithm requires sample size of order d2 while there is a convnet requires only O(1) samples. Their338

convnet essentially corresponds to the d0 = s = 1 and r = 2 case of Theorem 4.1, in which the339

dimension of this eigenspace (and indeed of all r-eigenspace by treating r as a finite constant as340

d → ∞) of GAP∞ is O(1) while the dimension of the 2-eigenspace of FCN∞ is of order d2. See341

Subsection. E.4.342

6 Conclusion343

In this paper, we consider machine learning methods as an integrated system of data, models and344

inference algorithms and study the basic symmetries of various machine learning systems. We surface345

the importance of locality in modern machine learning systems through large scale empirical study346

and through an eigendecomposition of one-layer infinite networks. However, we haven’t addressed347

two import questions (1) theoretical characterization of the effect of composing locality and (2) the348

mathematical understanding of DIDE and how the prior is corrected by the coupled effect of data and349

gradient descent. We leave them to future work.350

9

Checklist351

The checklist follows the references. Please read the checklist guidelines carefully for information on352

how to answer these questions. For each question, change the default [TODO] to [Yes] , [No] , or353

[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing354

the appropriate section of your paper or providing a brief inline description. For example:355

• Did you include the license to the code and datasets? [Yes] See Section ??.356

• Did you include the license to the code and datasets? [No] The code and the data are357

proprietary.358

• Did you include the license to the code and datasets? [N/A]359

Please do not modify the questions and only use the provided macros for your answers. Note that the360

Checklist section does not count towards the page limit. In your paper, please delete this instructions361

block and only keep the Checklist section heading above along with the questions/answers below.362

1. For all authors...363

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s364

contributions and scope? [Yes]365

(b) Did you describe the limitations of your work? [Yes]366

(c) Did you discuss any potential negative societal impacts of your work? [N/A]367

(d) Have you read the ethics review guidelines and ensured that your paper conforms to368

them? [Yes]369

2. If you are including theoretical results...370

(a) Did you state the full set of assumptions of all theoretical results? [Yes]371

(b) Did you include complete proofs of all theoretical results? [Yes]372

3. If you ran experiments...373

(a) Did you include the code, data, and instructions needed to reproduce the main experi-374

mental results (either in the supplemental material or as a URL)? [No]375

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they376

were chosen)? [No]377

(c) Did you report error bars (e.g., with respect to the random seed after running experi-378

ments multiple times)? [Yes]379

(d) Did you include the total amount of compute and the type of resources used (e.g., type380

of GPUs, internal cluster, or cloud provider)? [No]381

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...382

(a) If your work uses existing assets, did you cite the creators? [TODO]383

(b) Did you mention the license of the assets? [TODO]384

(c) Did you include any new assets either in the supplemental material or as a URL?385

[TODO]386

(d) Did you discuss whether and how consent was obtained from people whose data you’re387

using/curating? [TODO]388

(e) Did you discuss whether the data you are using/curating contains personally identifiable389

information or offensive content? [TODO]390

5. If you used crowdsourcing or conducted research with human subjects...391

(a) Did you include the full text of instructions given to participants and screenshots, if392

applicable? [TODO]393

(b) Did you describe any potential participant risks, with links to Institutional Review394

Board (IRB) approvals, if applicable? [TODO]395

(c) Did you include the estimated hourly wage paid to participants and the total amount396

spent on participant compensation? [TODO]397

10

References398

[1] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional399

neural networks. In Advances in neural information processing systems, pages 1097–1105, 2012.400

[2] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz401

Kaiser, and Illia Polosukhin. Attention is all you need. arXiv preprint arXiv:1706.03762, 2017.402

[3] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirec-403

tional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.404

[4] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche, Julian405

Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering the game of go406

with deep neural networks and tree search. Nature, 529(7587):484–489, 2016.407

[5] Andrew W Senior, Richard Evans, John Jumper, James Kirkpatrick, Laurent Sifre, Tim Green, Chongli408

Qin, Augustin Žídek, Alexander WR Nelson, Alex Bridgland, et al. Improved protein structure prediction409

using potentials from deep learning. Nature, 577(7792):706–710, 2020.410

[6] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott Gray,411

Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models. arXiv preprint412

arXiv:2001.08361, 2020.413

[7] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to414

document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.415

[8] Radford M. Neal. Priors for infinite networks (tech. rep. no. crg-tr-94-1). University of Toronto, 1994.416

[9] Ben Poole, Subhaneil Lahiri, Maithra Raghu, Jascha Sohl-Dickstein, and Surya Ganguli. Exponential417

expressivity in deep neural networks through transient chaos. In Advances In Neural Information Processing418

Systems, 2016.419

[10] Amit Daniely, Roy Frostig, and Yoram Singer. Toward deeper understanding of neural networks: The420

power of initialization and a dual view on expressivity. In Advances In Neural Information Processing421

Systems, 2016.422

[11] Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and generalization423

in neural networks. arXiv preprint arXiv:1806.07572, 2018.424

[12] Jaehoon Lee, Lechao Xiao, Samuel S. Schoenholz, Yasaman Bahri, Roman Novak, Jascha Sohl-Dickstein,425

and Jeffrey Pennington. Wide neural networks of any depth evolve as linear models under gradient descent.426

In Advances in Neural Information Processing Systems, 2019.427

[13] Behnam Neyshabur. Implicit regularization in deep learning. arXiv preprint arXiv:1709.01953, 2017.428

[14] Suriya Gunasekar, Jason Lee, Daniel Soudry, and Nathan Srebro. Implicit bias of gradient descent on429

linear convolutional networks. arXiv preprint arXiv:1806.00468, 2018.430

[15] Daniel Soudry, Elad Hoffer, Mor Shpigel Nacson, Suriya Gunasekar, and Nathan Srebro. The implicit bias431

of gradient descent on separable data, 2018.432

[16] Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for convolutional neural networks. In433

International Conference on Machine Learning, pages 6105–6114. PMLR, 2019.434

[17] Alex J Smola, Zoltan L Ovari, Robert C Williamson, et al. Regularization with dot-product kernels.435

Advances in neural information processing systems, pages 308–314, 2001.436

[18] Kunihiko Fukushima. Cognitron: A self-organizing multilayered neural network. Biological cybernetics,437

20(3-4):121–136, 1975.438

[19] Yann Lecun. Generalization and network design strategies. In Connectionism in perspective. Elsevier,439

1989.440

[20] Jaehoon Lee, Yasaman Bahri, Roman Novak, Sam Schoenholz, Jeffrey Pennington, and Jascha Sohl-441

dickstein. Deep neural networks as gaussian processes. In International Conference on Learning Repre-442

sentations, 2018.443

[21] Alexander G. de G. Matthews, Jiri Hron, Mark Rowland, Richard E. Turner, and Zoubin Ghahramani.444

Gaussian process behaviour in wide deep neural networks. In International Conference on Learning445

Representations, 2018.446

11

[22] Arthur Jacot, Franck Gabriel, and Clement Hongler. Neural tangent kernel: Convergence and generalization447

in neural networks. In Advances in Neural Information Processing Systems, 2018.448

[23] Simon S Du, Jason D Lee, Haochuan Li, Liwei Wang, and Xiyu Zhai. Gradient descent finds global449

minima of deep neural networks. arXiv preprint arXiv:1811.03804, 2018.450

[24] Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning via over-451

parameterization. In International Conference on Machine Learning, 2018.452

[25] Difan Zou, Yuan Cao, Dongruo Zhou, and Quanquan Gu. Gradient descent optimizes over-parameterized453

deep relu networks. Machine Learning, 109(3):467–492, 2020.454

[26] Greg Yang. Scaling limits of wide neural networks with weight sharing: Gaussian process behavior,455

gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760, 2019.456

[27] Neha S. Wadia, Daniel Duckworth, Samuel S. Schoenholz, Ethan Dyer, and Jascha Sohl-Dickstein.457

