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A Appendix: DIME Estimators

In this section, we provide a concrete list of DIME estimators obtained using three different
f -divergences. In particular, we maximize the value function defined in (5)

Jf (T ) = E(x,y)∼pXY (x,y)

[
T
(
x,y

)
− f∗

(
T
(
x, σ(y)

))]
,

over T or its transformation. By doing that, and using (7),

I(X;Y ) = IfDIME(X;Y ) = E(x,y)∼pXY (x,y)

[
log

((
f∗)′(T̂ (x,y)))],

we obtain a list of three different MI estimators. The list is used for both commenting on
the impact of the f function, referred to as the generator function, and for comparing the
estimators discussed in Sec. 2.

We consider the cases when f is the generator of:

a) the KL divergence;

b) the GAN divergence;

c) the Hellinger distance squared.

We report below the derived value functions and the mathematical expressions of the proposed
estimators.

A.1 KL divergence

The variational representation of the KL divergence (Nguyen et al., 2010) leads to the NWJ
estimator in (30) when f(u) = u log(u). However, since we are interested in extracting the
density ratio, we apply the transformation T (x) = log(D(x)). In this way, the lower bound
introduced in (5) reads as follows

JKL(D) = E(x,y)∼pXY (x,y)

[
log
(
D
(
x,y

))]
− E(x,y)∼pX(x)pY (y)

[
D
(
x,y

)]
+ 1, (21)

which has to be maximized over positive discriminators D(·). As remarked before, we do not
use JKL during the estimation, rather we define the KL-DIME estimator as

IKL−DIME(X;Y ) := E(x,y)∼pXY (x,y)

[
log

(
D̂(x,y)

)]
, (22)

due to the fact that

D̂(x,y) = argmax
D

JKL(D) =
pXY (x,y)

pX(x)pY (y)
. (23)

A.2 GAN divergence

Following a similar approach, it is possible to define f(u) = u log u− (u+1) log(u+1)+ log 4
and T (x) = log(1−D(x)). We derive from Theorem 1 the GAN-DIME estimator obtained
via maximization of

JGAN (D) = E(x,y)∼pXY (x,y)

[
log
(
1−D

(
x,y

))]
+E(x,y)∼pX(x)pY (y)

[
log
(
D
(
x,y

))]
+log(4).

(24)
In fact, at the equilibrium we recover (3), hence

IGAN−DIME(X;Y ) := E(x,y)∼pXY (x,y)

[
log

(
1− D̂(x,y)

D̂(x,y)

)]
. (25)
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A.3 Hellinger distance

The last example we consider is the generator of the Hellinger distance squared f(u) =
(
√
u − 1)2 with the change of variable T (x) = 1 −D(x). After simple manipulations, we

obtain the associated value function as

JHD(D) = 2− E(x,y)∼pXY (x,y)

[
D
(
x,y

)]
− E(x,y)∼pX(x)pY (y)

[
1

D(x,y)

]
, (26)

which is maximized for

D̂(x,y) = argmax
D

JHD(D) =

√
pX(x)pY (y)

pXY (x,y)
, (27)

leading to the HD-DIME estimator

IHD−DIME(X;Y ) := E(x,y)∼pXY (x,y)

[
log

(
1

D̂2(x,y)

)]
. (28)

Given that these estimators comprise only one expectation over the joint samples, their
variance has different properties compared to the variational ones requiring the partition
term such as MINE and NWJ.

B Appendix: Related Work Mutual Information Estimators

In this section, we provide a detailed description of the formulas of the MI estimators we
summarized in Section 2.

B.1 MINE

The Donsker-Varadhan dual representation of the KL divergence (Poole et al., 2019; Donsker
& Varadhan, 1983) produces an estimate of the MI using the bound optimized by the mutual
neural information estimator (MINE) (Belghazi et al., 2018)

IMINE(X;Y ) = sup
θ∈Θ

E(x,y)∼pXY (x,y)[Tθ(x,y)]− log(E(x,y)∼pX(x)pY (y)[e
Tθ(x,y)]), (29)

where θ ∈ Θ parameterizes a family of functions Tθ : X × Y → R through the use of a deep
neural network. However, the logarithm before the expectation in the second term renders
MINE a biased estimator. To avoid biased gradients, the authors in (Belghazi et al., 2018)
suggested to replace the partition function EpXpY

[eTθ ] with an exponential moving average
over mini-data-batches.

B.2 NWJ

Another variational lower bound is based on the KL divergence dual representation introduced
in (Nguyen et al., 2010) (also referred to as f -MINE in (Belghazi et al., 2018))

INWJ(X;Y ) = sup
θ∈Θ

E(x,y)∼pXY (x,y)[Tθ(x,y)]− E(x,y)∼pX(x)pY (y)[e
Tθ(x,y)−1]. (30)

Although for a fixed T MINE provides a tighter bound IMINE ≥ INWJ , the NWJ estimator
is unbiased.

