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Abstract
Multi-object tracking (MOT) is a pivotal task for media interpreta-
tion, where reliable motion and appearance cues are essential for
cross-frame identity preservation. However, limited by the inherent
perspective properties of 2D space, the crowd density and frequent
occlusions in real-world scenes expose the fragility of these cues.
We observe the natural advantage of objects being well-separated
in high-dimensional space and propose a novel 2D MOT frame-
work, “Detecting-Lifting-Tracking” (DLT). Initially, a pre-trained
detector is employed to capture 2D object information. Secondly,
we introduce a Mamba Distance Estimator to obtain the distances of
objects to a monocular camera with temporal consistency, achiev-
ing object-level pseudo-3D lifting. Finally, we thoroughly explore
distance-aware tracking via pseudo-3D information. Specifically,
we introduce a Score-Distance Hierarchical Matching and Short-
Long Terms Association to enhance accurate and robust associa-
tion capability. Even without appearance cues, our DLT achieves
state-of-the-art performance on MOT17, MOT20, and DanceTrack,
demonstrating its potential to address occlusion challenges.
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Figure 1: The illustration of object-level pseudo-3D lifting.
Objects that are densely distributed and occluded in a monoc-
ular 2D image are well-separated in pseudo-3D space.

1 Introduction
Multi-object tracking (MOT) is a critical task for media interpreta-
tion, involving the spatial localization of objects and the temporal
association to maintain consistent identities across consecutive
video frames. This task supports a wide range of applications such
as autonomous driving [33, 39] and intelligent surveillance [9, 36].
However, due to the complexity of real-world scenarios, including
dense crowds and frequent occlusions, MOT with 2D images from
a monocular camera remains a highly challenging topic.

Previous works [16, 38, 43] explore MOT extensively and gradu-
ally formulate an effective paradigm named tracking-by-detection
(TBD). This paradigm divides the task into two sequential sub-tasks:
detecting objects in each frame, followed by associating these ob-
jects across frames based on motion and appearance cues which are
crucial for tracking performance. However, when faced with the
occlusion problem, the confusion caused by the mutual influence of
objects in 2D space makes the reliability of these clues significantly
degraded. Several works [26–28, 43] address this issue by improv-
ing motion prediction, enhancing appearance representation, and
designing matching strategies, yet they still suffer from the inher-
ent limitations of the 2D perspective. In contrast, we recognize the
natural advantages of matching in high-dimensional space, where
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objects that occlude each other in 2D space are well-separated,
shown in Figure 1. Therefore, we would like to ask: How to achieve
multi-object tracking in 3D space based solely on 2D images?

In our work, we introduce an innovative 2D MOT framework,
“Detecting-Lifting-Tracking” (DLT), which decomposes the dis-
cussed problem into two questions: (i) How to achieve the trans-
formation from 2D space to 3D space? (ii) How to fully leverage 3D
information for a comprehensive tracking process update?

(i) Object-level pseudo-3D lifting. For spatial transformations
without any sensor or various views, the most straightforward 3D
lifting method is the use of depth estimators. DIP [17] and Quo
Vadis [6] employ this method for reconstructing 3D scenes and
providing inference bases for invisible objects, respectively. Despite
the high computational cost for scene-level depth, depth estimators
still suffer from low accuracy and are prone to background noise. In
contrast, estimating the distances between objects and the camera
serves as a pseudo-3D lifting method, realized through distance
estimators such as DisNet [14], EM [45], and DistSynth [23]. These
distance estimators focus on capturing object-level distance, disre-
garding the redundancy of background. This is consistent with the
object-specific perception of MOT tasks because it is more crucial
to know the object distance instead of the dense depth map for the
entire scene [2]. Thus, we introduce a Mamba Distance Estimator
(MDE) based on the Space-Time Mamba Model, integrating histori-
cal information to mitigate the impact of temporary occlusions.

(ii) Distance-aware tracking. DLT aims to efficiently utilize pseudo-
3D distance information for tracking. Bearing such objectives, we
revisit the conventional tracking process, dividing it into two main
parts: a set-level matching strategy and an instance-level associ-
ation schema. On one hand, the matching strategy is the focus of
MOT tasks. ByteTrack [43] enhances it by decomposing objects
into high- and low-score subsets based on confidence scores, which
shows surprisingly effective outcomes. For discrete and sequential
matching, we propose the Score-Distance Hierarchical Matching
(SDHM) strategy. Specifically, to tackle the issue of confidence
scores failing to robustly evaluate object existence in occluded
scenes, we introduce the Score-based Hierarchizing incorporating
an Occlusion Compensation Score based on distance-aware visibil-
ity ratios. Additionally, a noticeable density of objects still persists
within high-score subset, we propose Distance-based Hierarchizing
for a secondary hierarchizing on the distance dimension. On the
other hand, the association schema emphasizes object-track cor-
relations to verify identities. We present the Short-Long Terms
Association (SLTA) schema, distinguishing the Short-term Asso-
ciation in adjacent frames impacted by dense crowds, from the
Long-term Association addressing re-association challenges due to
severe occlusion. For the Short-term Association, the Kalman filter
[37] is standard for motion prediction and track update, leveraging
IoU for correlation metrics [3, 38, 44]. Our DLT introduces a Pseudo-
3D Adaptive Kalman Filter that expands the 2D Kalman filter into
pseudo-3D space and adaptively modifies prediction and update
noise with object-level distance. We also introduce a new Distance-
weighted IoU, incorporating distance variation as an explicit clue.
For the Long-term Association, prior works primarily utilize dis-
criminative appearance features which are occlusion-sensitive clues
[28, 34]. Additionally, Quo Vadis [6] attempts to incorporate trajec-
tory forecasting [4] for non-linear prediction with multiple complex

sub-modules. In contrast, we introduce a Probabilistic Autoregres-
sive Motion Model for modeling natural trajectory distributions in
pseudo-3D space, facilitating long-term motion prediction.