Whitening and second order optimization both destroy information about the dataset, and can make458

generalization impossible. arxiv preprint arXiv:2008.07545, 2020.459

[28] Lechao Xiao, Yasaman Bahri, Jascha Sohl-Dickstein, Samuel Schoenholz, and Jeffrey Pennington. Dy-460

namical isometry and a mean field theory of cnns: How to train 10,000-layer vanilla convolutional neural461

networks. In International Conference on Machine Learning, pages 5393–5402, 2018.462

[29] Roman Novak, Lechao Xiao, Jaehoon Lee, Yasaman Bahri, Greg Yang, Jiri Hron, Daniel A. Abolafia,463

Jeffrey Pennington, and Jascha Sohl-Dickstein. Bayesian deep convolutional networks with many channels464

are gaussian processes. In International Conference on Learning Representations, 2019.465

[30] Adrià Garriga-Alonso, Laurence Aitchison, and Carl Edward Rasmussen. Deep convolutional networks as466

shallow gaussian processes. In International Conference on Learning Representations, 2019.467

[31] Roman Novak, Lechao Xiao, Jiri Hron, Jaehoon Lee, Alexander A Alemi, Jascha Sohl-Dickstein, and468

Samuel S Schoenholz. Neural tangents: Fast and easy infinite neural networks in python. arXiv preprint469

arXiv:1912.02803, 2019.470

[32] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.471

In Conference on Computer Vision and Pattern Recognition, pages 770–778, 2016.472

[33] Ilya Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Thomas Unterthiner,473

Jessica Yung, Daniel Keysers, Jakob Uszkoreit, Mario Lucic, et al. Mlp-mixer: An all-mlp architecture for474

vision. arXiv preprint arXiv:2105.01601, 2021.475

[34] Hongyi Zhang, Moustapha Cisse, Yann N. Dauphin, and David Lopez-Paz. mixup: Beyond empirical476

risk minimization. In International Conference on Learning Representations, 2018. URL https://477

openreview.net/forum?id=r1Ddp1-Rb.478

[35] Amit Daniely. SGD learns the conjugate kernel class of the network. In Advances in Neural Information479

Processing Systems 30. 2017.480

[36] Samuel S Schoenholz, Justin Gilmer, Surya Ganguli, and Jascha Sohl-Dickstein. Deep information481

propagation. International Conference on Learning Representations, 2017.482

[37] Lechao Xiao, Yasaman Bahri, Jascha Sohl-Dickstein, Samuel Schoenholz, and Jeffrey Pennington. Dy-483

namical isometry and a mean field theory of CNNs: How to train 10,000-layer vanilla convolutional neural484

networks. In International Conference on Machine Learning, 2018.485

[38] Jiri Hron, Yasaman Bahri, Jascha Sohl-Dickstein, and Roman Novak. Infinite attention: Nngp and ntk for486

deep attention networks, 2020.487

[39] Lenaic Chizat, Edouard Oyallon, and Francis Bach. On lazy training in differentiable programming. In488

Advances in Neural Information Processing Systems, pages 2937–2947, 2019.489

[40] Kaifeng Lyu and Jian Li. Gradient descent maximizes the margin of homogeneous neural networks. In490

International Conference on Learning Representations, 2020. URL https://openreview.net/forum?491

id=SJeLIgBKPS.492

[41] Ziwei Ji and Matus Telgarsky. The implicit bias of gradient descent on nonseparable data. In Conference493

on Learning Theory, pages 1772–1798, 2019.494

[42] Ziwei Ji and Matus Jan Telgarsky. Gradient descent aligns the layers of deep linear networks. In 7th495

International Conference on Learning Representations, ICLR 2019, 2019.496

12

https://openreview.net/forum?id=r1Ddp1-Rb
https://openreview.net/forum?id=r1Ddp1-Rb
https://openreview.net/forum?id=r1Ddp1-Rb
https://openreview.net/forum?id=SJeLIgBKPS
https://openreview.net/forum?id=SJeLIgBKPS
https://openreview.net/forum?id=SJeLIgBKPS

[43] Lénaïc Chizat and Francis Bach. Implicit bias of gradient descent for wide two-layer neural networks497

trained with the logistic loss. In Jacob Abernethy and Shivani Agarwal, editors, Proceedings of Thirty498

Third Conference on Learning Theory, volume 125 of Proceedings of Machine Learning Research, pages499

1305–1338. PMLR, 09–12 Jul 2020. URL http://proceedings.mlr.press/v125/chizat20a.html.500

[44] Preetum Nakkiran, Gal Kaplun, Dimitris Kalimeris, Tristan Yang, Benjamin L Edelman, Fred Zhang,501

and Boaz Barak. Sgd on neural networks learns functions of increasing complexity. arXiv preprint502

arXiv:1905.11604, 2019.503

[45] Wei Hu, Lechao Xiao, Ben Adlam, and Jeffrey Pennington. The surprising simplicity of the early-time504

learning dynamics of neural networks. arXiv preprint arXiv:2006.14599, 2020.505

[46] Nasim Rahaman, Aristide Baratin, Devansh Arpit, Felix Draxler, Min Lin, Fred Hamprecht, Yoshua506

Bengio, and Aaron Courville. On the spectral bias of neural networks. In International Conference on507

Machine Learning, pages 5301–5310. PMLR, 2019.508

[47] Zhiqin John Xu. Understanding training and generalization in deep learning by fourier analysis. arXiv509

preprint arXiv:1808.04295, 2018.510

[48] Zhi-Qin John Xu, Yaoyu Zhang, Tao Luo, Yanyang Xiao, and Zheng Ma. Frequency principle: Fourier511

analysis sheds light on deep neural networks. arXiv preprint arXiv:1901.06523, 2019.512

[49] Lili Su and Pengkun Yang. On learning over-parameterized neural networks: A functional approximation513

perspective. arXiv preprint arXiv:1905.10826, 2019.514

[50] Greg Yang and Hadi Salman. A fine-grained spectral perspective on neural networks. arXiv preprint515

arXiv:1907.10599, 2019.516

[51] Zhiyuan Li, Yi Zhang, and Sanjeev Arora. Why are convolutional nets more sample-efficient than517

fully-connected nets? arXiv preprint arXiv:2010.08515, 2020.518

[52] Jascha Sohl-Dickstein, Roman Novak, Samuel S Schoenholz, and Jaehoon Lee. On the infinite width limit519

of neural networks with a standard parameterization. arXiv preprint arXiv:2001.07301, 2020.520

[53] Mei Song, Andrea Montanari, and P Nguyen. A mean field view of the landscape of two-layers neural521

networks. Proceedings of the National Academy of Sciences, 115:E7665–E7671, 2018.522

[54] Greg Yang and Edward J Hu. Feature learning in infinite-width neural networks. arXiv preprint523

arXiv:2011.14522, 2020.524

[55] Christopher Frye and Costas J. Efthimiou. Spherical harmonics in p dimensions. 2012.525

