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In this supplementary material, we first explain the details of spectral clustering algorithm in Sec. 4.21

of our main paper in Sec. A. We then discuss the effect of different pretraining frameworks and2

models in Sec. B. We also analyze the sensitivity of FreeSel to the values of hyperparameters in3

Sec. C. Besides, FreeSel is compared with other intuitive baselines using the general-purpose model4

in Sec. D. Finally, implementation details of our experiments are explained in Sec. E. Our code will5

be made publicly available.6

A Spectral Clustering Algorithm7

In this section, we explain the spectral clustering algorithm [14, 18] in the semantic pattern extraction8

process for each image I (Sec. 4.2 and Alg. 1 of our main paper). The detailed spectral clustering9

algorithm is shown in Alg. 1. This spectral clustering algorithm should be inserted into line 7 of10

Alg. 1 in our main paper.11

To justify the use of spectral clustering algorithm for semantic pattern extraction, we also try another12

alternative which directly performs K-Means w.r.t. the local features f I
r , r = 1, 2, . . . , t to divide13

the t regions of image I into K clusters without using the patch token attention to achieve the same14

feature clustering goal in Sec. 4.2 of our main paper. Tab. 1 shows the comparison between spectral15

clustering and K-Means. Interestingly, these two feature clustering strategies lead to similar data16

selection performance on PASCAL VOC [7] object detection task. However, spectral clustering17

is stably superior when selecting data samples for Cityscapes [4] semantic segmentation task. We18

attribute this difference to the large domain gap between Cityscapes dataset and ImageNet dataset [6].19

The DeiT-S model pretrained on ImageNet may extract local features with weaker discriminative20

ability from images inside Cityscapes dataset. Since spectral clustering algorithm depends less on the21

feature quality, it can bring better performance than direct K-Means over intermediate local features22

on Cityscapes.23

B Effect of Pretraining Methods24

In this part, we pay attention to the effect of pretraining on the final performance of FreeSel. In25

addition to the DeiT-S model [17] pretrained with DINO framework [2] in our main paper, we also26

adopt two alternative pretraining frameworks MoCoV3 [3] and iBOT [21] as well as a larger DeiT-B27

model [17]. Those different pretrained models are applied to the data selection on PASCAL VOC28

dataset [7]. Same as Sec. 5.2 of our main paper, we train an SSD-300 model [12] on the selected29

samples for the object detection task. Fig. 1 demonstrates that FreeSel with different pretrained30

models for data selection only has marginal differences in the performance of the downstream object31

detection task. This result verifies that FreeSel can widely fit different pretraining algorithms. The32

great performance of data selection comes from our carefully designed modules in FreeSel instead of33

the strong representative ability of some specific pretrained models.34
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Algorithm 1: Spectral Clustering

Input: Similarity matrix between patches p̂aI
=

[
p̂aij

]
i,j=1,2,...,t

, semantic pattern number K

Output: Clusters CI
j , j = 1, 2, . . . ,K, where each region r = 1, 2, . . . , t of image I belongs to

a unique CI
j .

1 Derive the symmetric adjacent matrix A from p̂aI :

A = (p̂aI + p̂aIT )/2, A ∈ Rt×t

2 Derive the diagonal degree matrix D:

Dij =

{∑t
l=1 Ail i = j

0 i ̸= j
, D ∈ Rt×t

3 Calculate the normalized Laplacian matrix L:

L = D− 1
2 (D−A)D− 1

2 , L ∈ Rt×t

4 Obtain the K eigenvectors vl, l = 1, 2, . . . ,K corresponding to the K smallest eigenvalues
σl, l = 1, 2, . . . ,K of matrix L.

5 Compose the matrix V based on the K eigenvectors

V = [v1, v2, . . . , vK ],V ∈ Rt×K

6 Denote uT
i as the i-th row of V, i = 1, 2, . . . , t

7 Normalize each row of V: ûi = ui/
√∑K

j=1 u
2
i,j

8 Perform K-Means to divide ûi, i = 1, 2, . . . , t into K clusters CI
j , j = 1, 2, . . . ,K:

{CI
j }j=1,2,...,K = KMeans({ûi}i=1,2,...,t)

Table 1: Effect of Feature Clustering Strategies: We compare spectral clustering and K-Means for
feature clustering. Experiments are conducted on PASCAL VOC object detection task and Cityscapes
semantic segmentation task.