By answering the two specific questions mentioned earlier, DLT
achieves accurate and efficient tracking in pseudo-3D space, setting
a new state-of-the-art performance on the MOT17, MOT20, and
DanceTrack test sets. Our contributions are summarized as follows:
• We propose a novel “Detecting-Lifting-Tracking” (DLT) frame-
work for 2DMOT that leverages the natural advantages of pseudo-
3D space without any sensors or various views.

• We introduce a Mamba Distance Estimator, combined with histor-
ical information, for temporally consistent distance estimation,
achieving object-level pseudo-3D lifting.

• We present a Score-Distance Hierarchical Matching strategy and
a Short-Long Terms Association schema by making full use of
the distance clue to realize distance-aware tracking.

• We conduct comprehensive benchmark evaluations and ablation
studies, demonstrating the exceptional performance of DLT, as
well as the contribution of each key component.

2 Related Work
Tracking-by-Detection. As the reliability of object detection in-

creases [10], the tracking-by-detection (TBD) paradigm gradually
becomes the mainstream method in MOT tasks [3, 43]. TBD typi-
cally utilizes pre-trained detectors to obtain object bboxes, focusing
on the matching process. SORT [2] and DeepSORT [38] are two
of the most classic methods, employing Kalman filters for motion
prediction and IoU for correlation measurement as the basis for
the Hungarian algorithm. Despite the emergence of numerous ad-
vancedmethods, challenges such as crowd density and occlusions in
real-world scenarios still limit tracking performance. To address this
issue, various solutions have been proposed, such as some methods
employing carefully designed appearance modules to provide multi-
modal cues [27, 28], and others introducing more reasonable motion
prediction modules [6, 21, 26]. Differently, we consider a more di-
rect and effective method, namely conducting pseudo-3D lifting
and combining distance clues to optimize the matching process,
thereby realizing a novel “Detecting-Lifting-Tracking” framework.

Distance estimation. Distance estimation and depth estimation
are two distinct tasks, although both are based on 2D images with-
out additional sensors or multiple viewpoints. Distance estimation
solely aims to obtain the distance information of an object from
the camera [19]. In contrast, depth estimation seeks to acquire the
depth information for all pixels in a scene [42]. Classical methods
of distance estimation achieve this by regressing the relationship
between an object’s geometric shape and its distance [22, 29]. The
first attempt at a deep learning method estimates an object’s dis-
tance based on the width and height of a given bbox using a Support
Vector Machine Regressor (SVR) [12]. Similarly, DistNet [14], also a
bbox-based method, does not employ image feature learning, result-
ing in significantly noticeable error noise. EM [45] combines ResNet
and RoI pooling to reconstruct object-level representations for dis-
tance estimation. Building on EM, DistSynth [23] adds a real-time
model and an FPN branch. Considering that distance estimation
is critical for object-level pseudo-3D lifting, we design a Mamba
Distance Estimator (MDE) based on the State Space Model [13],
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Figure 2: Overview of our “Detecting-Lifting-Tracking” (DLT) framework. I. Detecting: capturing 2D object bboxes in the current
frame by the detector. II. Lifting: utilizing Object-Level Distance Estimation (OLDE) with Mamba Distance Estimator to generate
pseudo-3D information for each object. III. Tracking: achieving distance-aware tracking through the Score-Distance Hierarchical
Matching (SDHM) combined with Short-Long Terms Association (SLTA). The SDHM incorporates a Score-based Hierarchizing,
based on the Occlusion Compensation Score, and further implements a Distance-based Hierarchizing for high-score subsets.
The SLTA comprises a Short-term Association between two adjacent frames by a Pseudo-3D Adaptive Kalman Filter with
Distance-weighted IoU and a Long-term Association for re-association through a Probabilistic Autoregressive Motion Model.

incorporating historical spatiotemporal information to mitigate the
effects of occlusion and enhance estimation accuracy.

Tracking with 3D information. Our work focuses on utilizing
3D information for 2D MOT tasks, differing from 3D MOT [25],
in that it inputs and outputs 2D bboxes, with the tracking process
executed in 3D space. There are few such works, among which
DIP [17] stands as a pioneering effort. It employs depth maps ob-
tained from a depth estimator for inferring the presence of objects,
thereby enhancing the capability to handle occlusions. Another
notable work is Quo Vadis [6], which merges depth maps and seg-
mentation results using homography transformations to generate
bird’s-eye view scene maps, thereby introducing trajectory forecast-
ing to alleviate the influence of long-term object occlusion. While
these works somewhat improve the handling of occlusions, they are
very limited. The underlying reason is the insufficient utilization
of 3D information. Hence, we comprehensively revisit the tracking
process, implementing depth-aware enhancements in both match-
ing strategy and association schema to considerably mitigate the
inherent sensitivity of 2D MOT methods to occlusions.

3 Methodology
We propose an innovative “Detecting-Lifting-Tracking” (DLT)
framework, as illustrated in Figure 2, which has three main stages:
i) detecting to obtain 2D object bboxes, ii) lifting to pseudo-3D
space with Object-Level Distance Estimation (OLDE) by Mamba
Distance Estimator, iii) tracking through Score-Distance Hierarchical
Matching (SDHM) with Short-Long Terms Association (SLTA).