[56] Behrooz Ghorbani, Song Mei, Theodor Misiakiewicz, and Andrea Montanari. When do neural networks526

outperform kernel methods? arXiv preprint arXiv:2006.13409, 2020.527

13

http://proceedings.mlr.press/v125/chizat20a.html

Supplementary Material528

A Glossary529

We use the following abbreviations in this work:530

• +L2: Adding L2 regularization.531

• +LR: Using a large learning rate.532

• +DA: Applying MixUp data augmentation.533

• +C: Centering the outputs of the network.534

• −C: Remove centering.535

• FCNn:Fully-connected networks with width n.536

• FCN∞: Infinite width FCNn.537

• VECn: Convnet with width n and a flattening readout layer.538

• VEC∞:Infinite width VECn.539

• LCNn: Locally-connected network with width n.540

• LCN∞: Infinite width LCNn, which is the samme as VEC∞.541

• GAPn: Convnet with width n and a global average readout layer.542

• GAP∞:Infinite width GAPn.543

• LAPkn: Similar to GAPn, except the readout layer is a (k, k) average pooling.544

• LAPk∞: Infinite width LAPkn.545

B Proof of Theorem 2.1546

We use FCNn to denote the class of functions that can be expressed by L-hidden layer fully-connected547

networks whose widths are equal to n. Similar notation applies to other architectures.548

Corollary 1. We have the following549

GAPn ⊆ VECn ⊆ LCNn ⊆ VECdn, LCNn ⊆ FCNdn (S1)

Proof. We only need to prove LCNn ⊆ VECdn because the others are obvious. Let LCNn(x)lα,i550

denote the post-activation at layer l, spatial location α and channel index i of a LCNn with input x551

and VECn(x)lα,i is defined similarly. It suffices to prove that for any LCN with width n there is a552

VEC with width dn such that for any l ≥ 1 (i.e. not the input layer)553

VECdn(x)lα,αn+i = LCNn(x)lα,i (S2)

since we could choose the readout weights of VECdn at locations (α, αn+ i) to match the one of554

LCNn at locaton (α, i) and zero out the remaining entries. We prove this by induction and assume it555

holds for l (the base case l = 1 is obvious). Then the LCNn and VECn at layer l+ 1 can be written as556

LCNn(x)l+1
α,j = φ

 1√
n(2k + 1)

∑
i∈[n],β∈[−k,k]

LCNn(x)lα+β,iω
l+1
β,ij(α)


and557

VECdn(x)l+1
α,j = φ

 1√
dn(2k + 1)

∑
i∈[dn],β∈[−k,k]

VECdn(x)lα+β,iω̃
l+1
β,ij


One can show that Equation S2 holds for (l + 1) by choosing the parameters of VECdn as follows558

ω̃l+1
β,ij =

√
dωl+1

β,i−(α+β)n,j−αn if αn ≤ j < α(n+ 1) and (α+ β)n ≤ i < (α+ β)(n+ 1)

and 0 otherwise.559

560

1

C Proof of Symmetries561

Proof. For simplicity, we present the proof for full-batch training. The proof applies to mini-batch562

training as long as order of the mini-batch is fixed. Let τ be a rotation in O(3d) or O(3)d or563

O(3)⊗ Id, depending on the architectures (FCNn, LCNn,VECn,GAPn) and the tuple θ and γ denote564

the parameters of the first and remaining layers of the network, resp. Let h(τx, θ) = 〈τx, θ〉 denote565

the pre-activations of the first-hidden layer in the rotated coordinate. Here 〈·, ·〉 is the bilinear map (a566

dense layer or a convolutional layer with or without weight-sharing, etc.), not the inner product. The567

loss with L2-regularization is568

Rλ(θ, γ) = L(h(τX , θ), γ) +
1

2
λ(
∥∥θ‖22 + ‖γ‖22

)
(S3)

where L(h(τX , θ), γ) is the raw loss of the network. For each random instantiation θ = θ0 with θ0569

drawn from standard Gaussian iid, we instantiate a coupled network from the un-rotated coordinates570

but with a different instantiation in the first layer θτ = τ∗θ0 and keep the remaining layers unchanged,571

i.e. γτ = γ0. Here τ∗ is the adjoint of τ and note that τ∗θ0 and θ0 have the same distribution572

by the Gaussian initialization of θ0 and the definition of τ . The regularized loss associated to this573

instantiation is574

Rλ(θτ , γτ) = L(h(X , θτ), γτ) +
1

2
λ(
∥∥θτ‖22 + ‖γτ‖22

)
(S4)

It suffices to prove that for each instantiation θ = θ0 drawn from Gaussian, the following holds for575

all gradient steps t576

(θτt , γ
τ
t) = (τ∗θt, γt). (S5)

We prove this by induction on t and t = 0 is true by definition. Assume it holds when t = t. Now the577

update in γ and γτ with learning rate η are578

γt+1 = γt − η

(
∂L

∂γ

∣∣∣∣
(h(τX ,θt),γt)

)T
− ηλγt (S6)

γτt+1 = γτt − η

(
∂L

∂γ

∣∣∣∣
(h(X ,θτt),γτt)

)T
− ηλγτt (S7)

It is clear γt+1 = γτt+1 by induction since h(τX , θt) = h(X , θτt). Similarly,579

θt+1 = θt − η

(
∂L

∂h

∂h

∂θ

∣∣∣∣
(τX ,θt))

)T
− λθt (S8)

θτt+1 = θτt − η

(
∂L

∂h

∂h

∂θτ

∣∣∣∣
(X ,θτt)

)T
− λθτ (S9)

Note that by the chain rule and induction assumption580

∂h

∂θτ

∣∣∣∣
(X ,θτt)

=
∂h

∂θ

∣∣∣∣
(X ,θτt)

∂θτ

∂θ
=
∂h

∂θ

∣∣∣∣
(X ,θτt)

τ (S10)

This implies θτt+1 = τ∗θt+1.581

582

Remark S1. It is not difficult to see the apply proof apply to Non-Gaussian i.i.d. initialization (e.g.583

uniform distribution) and/or adding Lp-regularization when the rotation groups are replaced by the584

corresponding permutation groups. Empirically, we observe that replacing the first layer Gaussian585

initialization by uniform distribution does not change the performance of the network much. See586

Fig.S2.587

Remark S2. The proof works for all parameterization methods, including NTK-588

parameterization[11], standard parameterization [52], mean-field parameterization[53] and589

ABC-parameterization [54]590

2

D Eigendecomposition of Infinite Networks591

To gain insight into the inductive biases of various architectures, we eigendecompose the kernels using592

spherical harmonics. We assume the input space X = {ξ = (ξ0, . . . , ξp−1) ∈ (
√
d0S(d0−1))p} ⊆593

Rd0p, i.e. the p-product of (d0 − 1)-sphere with radius
√
d0. We call ξi ∈

√
d0S(d0−1) a mini-patch594

and (ξi, ξi+1, . . . , ξi+s−1) ∈ (
√
d0S(d0−1))s} a patch for i ∈ [p], where circular boundary condition595

is assumed. We consider the asymptotic limit when d0 = dα, p = d1−α and d = pd0 →∞ and treat596

0 < α < 1 and s as fixed constant.597

The input space X is associated with the product measure µ ≡ σpd0 , where σd0 is the normalized598

uniform measure on
√
d0S(d0−1). The kernels associated to the one-hidden layer infinite networks599

(NNGP and NTK) have the following general forms600

KFCN(ξ, η) = k

1

p

∑
i∈[p]

ξTi ηi/d0

 , (S11)

KVEC(ξ, η) =
1

p

∑
i∈[p]

k

1

s

∑
b∈[s]

ξTi+bηi+b/d0

 , (S12)

