
A Data Augmentation Loop443

A.1 Pseudo Code444

Algorithm 1 DATA AUGMENTATION LOOP

Require: Human data D = (G, aW ), training set Dt ∈ D, high-level planner πH , low-level
controller πL, augmentation iteration L, data augment function Laug(), wrist pose trajec-
tories Gt = (gt, gt+1, ..., gt+T−1), goal trajectory of the object and its geometric features
aW
t =(aW

t ,aW
t+1,...,a

W
t+T−1).

1: Initialize πH , πL, Dt={}.
2: for iteration m=0,1,...,L do
3: while until convergence of πH do
4: Generate augmented data Laug(D)
5: Append into training set Dt←Dt+Laug(D)
6: Train πH on Dt

7: end while
8: while until convergence of πL do
9: Train πL on (πH(G),G)

10: end while
11: Rollout success trajectories Dt

s=(aW
t ,Gt) with πL

12: Append into human data D←DT +Dt
s

13: end for

A.2 Detail of the Data Augmentation Loop445

Below are the details for each augmentation. The unit of length is centimeters and the unit of angle is446

degrees.447

• Random the object’s mesh scales with a small scale:448

– The scale of the width of the manipulated object ranges from 0.9 to 1.1.449

– The scale of the length of the manipulated object ranges from 0.9 to 1.1.450

– The scale of the height of the manipulated object ranges from 0.9 to 1.1.451

• Random the object’s initial pose with a small scale:452

– The x-coordinate of the manipulated object ranges from -0.02 to 0.02.453

– The y-coordinate of the manipulated object ranges from -0.02 to 0.02.454

– The manipulated object’s z-axis Euler degree ranges from 0 to 30.455

• Modify the goal trajectories of the object with waypoint interpolation:456

– The x-coordinate of the goal trajectories position is added by ranges from -0.02 to 0.02.457

– The y-coordinate of the goal trajectories position is added by ranges from -0.02 to 0.02.458

– The z-coordinate of the goal trajectories position is added by ranges from -0.02 to 0.02.459

B Detail Implementation of RL in Simulation460

B.1 Observation Space461

Table.5 gives the specific information of the observation space.462

B.2 Reward Design463

Denote the ĝR
i , ĝT

i and ĝJi is the current 3D translation, 3D rotation and joint angle of the object464

respectively, the desired object 3D rotation gR
i , the desired object 3D translation gT

i , and the desired465

14



Figure 6: Setup of the cameras.

Index Description
0 - 60 right arm-hand dof position, velocity

60 - 120 left arm-hand dof position, velocity
120 - 133 right hand end-effector position, velocity, linear velocity, angle velocity
133 - 146 left hand end-effector position, velocity, linear velocity, angle velocity
146 - 159 object base position, rotation, linear velocity, angle velocity
159 - 172 articulated object top part position, rotation, linear velocity, angle velocity
172 - 185 articulated object bottom part position, rotation, linear velocity, angle velocity
185 - 187 object dof position, velocity
187 - 257 desired object motion trajectory G=(gt,gt+1,...,gt+T )
257 - 397 sequence of 6-DoF wrist actions (aW

t ,aW
t+1,...,a

W
t+T ) generated by high-level planner

397 - 462 right hand fingertip pose, linear velocity, angle velocity
462 - 527 left hand fingertip pose, linear velocity, angle velocity

Table 5: Observation space of our framework in simulation.

object joint angle gJi . λ1, λ2 and λ3 is the hyperparameters to balance the weight of each component of466

the reward.467

The reward function is defined as:468

rt=exp−(λ1∗∥gR
t −ĝR

t ∥2+λ2∗∥gT
t −ĝT

t ∥2+λ3∗∥gJ
t −ĝJ

t ∥2) (1)

where λ1=20, λ2=1, and λ3=5.469

We use an exponential map in the reward function, which is an effective reward shaping technique used470

in the case to minimize the distance, introduced by [68, 69]. To improve the calculation efficiency, we471

use quaternion to represent the object orientation. The angular position difference is then computed472

through the dot product between the normalized goal quaternion and the current object’s quaternion.473