3.1 Object-Level Distance Estimation
In 2D MOT tasks, pixel-wise depth estimators provide an overly re-
dundant amount of information for the entire scene. Our focus shifts
toward Object-Level Distance Estimation (OLDE), which obtains
the distances between specific objects and the camera. The primary
challenges include: (i) previous estimators rely on single-frame
images without temporal consistency, making them susceptible to
occlusions, and (ii) it becomes even more complex when dealing
with small objects, necessitating higher precision. To address these
challenges, we introduce a Mamba Distance Estimator (MDE).

Space-Time Mamba. We introduce the Space-Time Mamba (ST-
Mamba) to estimate distances from multi-frames, leveraging the
inter-frame context instead of just 2D spatial information to achieve
a smoother estimation. The Mamba consists of State Space Models
(SSMs) [13], which map a 1D function or sequence 𝑥 (𝑡) ∈ R𝐿 ↦→
𝑦 (𝑡) ∈ R𝐿 through a hidden state ℎ(𝑡) ∈ R𝑁 . SSMs are often
represented in a discretized version as follows:

A = exp(∆A), (1)

B = (∆A)−1 [exp(∆A) − I] · ∆B, (2)

ℎ𝑡 = Aℎ𝑡−1 + B𝑥𝑡 , 𝑦𝑡 = Cℎ𝑡 , (3)

where a timescale parameter ∆ to transform the continuous parame-
ters A,B to discrete parameters A,B. To adapt the vanilla Mamba for
multi-frame input, we introduce the spatiotemporal selective scan,
as illustrated in Figure 3. Specifically, we unfold patches of each
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Figure 3: Structure of the Mamba Distance Estimator (MDE).
MDE takesmultiple frames as input and outputs an estimated
distance. The lightweight MobileNet v3 extracts intra-frame
features, while the ST-Mamba captures inter-frame repre-
sentations. The BUFF module then integrates multi-scale
features using both top-down and bottom-up approaches.

frame along rows and columns into sequences and then concatenate
the frame sequences to constitute the long sequences𝑋 ∈ R𝐶×𝑇𝐻𝑊 .
Then, we parallelly proceed with scanning along the forward and
backward directions to explore inter-frame dependency. To balance
estimation speed and accuracy, we insert Space-Time Mamba layers
at the end of each stage in pre-trained MobileNet v3 [15], which
extracts intra-frame features and fuses inter-frame information.

Bidirectional Unified Feature Fusion. To enhance accuracy for
small objects, we introduce the Bidirectional Unified Feature Fu-
sion (BUFF) module ensuring seamless feature fusion across scales.
The BUFF module consists of Fusion and Connection components.
The Fusion block is composed of several convolutional layers. We
concatenate two input feature maps 𝑋1 and 𝑋2, which are fed into
both branches. One branch compresses channels through a 1 × 1
Conv, while the other branch extracts features using a 1 × 1 Conv
and Dilated Reparam Blocks [7] (DRepBlocks), ultimately the fused
features 𝑌 are obtained through an element-wise addition:

𝑋 = Concatenate(𝑋1, 𝑋2), (4)

𝑌 = Conv1×1 (𝑋 ) + DRepBlocks(Conv1×1 (𝑋 )) . (5)

The Connection module comprises upsampling and downsampling
layers. In practice, the BUFF starts with top-down encoding for
global features and then proceeds with bottom-up encoding to
retain detailed features of small objects.

The final fused features are sent to an ROI align layer to ex-
tract object-level vector features 𝑋𝑣 ∈ R𝑁×𝐶′𝑀𝑀 , where 𝑁 and𝑀
denotes the number of objects and window dimension of the RoI
align, respectively. These vectors are then transformed by an MLP
layer to generate Gaussian distribution parameters 𝜇 and �̂�2 for dis-
tance, ensuring a degree of uncertainty. Given ground truths 𝜇, the
proposed MDE is optimized via Gaussian Negative Log Likelihood
(GNLL) loss, denoted as follows:

LossGNLL =
1
2

[
log

(
�̂�2

)
+ (𝜇 − 𝜇)2

�̂�2

]
. (6)

(a) Distance Order (b) Occlusion Order (c) Visibility

near far occluded

near far occluded

Pseudo-3D bbox 2D bbox Occluded region Sample

Figure 4: The illustration of the distance-aware object vis-
ibility analysis. Under the assumption that farther objects
are occluded by nearer ones in a 2D perspective, the order of
distance and occlusion can be easily mapped. The visibility is
determined by assessing the ownership of overlapping areas.

3.2 Score-Distance Hierarchical Matching
The concept of hierarchical matching, due to its discrete and orderly
attributes, has been proven to enhance tracking performance, yet
there remains room for improvement: i) alleviating the hierarchical
strategy sensitivity to occlusions, and ii) introducing new hierarchi-
cal methods to address occlusions further. Accordingly, we propose
Score-Distance Hierarchical Matching (SDHM), which comprises
Score-based Hierarchizing and Distance-based Hierarchizing.

Score-based Hierarchizing. As a vanilla method, ByteTrack [43]
decomposes objects into two subsets based on confidence scores:
high-score subset O𝑡

high and low-score subset O𝑡
low. The O

𝑡
high is

prioritized for matching. However, the confidence scores of some
positive objects are reduced due to occlusions, resulting in putting
into the O𝑡

low and losing the privilege of priority matching. Thus,
we propose an Occlusion Compensation Score (𝑠𝑜𝑐 ) to reflect the
existence of objects enabling more robust Score-based Hierarchizing.