(a) Performance on PASCAL VOC Object Detec-
tion Task: The task model is SSD-300 [12].

Feature Clustering Image Number
3k 5k 7k

K-Means 65.35 69.43 71.76
Spectral Clustering 65.66 69.24 71.79

(b) Performance on Cityscapes Semantic Segmen-
tation Task: The task model is DRN [20].

Feature Clustering Sampling Ratio
15% 25% 35%

K-Means 51.43 54.84 57.96
Spectral Clustering 51.77 55.72 58.58

C Sensitivity to Hyperparameters35

In this part, we analyze the sensitivity of our FreeSel to some hyperparameters including the mainte-36

nance ratio τ in the attention filter (Eq. 2 of our main paper), the semantic pattern number K (Eq. 437

of our main paper), the neighborhood threshold d0 (Eq. 3 of our main paper), the distance function38

D(·, ·) (Eq. 5 of our main paper), and pretraining manner for the general model. Experiments are39

conducted on object detection task, where samples are selected from PASCAL VOC dataset and40

SSD-300 is the downstream task model in the same settings as Sec. 5.2 of our main paper. Results41

are shown in Tab. 2.42

Maintenance Ratio τ (Eq. 2 of main paper) Maintenance ratio τ notably affects the final perfor-43

mance of FreeSel. Too low ratios lead to the ignorance of some crucial local visual patterns, while44

too high ratios introduce some harmful noisy information to the semantic patterns. Thus, a moderate45

attention ratio plays an important role in the high performance of FreeSel.46
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Figure 1: Effect of Pretraining Methods: We evaluate the performance of FreeSel with different
pretrained models. The red stars denote the results in our main paper. Experiments are conducted on
PASCAL VOC dataset with SSD-300 as the object detection task model.

Table 2: Sensitivity to Hyperparameters: τ,K, d0, D(·, ·) separately denote the maintenance ratio,
semantic pattern number, neighborhood threshold, and distance function. Experiments are conducted
on PASCAL VOC object detection task.

τ K d0 D(·, ·) Pretraining Image Number
3k 5k 7k

0.3
5 2 cos. unsupervised

65.22 69.00 70.69
0.5 65.66 69.24 71.79
0.7 64.77 69.33 71.64

0.5 1 2 cos. unsupervised 64.90 69.01 71.02
10 65.21 69.13 71.50

0.5 5 1 cos. unsupervised 65.48 68.73 71.39
3 65.37 69.41 71.74

0.5 5 2 euc. unsupervised 64.77 69.42 71.31

0.5 5 2 cos. supervised 64.40 68.82 71.43

Semantic Pattern Number K (Eq. 4 of main paper) When K = 1, the performance is hurt since47

semantic patterns degrade to global features in this case. When K = 10, a slight performance drop48

may be witnessed in comparison with K = 5.49

Neighborhood Threshold d0 (Eq. 3 of main paper) When d0 = 1, the neighborhood is too small50

to represent the relationship between nearby regions. When d0 = 3, the performance is a little worse51

than d0 = 2. We think each region feature mainly interacts with nearby regions with distance d ≤ 2.52

Distance Function D(·, ·) (Eq. 5 of main paper) We find the cosine distance can lead to better53

performance than Euclidean distance. This result shows that the directions of local feature vectors54

are important to reflect the diversity of local visual patterns.55

Pretraining Manner Instead of using the unsupervised pretraining framework DINO [2], we56

also try the DeiT-S model [17] pretrained in a supervised manner on ImageNet [11]. Results show57

a performance drop with supervised pretraining. We think this is because supervised pretraining58

introduces some biases of categories to the pretrained model.59
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Table 3: Baselines Using General-Purpose Model: We compare FreeSel with other baselines using
the general-purpose model. Experiments are conducted on PASCAL VOC object detection task.