C Detail Implementation in Real-World474

C.1 Perception475

Our perception setup is shown in Figure 6. We arranged 4 identical Femto Bolt cameras around the476

table and face towards the object. We use FoundationPose [67] to estimate the articulated object pose.477

To remove the abnormal results, we compare each pose to the desired pose and remove the pose if the478

15



error is smaller than a threshold (5 centimeters in translation and 0.5 radians in orientation). Finally,479

we average the rest of the poses as our observation for the policy. If none of the poses is smaller than480

the threshold, we continue to use the pose from the previous frame.481

C.2 Policy Distillation482

We use the DAgger [70] algorithm for policy distillation. Table.6 gives the specific information of the483

observation space of the distilled policy.484

Index Description
0 - 24 right hand dof position

24 - 48 left hand dof position
48 - 55 right hand end-effector position, rotation
55 - 62 left hand end-effector position, rotation
62 - 69 articulated object top part position, rotation
69 - 76 articulated object bottom part position, rotation
76 - 77 object dof position

77 - 147 desired object motion trajectory G=(gt,gt+1,...,gt+T )
147 - 287 sequence of 6-DoF wrist actions (aW

t ,aW
t+1,...,a

W
t+T ) generated by high-level planner

Table 6: Observation space of our framework in the real-world.

D Hyperparameters of the PPO485

Table.7 gives the hyperparameters of the PPO.486

Hyperparameters Value
Num mini-batches 4
Num opt-epochs 5

Num episode-length 8
Hidden size [1024, 1024, 512, 256]
Clip range 0.2

Max grad norm 1
Learning rate 3.e-4
Discount (γ) 0.998

GAE lambda (λ) 0.95
Init noise std 0.8
Desired kl 0.02
Ent-coef 0

Table 7: Hyperparameters of PPO.

E Domain Randomization487

Isaac Gym provides lots of domain randomization functions for RL training. We add the randomization488

for all the tasks as shown in Table. 8 for each environment. we generate new randomization every 1000489

simulation steps.490

16



Parameter Type Distribution Initial Range

Robot
Mass Scaling uniform [0.5, 1.5]

Friction Scaling uniform [0.7, 1.3]
Joint Lower Limit Scaling loguniform [0.0, 0.01]
Joint Upper Limit Scaling loguniform [0.0, 0.01]

Joint Stiffness Scaling loguniform [0.0, 0.01]
Joint Damping Scaling loguniform [0.0, 0.01]

Object
Mass Scaling uniform [0.5, 1.5]

Friction Scaling uniform [0.5, 1.5]
Scale Scaling uniform [0.95, 1.05]

Position Noise Additive gaussian [0.0, 0.02]
Rotation Noise Additive gaussian [0.0, 0.2]

Observation
Obs Correlated. Noise Additive gaussian [0.0, 0.001]

Obs Uncorrelated. Noise Additive gaussian [0.0, 0.002]
Action
Action Correlated Noise Additive gaussian [0.0, 0.015]

Action Uncorrelated Noise Additive gaussian [0.0, 0.05]
Environment

Gravity Additive normal [0, 0.4]

Table 8: Domain randomization of all the tasks.

17


	Introduction
	Related Works
	Dexterous Manipulation
	Learning from Human Motion

	Task Formulation
	Method
	High-Level Planner
	Low-Level Controller
	Data Augmentation for Generalization
	Sim-to-Real Transfer

	Experiments
	Performance of the high-level planner
	Effectiveness of learning from human with hierarchical pipeline
	Generalization to unseen scenarios
	Transfer from simulation to real-world

	Limitations
	Conclusion
	Data Augmentation Loop
	Pseudo Code
	Detail of the Data Augmentation Loop

	Detail Implementation of RL in Simulation
	Observation Space
	Reward Design

	Detail Implementation in Real-World
	Perception
	Policy Distillation

	Hyperparameters of the PPO
	Domain Randomization