The visibility ratio of an object can, to a certain extent, reflect the
impact of occlusions on the confidence score. However, this metric
is not readily obtainable. For overlapping areas, complex methods
such as comparing feature similarities are required to determine
their ownership. Fortunately, based on the distance information,
the overlapping area belongs to the nearer object. Therefore, for a
specific object 𝑜𝑡𝑎 in O𝑡 , its visibility ratio can be defined as:

𝑟𝑜𝑡𝑎
= 1 −

𝑁 𝑡
𝑜∑︁

𝑛≠𝑎

𝑆𝐼 (𝑜𝑡𝑛,𝑜𝑡𝑎 )

𝑆𝑜𝑡𝑎

· 𝐻 (𝑑𝑜𝑡𝑛 − 𝑑𝑜𝑡𝑎 ), (7)

where 𝐼 (𝑜𝑡𝑛,𝑜𝑡𝑎 ) is the overlapping area. 𝑆 represents the area of a
polygon. 𝐻 (𝑥) is the Heaviside function.

The 𝑠𝑜𝑐 compensates the confidence score based on the visibility
ratio. O𝑡 can be divided into two occlusion-insensitive subsets by
setting 𝑠𝑜𝑐 threshold. O𝑡

high containing most of the positive objects,
is prioritized for matching.The 𝑠𝑜𝑐 is expressed as follows:

𝑠𝑜𝑐 = ln
[
𝑒 (2 − 𝑟 )𝛼

]
· 𝑠, (8)

where 𝑠 is the confidence score. 𝛼 is the compensation degree.
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Distance-based Hierarchizing. In 2D images, the positional over-
lap due to occlusion leads to mutual interference. Even with Score-
based Hierarchizing, a noticeable density of objects persists within
the O𝑡

high. However, by introducing distance information, their
positions can be easily separated. Consequently, within the O𝑡

high,
we further introduce Distance-based Hierarchizing.

For the 𝑡𝑡ℎ frame, tracking involves bipartite graph matching
between the objects set O𝑡 and the tracklet set T𝑡−1 of the for-
mer frame. The O𝑡

high can be further divided into three subsets
based on the distance: the near subset O𝑡

near, the mid subset O𝑡
mid,

and the far subset O𝑡
far

. Likewise, the T𝑡−1 is also divided into
three corresponding subsets T𝑡−1near, T𝑡−1mid , and T𝑡−1

far
. Considering

that the nearer objects present less difficulty in matching, O𝑡
near is

prioritized for matching with T𝑡−1near of the same distance level, and
similarly, this process is followed for the other two levels. It is im-
portant to note that the unmatched objects and tracks within each
level are transferred to the next level sets for subsequent matching.

3.3 Short-Long Terms Association
The associations can be categorized based on different timescales
and degrees of occlusion: (i) the short-term association exists be-
tween adjacent frames, affected by partial occlusions, and (ii) the
long-term association faces the challenge of re-associating objects
that have been completely occluded and lost over some time. Thus,
we propose Short-Long Terms Association (SLTA), which comprises
Short-term Association and Long-term Association.

Short-term Association. The traditional association methods uti-
lize the Kalman filter for motion prediction and track updates, em-
ploying IoU to calculate the correlation between predicted tracks
and objects. We introduce Pseudo-3D Adaptive Kalman Filter (AKF)
and Distance-weighted IoU (DIoU) to incorporate distance informa-
tion as an auxiliary cue, enhancing the robustness of the association.

The track’s state of the 𝑡-1𝑡ℎ frame 𝜏𝑡−1
𝑖

∈ R10 is represented as
(𝑥,𝑦, 𝑎, ℎ, 𝑑, 𝛿), where 𝛿 is the motion velocity ( ¤𝑥, ¤𝑦, ¤𝑎, ¤ℎ, ¤𝑑) between
the 𝑡-1𝑡ℎ and 𝑡-2𝑡ℎ frame. Our AKF assumes a constant velocity
model with Gaussian noise. Firstly, we scale the prediction noise
by the inverse distance [17], which leads to a smoother tracklet for
tracks that are far away. We define the motion prediction step as:

𝜇𝑡𝑖 = F𝜇𝑡−1𝑖 , (9)

Σ̂𝑡𝑖 = FΣ𝑡−1𝑖 F𝑇 + Q
𝑑𝜏𝑡−1

𝑖

, (10)

where 𝜇𝑡−1
𝑖

and 𝜇𝑡
𝑖
are the state means of 𝜏𝑡−1

𝑖
and predicted track

𝜏𝑡
𝑖
, respectively. The matrix F is the state transition matrix. The

matrix Σ𝑡−1
𝑖

and Σ̂𝑡
𝑖
are the state covariance at the 𝑡-1𝑡ℎ frame and

the 𝑡𝑡ℎ frame. The matrix Q is the prediction noise covariance.
Besides, utilizing our 𝑠𝑜𝑐 to adjust the measurement noise covari-

ance allows some low-quality objects to use the predicted tracks
more for state correction. We define the track update step as:

𝜇𝑡𝑖 = 𝜇𝑡𝑖 + 𝐾
𝑡
𝑖 (𝜃

𝑡
𝑖 −H𝜇𝑡𝑖 ), (11)

𝐾𝑡
𝑖 =

Σ̂𝑡
𝑖
H𝑇

HΣ̂𝑡
𝑖
H𝑇 + R(1 − 𝑠𝑜𝑐 )

, (12)

where 𝜇𝑡
𝑖
is the state mean of the updated track 𝜏𝑡

𝑖
, 𝜃𝑡

𝑖
is the state

mean of the object. The matrix H is the state transition matrix. 𝐾𝑡
𝑖

is Kalman gain, reflecting the proximity of the updated track to the
object. The matrix R is the measurement noise covariance.