KGAP(ξ, η) =
1

p2

∑
i,j∈[p]

k

1

s

∑
b∈[s]

ξTi+bηj+b/d0

 , (S13)

for FCN∞, VEC∞ and GAP∞ resp. Note that the exact form of the (positive definite) kernel function601

k : R→ R depends on the type of the kernels (NNGP vs NTK), activations, hyperparameters and etc.602

We assume the kernel is sufficiently smooth in (−1, 1) and the Tayor expansion of k(r) converges603

uniformly in [−1, 1] for sufficiently many r ∈ N. We use the notation that A ∼ B if there are positive604

constants c and C such that cA ≤ B ≤ CA for d sufficiently large. We use K to represent any605

kernels above and consider it as a Hilbert–Schmidt operator on L2(X , µ)606

Kf(ξ) =

∫
X
K(ξ, η)f(η)dµ , f ∈ L2(X , µ), (S14)

which is well-defined since µ is a probability measure and k is bounded.607

D.1 Legendre Polynomials, Spherical Harmonics and their Tensor Products.608

Our notation follows closely from [55], an excellent introduction to spherical harmonics.609

Legendre Polynomials. Let ωd0 be the measure defined on the interval I = [−1, 1]610

ωd0(t) = (1− t2)(d0−3)/2 (S15)

The Legendre polynomials2 {Pr(t) : r ∈ N} is an orthogonal basis for the Hilbert space L2(I, ωd0),611

i.e.612 ∫
I

Pr(t)Pr′(t)ωd0(t)dt = 0 if r 6= r′ (S16)

Here Pr(t) is a degree r polynomials with Pr(1) = 1 and satisfies the Rodrigues formula613

Lemma 1 (Rodrigues Formula. Proposition 4.19 [55]).

Pr(t) = crω
−1
d0

(
d

dt

)r
(1− t2)r+(d0−3)/2 , (S17)

where614

cr =
(−1)r

2r(r + (d0 − 3)/2)r
(S18)

2More accurate, this should be called Gegenbauer Polynomials. However, we decide to stick to the terminol-
ogy in [55]

3

https://en.wikipedia.org/wiki/Gegenbauer_polynomials

In the above lemma, (x)l denotes the falling factorial615

(x)l ≡ x(x− 1) · · · (x− l + 1) (S19)
(x)0 ≡ 1 (S20)

Spherical Harmonics. Let dSd0−1 define the (un-normalized) uniform measure on the unit sphere616

Sd0−1. Then617

|Sd0−1| ≡
∫
Sd0−1

dSd0−1 =
2πd0/2

Γ(d02)
(S21)

The normalized measure on this sphere is defined to be618

dσd0 =
1

|Sd0−1|
dSd0−1 and

∫
Sd0−1

dσd0 = 1 (S22)

The spherical harmonics {Yr,l}r,l in Rd0 are homogeneous harmonic polynomials that form an619

orthonormal basis in L2(Sd0−1, σd0)620 ∫
ξ∈Sd0−1

Yr,l(ξ)Yr′,l′(ξ)dσd0 = δ(r,l)=(r′,l′). (S23)

Here Yr,l denotes the l-th spherical harmonic whose degree is r, where r ∈ N, l ∈ [N(d0, r)] and621

N(d0, r) =
2r + d0 − 2

r

(
d0 + r − 3

r − 1

)
∼ dr0/r! as d0 →∞ . (S24)

The Legendre polynomials and spherical harmonics are related through the addition theorem.622

Lemma 2 (Addition Theorem. Theorem 4.11 [55]).

Pr(ξ
T η) =

1

N(d0, r)

∑
l∈[N(d0,r)]

Yr,l(ξ)Yr,l(η), ξ, η ∈ Sd0−1 . (S25)

Tensor Products. Let p ∈ N, ~r ∈ Np, Ip = [−1, 1]p and ωpd0 be the product measure on Ip. Then623

the (product of) Legendre polynomials624

P~r(~t) =
∏
j∈[p]

Prj (tj) , ~t = (t1, . . . , tp) ∈ Ip (S26)

form an orthogonal basis for the Hilbert space L2(Ip, ωpd0) = (L2(I, ωd0))⊗p. Similarly, the product625

of spherical harmonics626

Y~r,~l =
∏
j∈[p]

Yrj ,lj ,
~l = (l1, . . . , lp) ∈ [N(d0, ~r)] ≡

∏
j∈p

[N(d0, rj)] (S27)

form an orthonormal basis for the product space627

L2(Spd0−1, σ
p
d0

) = (L2(Sd0−1, σd0))⊗p. (S28)

Elements in the set {Y~r,~l}~l∈[B(d0,~r)]
are called degree (order) ~r spherical harmonics in L2(Spd0−1, σ

p
d0

)628

and also degree r spherical harmonics if |~r| = r ∈ N.629

D.2 "Fourier" Decomposition.630

Let K(~t) ∈ L2(Spd0−1, σ
p
d0

). Then we have the following "Fourier decomposition" (the convergence631

is in L2),632

K(~t) =
∑
~r∈Np

K̂(~r)P~r(~t) (S29)

where the "Fourier coefficients" are633

K̂(~r) = 〈K,P~r〉L2(Ip,ωpd0
)/〈P~r, P~r〉L2(Ip,ωpd0

) . (S30)

4

Applying Lemma 2, we have the harmonic decomposition (the convergence is in L2)634

K(ξT η) =
∑
~r∈Np

K̂(~r)N(d0, ~r)
−1

∑
~l∈[B(d0,~r)]

Y~r,~l(ξ)Y~r,~l(η), ξ, η ∈ Spd0−1 (S31)

Clearly, as an integral operator635 ∫
Spd0−1

K(ξT η)Y~r,~l(η)dσpd0 = K̂(~r)N(d0, ~r)
−1Y~r,~l(ξ) . (S32)

Theorem D.1. Let K(~t) ∈ L2(Spd0−1, σ
p
d0

). Then.636

K(ξT η) =
∑
~r∈Np

K̂(~r)N(d0, ~r)
−1

∑
~l∈[B(d0,~r)]

Y~r,~l(ξ)Y~r,~l(η), ξ, η ∈ Spd0−1 (S33)

If in addition ‖K‖C|~r|+1(Ip) <∞, then637

K̂(~r) = ~r!−1
(
K(~r)(0) +O(‖K‖C|~r|+1(Ip)pd

− 1
2

0)
)
. (S34)

Therefore, the eigenvalues of K(ξT η) are K̂(~r)N(d0, ~r)
−1, with eigenspace spanned by the (unit)638

eigenvectors {Y~r,~l}~l∈[N(d0,~r)]
whose dimension is N(d0, ~r), resp.639

D.3 Eigendecomposing the Infinite Networks640

To handle the patch, we introduce the s-banded subset of Np. For i, j ∈ [p], define the a distance in641

the cyclic group [p] = Z/pZ to be642

dist(i, j) = min{|i− j|, p− |i− j|},
and the diameter of ~r ∈ Np to be643

diam(~r) = dist(argmaxjrj 6= 0, argminjrj 6= 0) (S35)

The s-banded subset of Np is the collection of points whose diameter is less than s, i.e.,644

B(Np, s) = {~r ∈ Np : diam(r) ≤ s− 1} (S36)

This implies Y~r,~l is a function defined on a patch if and only if ~r ∈ B(Np, s).645