B.3 SMILE

Both MINE and NWJ suffer from high-variance estimations and to combat such a limitation,
the SMILE estimator was introduced in (Song & Ermon, 2020). It is defined as

ISMILE(X;Y ) = sup
θ∈Θ

E(x,y)∼pXY (x,y)[Tθ(x,y)]−log(E(x,y)∼pX(x)pY (y)[clip(e
Tθ(x,y), e−τ , eτ )]),

(31)
where clip(v, l, u) = max(min(v, u), l) and it helps to obtain smoother partition functions
estimates. SMILE is equivalent to MINE in the limit τ → +∞.
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B.4 CPC

The MI estimator based on contrastive predictive coding (CPC) (van den Oord et al., 2018)
is defined as

ICPC(X;Y ) = E(x,y)∼pXY,N (x,y)

[
1

N

N∑
i=1

log

(
eTθ(xi,yi)

1
N

∑N
j=1 e

Tθ(xi,yj)

)]
, (32)

where N is the batch size and pXY,N denotes the joint distribution of N i.i.d. random
variables sampled from pXY . CPC provides low variance estimates but it is upper bounded
by logN , resulting in a biased estimator.

B.5 NJEE

The neural joint entropy estimator (NJEE) proposed in (Shalev et al., 2022) is based on
a classification task. Let Xm be the m-th component of X, with m ≤ d and N the batch
size. Xk is the vector containing the first k components of X. Let ĤN (X1) be the estimated
marginal entropy of the first components in X and let Gθm(Xm|Xm−1) be a neural network
classifier, where the input is Xm−1 and the label used is Xm. If CE(·) is the cross-entropy
function, then the MI estimator based on NJEE is defined as

INJEE(X;Y ) = ĤN (X1) +

d∑
m=2

CE(Gθm(Xm|Xm−1))−
d∑

m=1

CE(Gθm(Xm|Y,Xm−1)), (33)

where the first two terms of the RHS constitutes the NJEE entropy estimator.

C Appendix: Proofs of Lemmas and Theorems

C.1 Proof of Theorem 1

Theorem 1. Let (X,Y ) ∼ pXY (x,y) be a pair of random variables. Let σ(·) be a permutation
function such that pσ(Y )(σ(y)|x) = pY (y). Let f∗ be the Fenchel conjugate of f : R+ → R,
a convex lower semicontinuous function that satisfies f(1) = 0 with derivative f ′. If Jf (T )
is a value function defined as

Jf (T ) = E(x,y)∼pXY (x,y)

[
T
(
x,y

)
− f∗

(
T
(
x, σ(y)

))]
, (34)

then

T̂ (x,y) = argmax
T

Jf (T ) = f ′
(

pXY (x,y)

pX(x)pY (y)

)
, (35)

and

I(X;Y ) = IfDIME(X;Y ) = E(x,y)∼pXY (x,y)

[
log

((
f∗)′(T̂ (x,y)))]. (36)

Proof. From the hypothesis, the value function can be rewritten as

Jf (T ) = E(x,y)∼pXY (x,y)

[
T
(
x,y

)]
− E(x,y)∼pX(x)pY (y)

[
f∗
(
T
(
x,y

))]
. (37)

The thesis follows immediately from Lemma 1 of (Nguyen et al., 2010). Indeed, the f -
divergence Df can be expressed in terms of its lower bound via Fenchel convex duality

Df (P ||Q) ≥ sup
T∈R

{
Ex∼p(x)

[
T (x)

]
− Ex∼q(x)

[
f∗(T (x))]}, (38)

where T : X → R and f∗ is the Fenchel conjugate of f defined as

f∗(t) := sup
u∈R

{ut− f(u)}. (39)
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Therein, it was shown that the bound in (38) is tight for optimal values of T (x) and it takes
the following form

T̂ (x) = f ′
(
p(x)

q(x)

)
, (40)

where f ′ is the derivative of f .