Due to the strikingly similar IoU metrics between the predicted
track and densely distributed objects, our DIoU incorporates dis-
tance to the vanilla IoU, thus providing highly reliable and discrim-
inative correlations for association. Our DIoU is based on General-
ized IoU (GIoU) [30] which is adjusted to [0,2]. We normalize the
absolute difference in distance Δ𝑑 between the predicted track and
the object as a weight. When Δ𝑑 = 0, meaning they have the same
distance, DIoU degenerates into GIoU. As Δ𝑑 gradually increases,
GIoU can progressively be penalized, based on the prior that the
same object should be proximate between adjacent frames in the
distance dimension. The DIoU is expressed as follows:

DIoU =

{
1 −

[
Δ𝑑

Δ𝑑𝑡ℎ𝑟
· 𝐻 (Δ𝑑𝑡ℎ𝑟 − Δ𝑑)

]𝛽}
GIoU, (13)

where Δ𝑑𝑡ℎ𝑟 is the distance association threshold, and when Δ𝑑
exceeds Δ𝑑𝑡ℎ𝑟 , it is considered that association will not occur. 𝛽 is
used to adjust the penalty strength. 𝐻 (𝑥) is the Heaviside function.

Long-term Association. Previous works utilize either state pre-
diction by heuristic motion models (e.g. Kalman filters) with ap-
pearance features extracted by ReID models as the basis for re-
association following long-term object loss. However, the former
struggles to predict complex motions, and the latter faces chal-
lenges in learning stable features across different postures and
viewpoints. In our Long-term Association, inspired by [32], we in-
troduce a Probabilistic Autoregressive Motion Model (PAM) to learn
reliable long-term motion prediction from the historical tracklets.

For a tracklet T𝑖 {𝑠 :𝑙 } that is lost at 𝑙𝑡ℎ frames, the long-term mo-
tion model essentially iterates to generate the predicted track for
the current frame. Given the stochastic nature of object motion,
generating a single deterministic predicted track is unreasonable.
Therefore, multimodal stochastic modeling is required to compute
the probability distribution of the next plausible predicted track,
from which samples can be drawn. PAM also learns the interac-
tion representation𝜓𝑡−1

𝑖
between the object and 𝑁𝜓 neighboring

tracklets with MA-Net. The T𝑖 {𝑠 :𝑙 } and𝜓𝑡−1
𝑖

are taken as inputs.
Notably, we lift the spatial dimensionality to preserve the role

of distance information in re-association. For each track motion
velocity in ( ¤𝑥, ¤𝑦, ¤𝑎, ¤ℎ, ¤𝑑), we utilize non-parametric k-means cluster-
ing to obtain K clusters and treat each cluster centroid as a discrete
motion class. Through the PAM, the probability distribution of the
predicted track can be obtained, as shown in the following equation:

𝑃𝑡𝑖 =
∏

𝜉∈{𝑥,𝑦,𝑎,ℎ,𝑑 }
𝑝 ( ¤𝜉𝑡𝑖 |𝑧

𝑡−2
𝑖 , 𝛿𝑡−1𝑖 ,𝜓𝑡−1

𝑖 ), (14)

where 𝑧𝑡−2
𝑖

is the hidden state which carries all previous tracklet
information until the 𝑡-2𝑡ℎ frame. 𝛿𝑡−1

𝑖
is the track motion velocity

in the 𝑡-1𝑡ℎ frame. The predicted probability distribution is obtained
by iteration starting from the lost 𝑙𝑡ℎ frame. By polynomial sam-
pling, we can get 𝑁𝑠 possible predicted tracks. Additionally, due to
the uncertainty in long-termmotion prediction, we also incorporate
an independent threshold constraint on the GIoU term in DIoU.



MM ’24, October 28-November 1, 2024, Melbourne, VIC, Australia Jin et al.

Table 1: Comparison of the state-of-the-art methods under the “private detector” protocol on MOT17 test set. For each metric,
the best is bolded and the second best is underlined. ↑ / ↓ indicates the higher/lower values denote the better performance.

Method Source Motion-only HOTA↑ MOTA↑ IDF1↑ AssA↑ DetA↑ FP↓ FN↓ IDs↓ FPS↑
Quo Vadis [6] NeurIPS’22 ✗ 63.1 80.3 77.7 62.1 64.6 25,491 83,721 2,103 3.6
SAT [36] ACM MM’22 ✗ 64.4 80.0 79.8 64.4 64.8 25,125 86,505 1,356 -
FineTrack [28] CVPR’23 ✗ 64.3 80.0 79.5 64.5 64.5 21,750 90,096 1,272 35.5
DiffMOT [21] CVPR’24 ✗ 64.5 79.8 79.3 64.6 64.7 28,281 83,562 2,238 -
ByteTrack [43] ECCV’22 ✓ 63.1 80.3 77.3 62.0 64.5 25,491 83,721 2,196 29.6
DNMOT [9] ACM MM’23 ✓ 58.0 75.6 68.1 - - 24,960 110,064 2,529 -
OCSORT [3] CVPR’23 ✓ 63.2 78.0 77.5 63.4 63.2 15,129 107,055 1,950 29.0
MotionTrack [26] CVPR’23 ✓ 65.1 81.1 80.1 65.1 65.4 23,802 81,660 1,140 15.7
Hybrid [41] AAAI’24 ✓ 63.6 79.3 78.4 63.2 - 35,4– 79,1– 2,109 -
DLT - ✓ 66.4 82.2 81.6 66.7 66.4 21,750 77,475 1,446 31.1

Table 2: Comparison of the state-of-the-art methods on
DanceTrack test set. For each metric, the best is bolded and
the second best is underlined. ↑ / ↓ indicates the higher/lower
values denote the better performance.