Let τ be shifting operator τ~r = (rp−1, r0, . . . , rp−2), where ~r = (r0, . . . , rp−1) ∈ Np. The quotient646

spaceB(Np, s)/τ denotes a subset ofB(Np, s) by identifying ~v = ~v′ as the same element if ~v = τa~r′647

for some a ∈ [p].648

In deep learning, it is more convenient to work on the non-unit sphere
√
d0Sd0−1. We still use σd0 to649

denote the normalized (probability) measure on
√
d0Sd0−1. The spherical harmonics with unit norms650

are651

Yrj ,lj

(
ξj√
d0

)
∈ L2

(√
d0S(d0−1), σd0

)
(S37)

Y~r,~l

(
ξ√
d0

)
∈ L2

((√
d0S(d0−1)

)p
, σpd0

)
(S38)

The following theorem characterize the inductive biases induced by locality and symmetry (i.e.652

shifting invariant) for infinite networks. It shows that locality (VEC∞) dramatically reduces both653

the dimensions of r ≥ 1 eigenspaces and the spectral gap among them. In addition, pooling (i.e.654

resulting shifting invariant for GAPn) reduces their dimensions by an additional factor of p. See655

Sec.E for the implication of this theorem to learning.656

Theorem D.2. We have the following eigendecomposition for the integral operator K657

H =
⋃
r∈N

H(r) =
⋃
r∈N

⋃
~r∈Q(K,r)

H(~r), (S39)

where Q(K, r) is a quantifier defined below. If r = 0, H(0) is the space of constant functions and the658

eigenvalue is ∼ k(0). For r ≥ 1, we have the following.659

5

(1)Base Case: K = KFCN. Q(K, r) = {~r ∈ Np : |~r| = r} and the unit eigenfunctions are660 H(~r) = span
{
Y~r,~l(

·√
d0

)
}
~l∈[B(d0,~r)]

dim(H(r)) ∼ dr and λ(H(~r)) ∼ d−rδ(k(r)(0))
(S40)

(2)+Locality: K = KVEC. , Q(K, r) = {~r ∈ B(Np, s) : |~r| = r} the unit eigenfunctions are661 H
(~r)
VEC = span

{
Y~r,~l(

·√
d0

)
}
~l∈[B(d0,~r)]

dim(H
(r)
VEC) ∼ psr−1dr0 = sr−1d1−α+rα and λ(H

(~r)
VEC) ∼ p−1(sd0)−rδ(k(r)(0))

(S41)

(3)+Locality + Shifting: K = KGAP. Q(K, r) = {~r ∈ B(Np, s)/τ : |~r| = r}, the unit eigenfunc-662

tions are663 H
(~r)
GAP = span

{
1√
p

∑
τ∈[p] Y~r,~l(

τ
·
√
d0)
}
~l∈[B(d0,~r)]

dim(H
(r)
GAP) ∼ (sd0)r = srdrα and λ(H

(~r)
GAP) ∼ p−1(sd0)−rδ(k(r)(0))

(S42)

Proof. Our main tool is Theorem D.1.664

Base Case KFCN. Setting665

K(~t) = k

1

p

∑
j∈[p]

tj

 (S43)

and applying Theorem D.1 give666

K(ξT η/d0) =
∑
~r∈Np

K̂(~r)N(d0, ~r)
−1

∑
~l∈[B(d0,~r)]

Y~r,~l(ξ/
√
d0)Y~r,~l(η/

√
d0) (S44)

for ξ/
√
d0 and η/

√
d0 ∈ Spd0−1. By the chain rule667

K̂(~r) = ~r!−1
(
K(~r)(0) +O(‖K‖C|~r|+1(Ip)pd

− 1
2

0)
)

= ~r!−1
(
p−~rk(~r)(0) +O(p−|~r|−1‖k‖C|~r|+1(I)pd

− 1
2

0)
)

= ~r!−1p−|~r|
(
k(~r)(0) +O(d

− 1
2

0)
)

As d0 →∞, if k(|~r|)(0) 6= 0 then the eigenvalue of the ~r-eigenspace is668

λ(H(~r)) ∼ k(|~r|)(0)~r!−1p−|~r|N(d0, ~r)
−1 ∼ (pd0)−|~r| = d−|~r| (S45)

The dimension is N(d0, ~r) ∼ d|~r|0 /~r!. This completes the proof of the base case.669

+Locality KVEC. Recall that670

KVEC(ξ, η) =
1

p

∑
i∈[p]

k

1

s

∑
b∈[s]

ξTi+bηi+b/d0

 , (S46)

which is a sum of kernels supported on patches. Setting671

K(t1, . . . , ks) = k

1

s

∑
j∈[s]

tj

 , (S47)

applying Theorem D.1 with p = s to each summand implies672

KVEC(ξ, η) =
1

p

∑
i∈[p]

∑
~r∈Ns

K̂(~r)N(d0, ~r)
−1
∑
~l

Y~r,~l(ξi:i+s/
√
d0)Y~r,~l(ηi:i+s/

√
d0) (S48)

=
∑
~r∈Ns

1

p
K̂(~r)N(d0, ~r)

−1
∑
~l

∑
i∈[p]

Y~r,~l(ξi:i+s/
√
d0)Y~r,~l(ηi:i+s/

√
d0) (S49)

6

in which we have applied the Fubini Theorem. Similarly, if k(~r)(0) 6= 0, the term673

K̂(~r)N(d0, ~r)
−1 ∼ k(~r)(0)(sd0)−|~r|, (S50)

where the s−|~r| is coming from applying the chain rule to Equation S47. Next, we treat the func-674

tions Y~r,~l(ξi:i+s/
√
d0) defined on a patch as functions Y~r,~l(ξ/

√
d0) defined on the whole space675

(
√
d0Sd0−1)p by restricting ~r ∈ B(Np, s). As such we need to count, for a given ~r, the number of676

patches the function Y~r,~l(ξi:i+s/
√
d0) belong to, which turns out to be (s − diam(~r)). We could677

reorder the terms in KVEC as follows678

KVEC(ξ, η) =
∑

~r∈B(Np,s)

1

p
K̂(~r)N(d0, ~r)

−1(s− diam(~r))
∑
~l

Y~r,~l(ξ/
√
d0)Y~r,~l(η/

√
d0) (S51)

Clearly, Y~r,~l(ξ/
√
d0) are the eigenfunctions of unit norm with eigenvalues679

p−1K̂(~r)N(d0, ~r)
−1(s− diam(~r)) ∼ p−1k(~r)(0)(sd0)−|~r|(s− diam(~r)) ~r 6= 0 , (S52)

and k̂(0) when ~r = 0 .680

Note that in the case when the stride is the same as the size of the patch, the (s− diam(~r)) becomes681

1 for all spherical harmonics. As such, smaller strides favor functions with smaller diameters (namely,682

diam(~r)), breaking the symmetry between functions with small and large diameters.683

We turn to compute the dimension of r-eigenspace for r ∈ N. Clearly, for ~r = 0 the dimension is684

1 and for |~r| = 1 the dimension is d = pd0, which is the dimension of all degree 1 homogenous685

polynomials. For |~r| > 1, we count the number of spherical harmonics in the 1st patch ξ0:s with686

r0 6= 0 and the total number of spherical harmonics in all patches is p time this number. Thus687

dim(H(r)) = p
∑
~r∈Ns:

|~r|=r,r0 6=0

N(d0, ~r) (S53)

= p

∑
~r∈Ns:
|~r|=r

N(d0, ~r)−
∑
~r∈Ns:

|~r|=r,r0=0

N(d0, ~r)

 (S54)

∼

∑
~r∈Ns:
|~r|=r

dr0/~r!−
∑

~r∈Ns−1:
|~r|=r

dr0/~r!