Methods Pretrained Model Image Number
3k 5k 7k

K-Means DeiT-S (DINO) 64.85 68.05 71.50
Inconsistency DeiT-S (DINO) 63.29 67.65 71.35

Entropy DeiT-S (supervised) 56.33 66.03 69.72

FreeSel DeiT-S (DINO) 65.66 69.24 71.79

D Baselines Using General-Purpose Model60

To further disentangle the roles of the general-purpose model and our designed FreeSel framework,61

we compare FreeSel with the following baselines which can also select a subset from the data pool62

using the general-purpose models.63

• K-Means: We perform the K-Means algorithm on the global features extracted by the DeiT-S64

model [17] pretrained with DINO [2]. The cluster number equals to the annotation budget65

size, and we choose the sample closest to each cluster center.66

• Inconsistency: We select the most difficult samples based on the inconsistency of multiple-67

time model predictions. To measure the inconsistency, we perform data augmentations68

(RandAugment [5]) to generate 10 different augmented copies for each image. The inconsis-69

tency is measured by calculating the average pairwise distances of global features between70

these copies extracted by the DeiT-S model [17] pretrained with DINO [2]. We select data71

samples by the order of inconsistency.72

• Entropy: We select the most ambiguous samples based on the classification uncertainty of the73

pretrained model. Since the classification score is required, we adopt the DeiT-S model [17]74

pretrained on ImageNet in a supervised manner and measure the uncertainty with the entropy75

of classification scores. We select data samples by the order of entropy.76

Experiments are conducted on object detection task, where samples are selected from PASCAL VOC77

dataset and SSD-300 is the downstream task model in the same settings as Sec. 5.2 of our main paper.78

Tab. 3 shows that all the above baselines perform notably worse than FreeSel, especially with low79

sampling ratios. This reflects the importance of our proposed FreeSel algorithm. Trivial utilization of80

a general-purpose model would not lead to great performance of data selection.81

E Implementation Details82

E.1 Object Detection Implementation83

E.1.1 Implementation of FreeSel84

We set attention ratio τ = 0.5 and semantic pattern number K = 5. The input images are resized to85

224× 224 when fed into the pretrained DeiT-S [17] model in the data selection process.86

E.1.2 Implementation of Task Model87

The implementation of task model is same as previous active learning research [19, 1]. The SSD-30088

model [12] with VGG-16 [15] backbone is adopted for this experiment. The model is implemented89

based on mmdetection 1. We follow [19, 1] to train the model for 300 epochs with batch size 32 using90

SGD optimizer (momentum 0.9). The initial learning rate is 0.001, which decays to 0.0001 after 24091

epochs.92

1https://github.com/open-mmlab/mmdetection
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E.2 Semantic Segmentation Implementation93

E.2.1 Implementation of FreeSel94

The input images are resized to 448× 224 in line with their original aspect ratios when fed into the95

pretrained DeiT-S [17] model in the data selection process. Same as object detection, we set attention96

ratio τ = 0.5 and semantic pattern number is doubled to K = 10 in line with the doubled input size97

compared to object detection task.98

E.2.2 Implementation of Task Model99

We follow prior active learning work [16, 9] to apply DRN [20] model 2 for semantic segmentation100

task. The model is trained for 50 epochs with batch size 8 and learning rate 5e-4 using Adam101

optimizer [10].102

E.3 Image Classification Implementation103

E.3.1 Implementation of FreeSel104

We follow previous tasks to set attention ratio τ = 0.5. Since image classification depends less on105

local information, we directly set the semantic pattern number K = 1. The input images are resized106

to 224× 224 when fed into the pretrained DeiT-S [17] model in the data selection process.107

E.3.2 Implementation of Task Model108

We follow [19, 13] to use ResNet-18 [8] classification model in this task, which is implemented based109

on mmclassification 3. The model is trained for 200 epochs with batch size 128 using SGD optimizer110

(momentum 0.9, weight decay 5e-4). The initial learning rate is 0.1, which decays to 0.01 after 160111

epochs. We apply standard data augmentation to the training including 32×32 size random crop from112

36×36 zero-padded images and random horizontal flip.113

2https://github.com/fyu/drn
3https://github.com/open-mmlab/mmclassification
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