Method Source Motion-only HOTA↑ IDF1↑ AssA↑
FineTrack [28] CVPR’23 ✗ 52.7 59.8 38.5
DiffMOT [21] CVPR’24 ✗ 62.3 63.0 47.2
ByteTrack [43] ECCV’22 ✓ 47.3 52.5 31.4
DNMOT [9] ACM MM’23 ✓ 53.5 49.7 -
OCSORT [3] CVPR’23 ✓ 54.6 54.6 40.2
Hybrid [41] AAAI’24 ✓ 62.2 63.0 -
DLT - ✓ 66.5 68.5 54.1

4 Experiments
Our novel DLT framework is evaluated on three key datasets:
MOT17 [24], MOT20 [5], and DanceTrack [35]. Moreover, extensive
ablation studies are conducted on MOT17 [24] and MOTSynth [8].

4.1 Setting
Datasets. MOT17 [24] and MOT20 [5], encompassing diverse

real-world challenges like dense crowds and occlusions, require
results to be uploaded to the motchallenge website for evaluation
metrics. For ablation studies, we split MOT17 [24] into train and val
sets. DanceTrack, a large-scale dataset known for body occlusions
and random motion, is ideal for evaluating our motion-only DLT
method. MOTSynth [8] is a large synthetic dataset providing au-
thentic 3D coordinates for MDE training. We perform appropriate
pre-processing to better tailor it to distance estimation tasks.

Metrics. Adhering to established MOT evaluation protocols, we
use CLEAR metrics [1] including Multiple-Object Tracking Accu-
racy (MOTA), False Positive (FP), False Negative (FN), ID Switch
(IDs), and Tracker Speed (FPS) to evaluate different aspects of track-
ing performance. In addition, we combine High Order Tracking
Accuracy (HOTA) metrics with Detection Accuracy (DetA) and
Association Accuracy (AssA) [20]. MOTA focuses on detection
performance, IDF1 [31] emphasizes association performance, and
HOTA offers a balanced measure of detection and association.

Implementation details. We train YOLOX [10] and our MDE on
4 NVIDIA Tesla A100 GPUs. The training approach for YOLOX is
kept consistent with ByteTrack [43] to ensure a fair comparison.
Our MDE is trained on MOTSynth using 6-frame video clips at 1280
× 720, with clips sampled with a uniform stride of 6 frames. We
utilize a batch size of 4, Adam optimizer with an initial learning
rate of 2× 10−5 for 50 epochs. For SDHM, 𝛼 is 0.5. For SLTA, Δ𝑑𝑡ℎ𝑟
is set at 5.0 with a 𝛽 of 2.0, and 𝑁𝑠 is set at 7.

4.2 Benchmark Evaluation
For a fair comparison, we classify methods into two types: those
combining motion and appearance, and those only using motion.

MOT17. Despite not leveraging any appearance information,
our DLT ranks first in most metrics on MOT17, indicating superior
performance as shown in Table 1. By integrating distance cues, DLT
achieves discrete and ordered matching with the SDHM strategy. It
substantially surpasses the second-rankedMotionTrack [26] in both
comprehensive metrics (+1.3 HOTA, +1.1 MOTA) and association
metrics (+1.5 IDF1, +1.6 AssA). SDHM also notably reduces the FN
metric by incorporating more objects into matching.

MOT20. DLT achieves advanced performance in most metrics
on MOT20, noted for denser crowds and longer occlusions, as in-
dicated in Table 3. It demonstrates robust generalization capabili-
ties, markedly outperforming MotionTrack [26], which performs
sub-optimally on MOT17 (+1.5 HOTA, +2.2 IDF1, +2.5 AssA). It
also surpasses the second-ranked FineTrack [28] in comprehensive
metrics (+0.7 HOTA, +0.4 MOTA). LSTA enhances the association
between adjacent frames and re-association after long-term losses.
Unlike FineTrack [28], DLT exhibits comparable performance in
association metrics without complex appearance modules.

DanceTrack. Tracking in pseudo-3D space with distance cue,
DLT demonstrates exceptionally strong performance on Dance-
Track with more reliable matching and association, as shown in
Table 2. Focusing on motion, especially with similarly dressed indi-
viduals, DLT significantly outperforms FineTrack [28] (+13.8 HOTA,
+8.7 IDF1, +15.6 AssA). Additionally, DLT notably surpasses the
second-ranked DiffMOT [21] (+4.2 HOTA, +5.5 IDF1, +6.9 AssA),
showcasing its effectiveness in motion-based tracking.
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Table 3: Comparison of the state-of-the-art methods under the “private detector” protocol on MOT20 test set. For each metric,
the best is bolded and the second best is underlined. ↑ / ↓ indicates the higher/lower values denote the better performance.

Method Source Motion-only HOTA↑ MOTA↑ IDF1↑ AssA↑ DetA↑ FP↓ FN↓ IDs↓ FPS↑
Quo Vadis [6] NeurIPS’22 ✗ 61.5 77.8 75.7 60.1 63.8 26,249 87,594 1,187 2.2
SAT [36] ACM MM’22 ✗ 62.6 75.0 76.6 63.2 62.1 15,549 113,136 1,104 -
FineTrack [28] CVPR’23 ✗ 63.6 77.9 79.0 63.8 63.6 24,439 89,012 980 9.0
DiffMOT [21] CVPR’24 ✗ 61.7 76.7 74.9 60.5 63.2 27,217 91,804 1,509 -
ByteTrack [43] ECCV’22 ✓ 61.3 77.8 75.2 59.6 63.4 26,249 87,594 1,223 17.5
DNMOT [9] ACM MM’23 ✓ 58.6 70.5 73.2 - - 29,314 122,252 987 -
OCSORT [3] CVPR’23 ✓ 62.4 75.7 76.3 62.5 62.4 19,067 105,894 942 18.7
MotionTrack [26] CVPR’23 ✓ 62.8 78.0 76.5 61.8 64.0 28,629 84,152 1,165 9.0
Hybrid [41] AAAI’24 ✓ 62.5 76.4 76.2 62.0 - 35,9– 85,0– 1,300 -
DLT - ✓ 64.3 78.3 78.7 64.3 64.5 22,672 88,617 1,133 18.2

Table 4: Component analysis on the MOT17 val set.