 (S55)

= dr0/r!(s
r − (s− 1)r) ∼ sr−1dr0/(r − 1)! (S56)

for large s.688

689

+Locality + Pooling GAP∞. The kernel is given by690

KGAP(ξ, η) =
1

p2

∑
i,j∈[p]

k

1

s

∑
b∈[s]

ξTi+bηj+b/d0

 .

In what follows we identify B(Np, s)/τ = B(Ns, s). Applying Theorem D.1 gives691

KGAP(ξ, η) =
1

p2

∑
i,j∈[p]

k

1

s

∑
b∈[s]

ξTi+bηj+b/d0

 ,

=
∑
~r∈Ns

K̂(~r)N(d0, ~r)
−1
∑
~l

1

p2

∑
i,j∈[p]

Y~r,~l(ξi:i+s/
√
d0)Y~r,~l(ηj:j+s/

√
d0)

= K̂(0)N(d0,~0) +
∑

~r∈B(Np,s)/τ,~r 6=0

K̂(~r)N(d0, ~r)
−1 1

p

∑
~l

Y τ
~r,~l

(ξ/
√
d0)Y τ

~r,~l
(η/
√
d0)

7

100 101 102 103 104

Rank

10 8

10 6

10 4

10 2

100

Ei
ge

nv
al

ue

FCN : d=24
FCN : d=96
FCN : d=384

100 101 102 103 104

Rank

10 8

10 6

10 4

10 2

100

Ei
ge

nv
al

ue

VEC : d=24
VEC : d=96
VEC : d=384

100 101 102 103 104

Rank

10 8

10 6

10 4

10 2

100

Ei
ge

nv
al

ue

GAP : d=24
GAP : d=96
GAP : d=384

Figure S1: Eigenvalue Decay of Relu NTK of FCN∞, VEC∞ and GAP∞. d0 = s = 3. The
eigenvalues of GAP∞ decays faster because with m = 15k many samples, higher order eigenspace
can be covered by GAP∞ but not by FCN∞/VEC∞ as pionted out in Theorem 4.1.

where we have defined for ~r ∈ B(Np, s)/τ with ~r 6= 0692

Y τ
~r,~l

(ξ/
√
d0) =

1
√
p

∑
i∈[p]

Y~r,~l(ξi:i+s/
√
d0) (S57)

The eigvenvalue for ~r = 0 is k̂(0) and for ~r 6= 0 with k(~r)(0) 6= 0 are693

K̂(~r)N(d0, ~r)
−1 1

p
∼ p−1(sd0)−|~r|k(|~r|)(0) (S58)

Similar to VEC∞, the dimension of r-eigenspace is sr−1(d0)r/(r − 1)! for r ≥ 1.694

D.4 Remarks for Theorem D.2695

The Baseline KFCNn is a standard result; see, for example, [17] and [56]. The dimension of r-degree696

harmonic polynomials is Θ(dr) and the spectral gap between the 0- and r-eigenspaces, namely, the697

r-condition number, κr = Θ(dr). Learning higher order terms (using kernels) in this space suffers698

from the curse of dimensionality because (1) the number of samples requires to cover a basis of the699

r-eigenspace and (2) the number of gradient steps (or the amount of time for gradient flow) needed to700

learn the r-eigenspace grow with the rate Θ(dr). This makes it difficult to learn higher order terms701

even when d is not very large, e.g., when r = 4 and d = 784 (Mnist), dr ∼ 1011 and lower order702

terms when d is large, e.g. when r = 2 and d = 3× 2242 ∼ 105 (ImageNet), dr ∼ 1010.703

The +Locality KVEC dramatically reduces both the dimension of the function space and the spectral704

gap: κr ∼ dim(H(r)) ∼ d(sd0)r−1. For example, the first layer of ResNet (applied to ImageNet)705

is a (7, 7) convolution with stride (2, 2) which corresponds to sd0 = 72 × 3 ∼ d0.42, where706

0.42 ∼ log(72 × 3)/ log(2242 × 3). With m ∼ dr samples, KFCN could cover the r-eigenspace,707

while KVEC could cover 1 + (r − 1)/0.42 ∼ (2.4r − 1.4)-eigenspace.708

The +Locality+Pooling KGAP. The dimension of the function space is reduced by a factor of p to709

dim(H(r)) ∼ (sd0)r−1d0 and the spectral gap κr ∼ d(sd0)r−1 is unchanged. As a result, KGAP is710

p-times more sample-efficient than KVEC711

In all cases above, the r-condition number κr can be improved by a factor of d by removing the 0-th712

eigenspace of the kernels.713

D.5 Proof of Theorem D.1714

We only need to compute the "Fourier coefficients" K̂(~r). First,715

〈P~r, P~r〉L2(Ip,ωpd0
) =

∏
j∈[p]

〈Prj , Prj 〉L2(I,ωd0) = N(d0, ~r)
−1

(
|Sd0−1|
|Sd0−2|

)p
(S59)

The last equality could be obtained by applying the addition theorem Lemma 2 and then integrate716

over Spd0−1; see Eq. (4.30) in [55].717

To handle the numerator in Equation S30, we assume K is sufficiently smooth to avoid the boundary718

effect. When this is not the case, a little bit effort is needed to handle the boundary values which719

8

will be skipped here. By applying Lemma D.1, integration by parts and continuity of K(~r) on the720

boundary ∂Ip721

〈K,P~r〉L2(Ip,ωpd0
) = c~r

∫
Ip
K(t)

(
d

d~t

)~r (
1− ~t2

)~r+(d0−3)/2
d~t (S60)

= (−1)~rc~r

∫
Ip
K(~r)(t)

(
1− ~t2

)~r+(d0−3)/2
d~t (S61)

= (−1)~rc~r(M(K, d0) + ε(K, d0)) (S62)

where K(~r) is the ~r derivative of K, the coefficient is given by Lemma D.1 and722

c~r =
∏
j∈[p]

crj =
∏
j∈[p]

(−1)rj

2rj (rj + (d0 − 3)/2)rj
∼
∏
j∈[p]

(−1)rjd
−rj
0 = (−1)~rd−~r0 (S63)

and the major and error terms are given by723

M(K, d0) = K(~r)(0)

∫
Ip

(
1− ~t2

)~r+(d0−3)/2
d~t = K(~r)(0)

∏
j∈[p]

|S2rj+d0−1|
|S2rj+d0−2|

(S64)

ε(K, d0) =

∫
Ip

(K(~r)(t)−K(~r)(0))
(
1− ~t2

)~r+(d0−3)/2
d~t (S65)

For the error term, we use the mean value theorem to bound724

|(K(~r)(t)−K(~r)(0))| ≤ ‖K‖C|~r|+1(Ip)

∑
j∈[p]

|tj | (S66)

and725

|ε(K, d0)| ≤ ‖K‖C|~r|+1(Ip)

∫
Ip

(
1− ~t2

)~r+(d0−3)/2
d~t
∑
j∈[p]

∫I |tj | (1− t2j)rj+(d0−3)/2
dtj∫

I

(
1− t2j

)rj+(d0−3)/2
dtj


(S67)

∼ ‖K‖C|~r|+1(Ip)

∏
j∈[p]

|S2rj+d0−1|
|S2rj+d0−2|

∑
j∈[p]

d−1
0

(|S2rj+d0−1|
|S2rj+d0−2|

)−1

. (S68)

