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A Data Augmentation Loop

A.1 Pseudo Code

Algorithm 1 DATA AUGMENTATION LOOP

Require: Human data D = (G, aW), training set D; € D, high-level planner 7H | low-level

controller 7%, augmentation iteration L, data augment function Lg,4(), wrist pose trajec-
tories Gy = (g, Gt+1, ---, ge+7—1), goal trajectory of the object and its geometric features
w W

a;” =(a, Qi 150y 1)
Initialize 7, 77, Dy ={}.
for iteration m =0,1,...,L do
while until convergence of 7 do
Generate augmented data L4 (D)
Append into training set Dy <— D+ L 4,4(D)
Train 7 on D,
end while
while until convergence of 7% do
Train 7% on (77 (Q),G)
10:  end while
11:  Rollout success trajectories D! = (a}" ,G;) with 7~
12 Append into human data D <— D+ D?
13: end for

AN A

°

A.2 Detail of the Data Augmentation Loop

Below are the details for each augmentation. The unit of length is centimeters and the unit of angle is
degrees.
* Random the object’s mesh scales with a small scale:

— The scale of the width of the manipulated object ranges from 0.9 to 1.1.
— The scale of the length of the manipulated object ranges from 0.9 to 1.1.
— The scale of the height of the manipulated object ranges from 0.9 to 1.1.

* Random the object’s initial pose with a small scale:

— The x-coordinate of the manipulated object ranges from -0.02 to 0.02.
— The y-coordinate of the manipulated object ranges from -0.02 to 0.02.
— The manipulated object’s z-axis Euler degree ranges from O to 30.

* Modify the goal trajectories of the object with waypoint interpolation:

— The x-coordinate of the goal trajectories position is added by ranges from -0.02 to 0.02.
— The y-coordinate of the goal trajectories position is added by ranges from -0.02 to 0.02.
— The z-coordinate of the goal trajectories position is added by ranges from -0.02 to 0.02.

B Detail Implementation of RL in Simulation
B.1 Observation Space
Table.5 gives the specific information of the observation space.

B.2 Reward Design

Denote the g%, g7 and g/ is the current 3D translation, 3D rotation and joint angle of the object

respectively, the desired object 3D rotation g, the desired object 3D translation g7 , and the desired
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Figure 6: Setup of the cameras.

Index Description

0-60 right arm-hand dof position, velocity
60- 120 left arm-hand dof position, velocity
120- 133 right hand end-effector position, velocity, linear velocity, angle velocity
133 - 146 left hand end-effector position, velocity, linear velocity, angle velocity
146 - 159 object base position, rotation, linear velocity, angle velocity
159 -172 articulated object top part position, rotation, linear velocity, angle velocity
172-185 articulated object bottom part position, rotation, linear velocity, angle velocity
185-187 object dof position, velocity
187-257 desired object motion trajectory G=(g;,gi+1,--,9¢t+7)
257-397 | sequence of 6-DoF wrist actions (a]” ,aK/H ,...,aKT) generated by high-level planner
397 -462 right hand fingertip pose, linear velocity, angle velocity
462 - 527 left hand fingertip pose, linear velocity, angle velocity

Table 5: Observation space of our framework in simulation.

object joint angle g;/. A1, A and A3 is the hyperparameters to balance the weight of each component of
the reward.
The reward function is defined as:

R _~R T AT J _AJd
thexpf(kl*”g‘ =3¢ l2+X2%llg, —g; 2+ 3*llg; —a; l12) (1)

where A1 =20, Ao =1, and A3 =5.

We use an exponential map in the reward function, which is an effective reward shaping technique used
in the case to minimize the distance, introduced by [68, 69]. To improve the calculation efficiency, we
use quaternion to represent the object orientation. The angular position difference is then computed
through the dot product between the normalized goal quaternion and the current object’s quaternion.

C Detail Implementation in Real-World

C.1 Perception

Our perception setup is shown in Figure 6. We arranged 4 identical Femto Bolt cameras around the
table and face towards the object. We use FoundationPose [67] to estimate the articulated object pose.
To remove the abnormal results, we compare each pose to the desired pose and remove the pose if the

15



479
480
481

4g2 C.2 Policy Distillation

483

484 observation space of the distilled policy.

error is smaller than a threshold (5 centimeters in translation and 0.5 radians in orientation). Finally,
we average the rest of the poses as our observation for the policy. If none of the poses is smaller than
the threshold, we continue to use the pose from the previous frame.

We use the DAgger [70] algorithm for policy distillation. Table.6 gives the specific information of the

Index Description
0-24 right hand dof position
24 -48 left hand dof position
48-55 right hand end-effector position, rotation
55-62 left hand end-effector position, rotation
62-69 articulated object top part position, rotation
69 -76 articulated object bottom part position, rotation
76-717 object dof position
77 -147 desired object motion trajectory G =(g¢,gt+1,--,9t+T)
147 -287 | sequence of 6-DoF wrist actions (a{" ,a}} 1 ,....a}", 1) generated by high-level planner

Table 6: Observation space of our framework in the real-world.

s D Hyperparameters of the PPO

486 Table.7 gives the hyperparameters of the PPO.

Hyperparameters Value
Num mini-batches 4
Num opt-epochs 5
Num episode-length 8
Hidden size [1024, 1024, 512,256]
Clip range 0.2
Max grad norm 1
Learning rate 3.e-4
Discount () 0.998
GAE lambda () 0.95
Init noise std 0.8
Desired kl 0.02
Ent-coef 0

Table 7: Hyperparameters of PPO.

w7 E  Domain Randomization
488
489

490 simulation steps.

Isaac Gym provides lots of domain randomization functions for RL training. We add the randomization
for all the tasks as shown in Table. 8 for each environment. we generate new randomization every 1000

16



Parameter | Type | Distribution | Initial Range
Robot
Mass Scaling uniform [0.5,1.5]
Friction Scaling uniform [0.7,1.3]
Joint Lower Limit Scaling | loguniform [0.0,0.01]
Joint Upper Limit Scaling | loguniform [0.0,0.01]
Joint Stiffness Scaling | loguniform [0.0,0.01]
Joint Damping Scaling | loguniform [0.0,0.01]
Object
Mass Scaling uniform [0.5,1.5]
Friction Scaling uniform [0.5,1.5]
Scale Scaling uniform [0.95, 1.05]
Position Noise Additive gaussian [0.0,0.02]
Rotation Noise Additive gaussian [0.0,0.2]
Observation
Obs Correlated. Noise Additive gaussian [0.0,0.001]
Obs Uncorrelated. Noise | Additive gaussian [0.0,0.002]
Action
Action Correlated Noise Additive gaussian [0.0,0.015]
Action Uncorrelated Noise | Additive gaussian [0.0, 0.05]
Environment
Gravity | Additive | normal |  [0,0.4]

Table 8: Domain randomization of all the tasks.
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