SDHM SLTA HOTA↑ MOTA↑ IDF1↑ AssA↑ IDs↓SH DH SA LA

✗ ✗ ✗ ✗ 67.7 76.6 81.2 71.6 523
✓ ✗ ✗ ✗ 69.0 (+1.3) 77.5 (+0.9) 81.9 (+0.7) 72.1 513
✓ ✓ ✗ ✗ 69.5 (+0.5) 78.1 (+0.6) 82.2 (+0.3) 72.5 497
✓ ✓ ✓ ✗ 70.2 (+0.7) 78.5 (+0.4) 82.9 (+0.7) 73.1 482
✓ ✓ ✓ ✓ 70.5 (+0.3) 78.7 (+0.2) 83.3 (+0.4) 73.4 462

4.3 Ablation Study
We conduct comprehensive ablation experiments on MOT17 and
MOTSynth val sets.

Component analysis. We conduct an ablation study on theMOT17
val set to assess the contribution of each proposed component on
our distance-aware tracking, as indicated in Table 4. SDHM is the
overall matching strategy comprising Score-based Hierarchizing
(SH) and Distance-based Hierarchizing (DH). SH notably enhances
comprehensive metrics (+1.3 HOTA, +0.9 MOTA), while DH further
improves performance (+0.5 HOTA, +0.6 MOTA). SLTA is a spe-
cific association scheme that includes Short-term Association (SA)
and Long-term Association (LA). SA considerably boosts association
capabilities (+0.7 IDF1, +0.6 AssA), while LA effectively resolves
re-association problems after extended occlusions (-20 IDs).

Analysis of distance estimators. We report Root Mean Squared
Error (RMSE) [18], 𝜏-Accuracy (𝛿) [40], and Average Localization
Precision (ALP) [45] as distance estimation evaluation metrics, as
shown in Table 5. The ST-Mamba has different bidirectional 3D
scans: a) Time-First, organizing spatial tokens by location then
stacking them frame by frame; b) Space-First, arranging temporal
tokens based on the frame then stacks along the spatial dimension;
c) Space-Time, a hybrid of both Space-First and Time-First. The
Space-First bidirectional scan is the most effective method which
is employed in MDE. The BUFF employs bidirectional fusion to
achieve multi-granularity extraction of spatiotemporal information.
The experimental results demonstrate that bidirectional fusion of-
fers advantages over both top-down and bottom-up fusion.

Table 5: Comparison of ST-Mamba and BUFF settings on the
MOTSynth val set.

Setting RMSE↓ 𝛿<1.25↑ ALP@0.5𝑚↑ ALP@1𝑚↑ ALP@2𝑚↑
Time-First 1.9 97.1% 49.2% 67.4% 88.2%
Space-Time 1.7 97.8% 49.9% 69.9% 89.8%
Top-Down 1.7 97.9% 52.8% 69.6% 89.7%
Down-Top 1.8 97.3% 51.7% 68.2% 88.9%
MDE 1.7 98.2% 53.4% 70.1% 90.2%
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Figure 5: Comparison of 𝑠 and 𝑠𝑜𝑐 in SH on the MOT17 val
set. It presents the statistical results of score distributions
for both negative and positive objects.

Analysis of SDHM. We perform detailed analyses on Score-based
Hierarchizing (SH) and Distance-based Hierarchizing (DH).

(i) Effect of SH. SH aims to separate negative and positive ob-
jects based on object scores, avoiding the generation of erroneous
associations. We introduce an Occlusion Compensation Score (𝑠𝑜𝑐 )
to counter the impact of occlusions on scoring, adjusted by ap-
proximate visibility ratios obtained from the distance order. By
randomly sampling 104 object samples, we statistically analyze the
distribution of both negative and positive object scores. The SH
threshold divides objects into low- and high-score subsets. The
error rate is the ratio of negative objects in the high-score subset to
the total negatives, or the ratio of positive objects in the high-score
subset to the total positives. Compared to the confidence score (𝑠)
directly provided by the detector, our 𝑠𝑜𝑐 plays an important role
in improving hierarchizing accuracy, as illustrated in Figure 5.
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Table 6: Comparison of DH settings on the MOT17 val set.

Setting HOTA↑ MOTA↑ IDF1↑ AssA↑ IDs↓
DH 69.5 78.1 82.2 72.5 497
DH w/ EN 69.4 (-0.1) 77.8 (-0.3) 82.1 72.4 502
DH w/ F→N 69.2 (-0.3) 77.7 (-0.4) 81.9 72.2 510
DH w/ L 69.1 (-0.4) 77.8 (-0.3) 82.2 72.2 512
DH w/ H+L 69.6 (+0.1) 77.9 (-0.2) 82.3 72.4 492
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Figure 6: Comparison of Kalman filter and IoU variants in
SA on the MOT17 val set.