Since for any α ∈ N, as d0 →∞,726

|Sα+d0−1|
|Sα+d0−2|

= π
1
2 Γ((α+ d0 − 1)/2)/Γ((α+ d0)/2) ∼ π 1

2 (d0/2)−
1
2 (S69)

We have727

|ε(K, d0)| . ‖K‖C|~r|+1(Ip)pd
− 1

2
0

∏
j∈[p]

|S2rj+d0−1|
|S2rj+d0−2|

(S70)

Therefore728

〈K,P~r〉L2(Ip,ωpd0
) = c~r

(
K(~r)(0) +O(‖K‖C|~r|+1(Ip)pd

− 1
2

0)
) ∏
j∈[p]

|S2rj+d0−1|
|S2rj+d0−2|

(S71)

Plugging back to Equation S30, we have729

K̂(~r) = (−1)~rc~rN(d0, ~r)
(
K(~r)(0) +O(‖K‖C|~r|+1(Ip)pd

− 1
2

0)
)∏

j∈[p]

|S2rj+d0−1|
|S2rj+d0−2|

(|Sd0−1|
|Sd0−2|

)−p
(S72)

Since, for ~r and as d0 →∞730

c~r

(−1)~rd−~r0

→ 1 and
N(d0, ~r)

d
|~r|
0 /r!

→ 1 and

∏
j∈[p]

|S2rj+d0−1|
|S2rj+d0−2|

(|Sd0−1|
|Sd0−2|

)−p
→ 1 (S73)

and thus731

K̂(~r) = ~r!−1
(
K(~r)(0) +O(‖K‖C|~r|+1(Ip)pd

− 1
2

0)
)

(S74)

9

O(3d) P(3d) P(d) I3 O(3)d O(3) Id I
0.4

0.5

0.6

0.7

0.8

Base
GAPn+Gaussian
VECn+Gaussian
FCNn+Gaussian
FCNn+Uniform

O(3d) P(3d) P(d) I3 O(3)d O(3) Id I
0.4

0.5

0.6

0.7

0.8

+L2
GAPn+Gaussian
VECn+Gaussian
FCNn+Gaussian
FCNn+Uniform

O(3d) P(3d) P(d) I3 O(3)d O(3) Id I
0.4

0.5

0.6

0.7

0.8

+LR
GAPn+Gaussian
VECn+Gaussian
FCNn+Gaussian
FCNn+Uniform

O(3d) P(3d) P(d) I3 O(3)d O(3) Id I
0.4

0.5

0.6

0.7

0.8

+LR+L2
GAPn+Gaussian
VECn+Gaussian
FCNn+Gaussian
FCNn+Uniform

Figure S2: Replacing the Gaussian initialization by uniform distribution does not change the
performance much.

26 29 212 215 218

Training Set Size

2-6

2-5

2-4

NTK: O(3d)
= 0.066
= 0.066
= 0.067
= 0.067
= 0.064
= 0.066

26 29 212 215 218

NTK: P(3d)
= 0.066
= 0.068
= 0.069
= 0.07
= 0.068
= 0.069

26 29 212 215 218

NTK: P(d) I3
= 0.066
= 0.07
= 0.073
= 0.076
= 0.084
= 0.076

26 29 212 215 218

NTK: O(3)d

= 0.066
= 0.088
= 0.093
= 0.091
= 0.086
= 0.09

26 29 212 215 218

NTK: O(3) Id
= 0.066
= 0.088
= 0.133
= 0.151
= 0.161
= 0.144

FCN VEC LAP4 LAP8 GAP Myrtle10+ZCA

Figure S3: Scaling Law of Infinite Network vs Different Symmetries.

E Plots Dump732

E.1 Gaussian vs Uniform Initialization733

E.2 Scaling Law for Infinite Networks734

E.3 Finite Width Effect of VECn.735

E.4 Implication of Theorem D.2736

We investigate the data-efficiency of various architectures on various tasks. The tasks are to learn737

harmonic polynomials containing degree r = 1, 24 in (S2)16. The MSE of each degree is normalized738

to be 0.5 and the MSE of the zero predictor is 1.5. There are 5 types of polynomials/tasks (columns739

in Fig.S5):740

1. Non-local, which is our baseline, corresponding to generic polynomials without structure741

information. The optimal kernel to solve this task in this paper is KFCN.742

2. Non-local+shift, adding shifting invariance to Non-local. The optimal kernel is KFCN +743

Shifting invariance.744

10

25 27 29

0.6

0.8

VEC:Base

25 27 29

0.6

0.8

VEC:+LR+L2

25 27 29

0.6

0.8

GAP:Base

25 27 29

0.6

0.8

GAP:+LR+L2

+O(3) +O(3)d +O(3)+C +O(3)d+C NTK-GAP NTK-VEC

Figure S4: Performance vs Width for VECn and GAPn With the O(3)d symmetry imposed on
the system, performance of VECn is below the performance of VEC∞ (67%), but monotonically
improves as the width n increases. However, with the original coordinate system (O(3) ⊗ Id),
performance (without centering) improves and then degrades significantly after the peak. This is
because the network is less sensitive to the O(3) symmetry. In stark contrast, the performance
of GAPn improves from n = 32 to n = 512 but only slightly degrades at n = 1024. With and
without centering, the performance of GAPn is similar while the performance of VEC is dramatically
different.

3. Local: the polynomial depends locally on patches of size (3, 3), i.e. S3
2; The optimal kernel745

is KVEC = KFCN.746

4. Local + Sparse: the polynomial depends only on one single patch. The optimal kernel747

should be a FCN-kernel defined on that patch, which is a not available among our kernels.748

The KVEC = KFCN is the second best.749

5. Local + Shift: enforcing shifting invariance Local. The optimal kernel is KGAP.750

In the (5, 5)-panel Fig.S5, we plot the MSE (y-axis) vs log(m)/ log(d) (x-axis), where m is the751

number of samples and d = 3 ∗ 16 = 48 is the dimension of the input data, for different learning752

algorithms: (1) NNGP, the Gaussian Process kernel (2) NTK, the kernel of infinite width network753

corresponding to training only the first layer (3) NN, finite width networks with width n = 16, (4)754

n = 4096 and (5) n=best, which is obtained as follows: for each m, we sweep over n = 16→ 4096755

dyadically by a factor of 2 and report the best performance.756

For Non-FCN kernels, we choose m up to 5120 × 4 ∼ 20k, since the MSE have already reached757

a very small number, i.e. learning all frequencies r = 1, 2, 4. For FCN, we choose m up to758

5120× 32 ∼ 160k, the biggest m×m matrix that we could be solved within our compute budget.759

However this still falls in short with d4 = (48)4 ∼ 5000k = 5× 106, the dimension of 4-eigenspace.760

Not surprising, the vanilla FCN kernel could not learn the r = 4 frequency for all tasks (first row).761

However, FCN kernel + Shifting could learn Non-local+shift and Local + Shift with m ∼ d3, since762

the symmetry shifting reduces the dimension of r-eigenspace by a factor of d.763

Finite width FCNn does better than kernels when learning (higher) r = 4 frequency, requiring764

m ∼ d3+ many samples (first row of the plot), while kernel would require d4 many samples. It does765

even better on the task Local + Sparse with smaller n and equally less good in Non-local, Non-local766

+ shift, Local and Local + Shift. This says finite width networks are good at handling sparsity but767

not locality, which has to be imposed by human into them as a form of inductive biases.768

Now let us focus on the third row LCNn. Not surprising, it does bad on the first two tasks Non-769

local and Non− local + shift because the function space is to small. For the remaining tasks,770

kernels and finite width networks are efficient and competitively with each other. Only in the task771