(ii) Effect of DH. Integrating DH into the high-score subset of SH
aims for discrete and ordered matching in distance dimension. As
shown in Table 6, we explore several various DH settings. Switching
from equal-distance decomposition (ED) to equal-object-number
decomposition (EN) decreases performance slightly (-0.1 HOTA,
-0.3 MOTA). Matching from far to near (F→N) is obviously less
effective than near to far (N→F) (-0.3 HOTA, -0.4 MOTA). Using
DH in both high-score (H) and low-score (L) subsets shows essen-
tially equivalent performance (+0.1 HOTA, -0,2 MOTA), unlike its
negative impact when applied only in L (-0.4 HOTA, -0.3 MOTA).

Analysis of SLTA. We perform experimental analyses of Short-
term Association (SA) including Pseudo-3D Adaptive Kalman Filter
(AKF) and Distance-weighted IoU (DIoU), and Long-term Associa-
tion (LA) including Probabilistic Autoregressive Motion Model (PAM).

(i) Effect of SA. Our SA integrates AKF and DIoU for accurate
state estimation and track updates. AKF evolves from 2DKF [2] to
P3DKF, and utilizes distance for scaling prediction noise (SPN) and
update noise (SUN) with our 𝑠𝑜𝑐 , enabling adaptive noise adjust-
ments. As shown in Figure 6 (a), compared to 2DKF, AKF introduces
a distance dimension to state estimation, with SPN and SUN fur-
ther enhancing association performance (+0.4 HOTA, +0.7 AssA).
Furthermore, we develop a DIoU, integrating object-level distance
as a potential cue into the correlation calculation, outperforms IoU,
GIoU [30], SIoU [11], and HMIoU [41], as indicated in Figure 6 (b).

(ii) Effect of LA. Our LA tackles extreme occlusion, thereby allow-
ing up to 120 frames for object loss to demonstrate the capability
of handling long-term tracking, as shown in Table 7. We evalu-
ate a no-motion model (assuming the lost object remains static),
a linear model (i.e., AKF), and a nonlinear multimodal model (i.e.,
our PAM) for long-term identity retention. Compared to Static and
AKF, PAM remarkably addresses long-term occlusions by capturing
the randomness and multimodality of human motion. Additionally,
MA-Net’s consideration of neighboring object interactions boosts

Table 7: Comparison of LA methods on the MOT17 val set.

Setting HOTA↑ MOTA↑ IDF1↑ AssA↑ IDs↓
Static 66.4 75.6 79.3 72.1 575
AKF 69.5 77.3 82.1 72.8 518
PAM 70.5 78.7 83.4 73.4 462
PAM w/o MA 70.4 78.2 83.0 (-0.4) 73.3 472 (+10)
PAM w/o SPL 70.2 77.7 82.7 (-0.7) 73.0 485 (+23)

54.0

57.0

60.0

63.0

66.0

69.0

30 60 90 120 150

68.3

61.2 (-7.1)

55.8 (-10.7)

54.7 (-11.2)

61.3 (-5.2)
61.7 (-4.2)

65.7 (-2.6)

H
O

T
A

Occlusion Degree

55.0

59.0

63.0

67.0

71.0

1 3 6 10 15

70.5

66.2 (-4.3)
67.3
67.9

60.2 (-7.7)

55.7 (-11.6)

62.7 (-3.6)

64.2 (-3.7)

69.0 (-1.5)

H
O

T
A

Frame Sample Interval

66.5
65.9

ByteTrack
Hybrid
DLT
DLT w/o SDHM
DLT w/o SLTA

ByteTrack
Hybrid
DLT
DLT w/o SDHM
DLT w/o SLTA

(a) (b)

Figure 7: Comparison of the influence of occlusion degree
and low frame rate on the MOT17 val set.

association accuracy (+0.4 IDF1, -10 IDs). PAM also employs polyno-
mial sampling (SPL) to predict multiple potential movement areas,
outperforming the single top-1 area prediction (+0.7 IDF1, -23 IDs).

Extra evaluation of occlusion degree. MOT17 provides the visi-
bility ratio annotations of objects, and we consider those with a
visibility ratio below 0.3 as occluded. The occlusion degree can
be represented by the number of frames in which the occlusion
state persists. As the occlusion degree increases, DLT shows slower
declines (-7.1 HOTA) compared to ByteTrack [43] (-11.2 HOTA) and
Hybrid [41] (-10.7 HOTA), as indicated in Figure 7 (a).

Extra evaluation of low frame rates. At low frame rates, the im-
pact of occlusion is further magnified. We use a frame sample
operation for simulation as shown in Figure 7 (b). The performance
of ByteTrack [43] and Hybrid [41] declines rapidly with decreasing
frame rates (-11.6 HOTA and -7.7 HOTA), whereas DLT demon-
strates superior low-frame-rate stability (-4.3 HOTA). In addition,
SDHM and SLTA play obvious roles in performance retention.

5 Conclusion
In this paper, we propose an innovative “Detecting-Lifting-Tracking”
(DLT) framework for 2D MOT. We introduce a Mamba Distance
Estimator, incorporating historical information to mitigate tempo-
rary occlusions, achieving object-level pseudo-3D lifting. To realize
distance-aware tracking, we propose a Score-Distance Hierarchical
Matching strategy for discrete and sequential matching, along with
a Short-Long Terms Association scheme to address issues of dense
crowds in short-term associations between adjacent frames and
severe occlusions in long-term re-associations. Extensive bench-
mark validations and ablation studies demonstrate the superior
performance of our DLT, showcasing the enormous potential to
overcome occlusion challenges. We hope to inspire future research
to further explore enhancing 2D MOT tasks with 3D information.
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