Local + Sparse LCNn does noticeable better than kernel, demonstrating the strong ability of finite772

width networks in handling sparsity.773

With weight-sharing (4th-row), VEC does noticeably better in all tasks that require locality. It is an774

interesting direction to understand the analytic reason behind it.775

With the correct prior, the GAP∞ does equally well as GAPn. Both of them are the most data-efficient776

among all other architectures/algorithms in the plot when handling the task Local + Shift.777

11

1 2 3 4
0.0

0.5

1.0

1.5

2.0

FC
N H(1)

H(2)

H(4)

Non-local
NTK
NNGP

1 2 3 4
0.0

0.5

1.0

1.5

2.0

H(1)

H(2)

H(4)

Non-local+Shift
NN:n=16
NN:n=4096
NN:n=best

1 2 3 4
0.0

0.5

1.0

1.5

2.0

H(1)

H(2)

H(4)

Local
NTK
NNGP

1 2 3 4
0.0

0.5

1.0

1.5

2.0

H(1)

H(2)

H(4)

Local+Sparse
NN:n=16
NN:n=4096
NN:n=best

1 2 3 4
0.0

0.5

1.0

1.5

2.0

H(1)

H(2)

H(4)

Local+Shift
NTK
NNGP

1 2 3 4
0.0

0.5

1.0

1.5

2.0

FC
N-

Sh
ift H(1)

H(2)

H(4)

NN:n=16
NN:n=4096
NN:n=best

1 2 3 4
0.0

0.5

1.0

1.5

2.0

H(1)

H(2)

H(4)

NTK
NNGP

1 2 3 4
0.0

0.5

1.0

1.5

2.0

H(1)

H(2)

H(4)

NN:n=16
NN:n=4096
NN:n=best

1 2 3 4
0.0

0.5

1.0

1.5

2.0

H(1)

H(2)

H(4)

NTK
NNGP

1 2 3 4
0.0

0.5

1.0

1.5

2.0

H(1)

H(2)

H(4)

NN:n=16
NN:n=4096
NN:n=best

1 2 3 4
0.0

0.5

1.0

1.5

2.0

LC
N H(1)

H(2)

H(4)

NTK
NNGP

1 2 3 4
0.0

0.5

1.0

1.5

2.0

H(1)

H(2)

H(4)

NN:n=16
NN:n=4096
NN:n=best

1 2 3 4
0.0

0.5

1.0

1.5

2.0

H(1)

H(2)

H(4)

NTK
NNGP

1 2 3 4
0.0

0.5

1.0

1.5

2.0

H(1)

H(2)

H(4)

NN:n=16
NN:n=4096
NN:n=best

1 2 3 4
0.0

0.5

1.0

1.5

2.0

H(1)

H(2)

H(4)

NTK
NNGP

1 2 3 4
0.0

0.5

1.0

1.5

2.0

VE
C H(1)

H(2)

H(4)

NN:n=16
NN:n=4096
NN:n=best

1 2 3 4
0.0

0.5

1.0

1.5

2.0

H(1)

H(2)

H(4)

NTK
NNGP

1 2 3 4
0.0

0.5

1.0

1.5

2.0

H(1)

H(2)

H(4)

NN:n=16
NN:n=4096
NN:n=best

1 2 3 4
0.0

0.5

1.0

1.5

2.0

H(1)

H(2)

H(4)

NTK
NNGP

1 2 3 4
0.0

0.5

1.0

1.5

2.0

H(1)

H(2)

H(4)

NN:n=16
NN:n=4096
NN:n=best

1 2 3 4
logm/logd

0.0

0.5

1.0

1.5

2.0

GA
P H(1)

H(2)

H(4)

NTK
NNGP

1 2 3 4
logm/logd

0.0

0.5

1.0

1.5

2.0

H(1)

H(2)

H(4)

NN:n=16
NN:n=4096
NN:n=best

1 2 3 4
logm/logd

0.0

0.5

1.0

1.5

2.0

H(1)

H(2)

H(4)

NTK
NNGP

1 2 3 4
logm/logd

0.0

0.5

1.0

1.5

2.0

H(1)

H(2)

H(4)

NN:n=16
NN:n=4096
NN:n=best

1 2 3 4
d0 = 3, s = 3, p = 16, d = 48

0.0

0.5

1.0

1.5

2.0

H(1)

H(2)

H(4)

NTK
NNGP

Figure S5: Impact of Locality and Symmetries. Performance of 5 types of kernels and finite width
networks on 5 types of tasks.

E.5 Scaling Plots for ResNet34 and ResNet101778

E.6 ImageNet Samples779

F An example for invariance780

Example 1. Linear Regression: Let A be the (determnistic) algorithm that outputs the minimum781

norm linear regrssion solution, thenA is O(3d)-invarant, because forDT = (XT ,YT), the prediction782

A(DT)(X∗) ≡ X∗X TT (XTX TT)†YT = τX∗(τXT)T ((τXT)(τXT)T)†Y ≡ Aτ (DT)(X∗), (S75)

where τx ≡ xUτ , here x is a row vector and Uτ ∈ O(3d) is the matrix representation of τ .783

If A is the (stochastic) algorithm that applies gradient flow to solve the linear regression XTω = YT784

with the MSE loss and the entries of ω are initialized with iid standard Gaussian, then each f ∈785

A(DT) is a draw from the posterior, namely,786

f(X∗) ∼ N
(
X∗X TT (XTX TT)†Y,X∗X T∗ −XTX TT (XTX TT)†X TT X∗

)
. (S76)

Note that the distribution is invariant to coordinate rotation by any τ ∈ O(3d) and therefore787

(τD,M, I) = (D,M, I) for all τ ∈ O(3d).788

12

105 106

Training Set Size

1

2

3

4

5
6

Cr
os

s E
nt

ro
py

= 0.43
= 0.32
= 0.46

ResNet34 + Clean Images
ResNet34 + O(3)d-Images

105 106

Training Set Size

1

2

3

4
5
6

Cr
os

s E
nt

ro
py

= 0.43
= 0.32
= 0.49

ResNet50 + Clean Images
ResNet50 + O(3)d-Images

105 106

Training Set Size

1

2

3

4

5
6

Cr
os

s E
nt

ro
py

= 0.43
= 0.36
= 0.49

ResNet101 + Clean Images
ResNet101 + O(3)d-Images

Figure S6: Scaling vs Rotation

13

Figure S7: O(3)d−Rotated ImageNet Samples. Seed=1

14

Figure S8: O(3)d−Rotated ImageNet Samples. Seed=2

15

Figure S9: Clean ImageNet Samples

16

	Introduction
	Preliminary and Notation
	Neural Networks
	Gradient Descent Training
	Infinite Network: Gaussian Processes and the Neural Tangent Kernels

	Symmetries of Machine Learning Systems
	Empirical Supports and Observations

	Eigenecomposition of Neural Kernels
	Related Work
	Conclusion
	Glossary
	Proof of Theorem 2.1
	Proof of Symmetries
	Eigendecomposition of Infinite Networks
	Legendre Polynomials, Spherical Harmonics and their Tensor Products.
	"Fourier" Decomposition.
	Eigendecomposing the Infinite Networks
	Remarks for Theorem D.2
	Proof of Theorem D.1

	Plots Dump
	Gaussian vs Uniform Initialization
	Scaling Law for Infinite Networks
	Finite Width Effect of VECn.
	Implication of Theorem D.2
	Scaling Plots for ResNet34 and ResNet101
	ImageNet Samples

	An example for invariance