The mutual information I(X;Y ) admits the KL divergence representation

I(X;Y ) = DKL(pXY ||pXpY ), (41)

and since the inverse of the derivative of f is the derivative of the conjugate f∗, the density
ratio can be rewritten in terms of the optimum discriminator T̂(

f ′)−1(
T̂ (x,y)

)
=
(
f∗)′(T̂ (x,y)) = pXY (x,y)

pX(x)pY (y)
. (42)

f -DIME finally reads as follows

IfDIME(X;Y ) = E(x,y)∼pXY (x,y)

[
log

((
f∗)′(T̂ (x,y)))]. (43)

C.2 Proof of Lemma 1

Lemma 1. Let the discriminator T (·) be with enough capacity, i.e., in the non parametric
limit. Consider the problem

T̂ = argmax
T

Jf (T ) (44)

where

Jf (T ) = E(x,y)∼pXY (x,y)

[
T
(
x,y

)]
− E(x,y)∼pX(x)pY (y)

[
f∗
(
T
(
x,y

))]
, (45)

and the update rule based on the gradient descent method

T (n+1) = T (n) + µ∇Jf (T
(n)). (46)

If the gradient descent method converges to the global optimum T̂ , the mutual information
estimator

I(X;Y ) = IfDIME(X;Y ) = E(x,y)∼pXY (x,y)

[
log

((
f∗)′(T̂ (x,y)))]. (47)

converges to the real value of the mutual information I(X;Y ).

Proof. For convenience of notation, let the instantaneous mutual information be the random
variable defined as

i(X;Y ) := log

(
pXY (x,y)

pX(x)pY (y)

)
. (48)

It is straightforward to notice that the MI corresponds to the expected value of i(X;Y )
over the joint distribution pXY . The solution to (44) is given by (6) of Theorem 1. Let

δ(n) = T̂ − T (n) be the displacement between the optimum discriminator T̂ and the obtained
one T (n) at the iteration n, then

în,fDIME(X;Y ) = log

((
f∗)′(T (n)(x,y)

))
= log

(
R(n)(x,y)

)
, (49)

where R(n)(x,y) represents the estimated density ratio at the n-th iteration and it is related

with the optimum ratio R̂(x,y) as follows

R̂−R(n) =
(
f∗)′(T̂ )− (f∗)′(T (n)

)
=
(
f∗)′(T̂ )− (f∗)′(T̂ − δ(n)

)
≃ δ(n) ·

[(
f∗)′′(T̂ − δ(n)

)]
, (50)
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where the last step follows from a first order Taylor expansion in T̂ − δ(n). Therefore,

în,fDIME(X;Y ) = log
(
R(n)

)
= log

((
R̂
)(

1− δ(n) ·
(
f∗)′′(T̂ − δ(n)

)(
f∗
)′(

T̂
) ))

= i(X;Y ) + log

(
1− δ(n) ·

(
f∗)′′(T̂ − δ(n)

)(
f∗
)′(

T̂
) )

. (51)

If the gradient descent method converges towards the optimum solution T̂ , δ(n) → 0 and

în,fDIME(X;Y ) ≃ i(X;Y )− δ(n) ·

[(
f∗)′′(T̂ − δ(n)

)(
f∗
)′(

T̂
) ]

≃ i(X;Y )− δ(n) ·

[(
f∗)′′(T̂ )(
f∗
)′(

T̂
) ]

= i(X;Y )− δ(n) ·

[
d

dT
log
((
f∗)′(T ))∣∣∣∣

T=T̂

]
, (52)

where the RHS is itself a first order Taylor expansion of the instantaneous mutual information
in T̂ . In the asymptotic limit (n → +∞), it holds also for the expected values that

|I(X;Y )− În,fDIME(X;Y )| → 0. (53)

C.3 Proof of Lemma 2

Lemma 2. Let R̂ = pXY (x,y)/(pX(x)pY (y)) and assume VarpXY
[log R̂] exists. Let pMXY

be the empirical distribution of M i.i.d. samples from pXY and let EpM
XY

denote the sample

average over pMXY . Then, under the randomness of the sampling procedure, it holds that

VarpXY

[
EpM

XY
[log R̂]

]
≤

4H2(pXY , pXpY )
∣∣∣∣R̂∣∣∣∣∞ − I2(X;Y )

M
(54)

where H2 is the Hellinger distance squared defined as

H2(p, q) =

∫
x

(√
p(x)−

√
q(x)

)2

dx, (55)

and the infinity norm is defined as ||f(x)||∞ := supx∈R |f(x)|.

Proof. Consider the variance of R̂(x,y) when (x,y) ∼ pXY (x,y), then

VarpXY
[log R̂] = EpXY

[(
log

pXY

pXpY

)2]
−
(
EpXY

[
log

pXY

pXpY

])2

. (56)

The power of the log-density ratio is upper bounded as follows (see the approach of Lemma
8.3 in (Ghosal et al., 2000))

EpXY

[(
log

pXY

pXpY

)2]
≤ 4H2(pXY , pXpY )

∣∣∣∣∣∣∣∣ pXY

pXpY

∣∣∣∣∣∣∣∣
∞
, (57)

while the mean squared is the ground-truth mutual information squared, thus

VarpXY
[log R̂] ≤ 4H2(pXY , pXpY )

∣∣∣∣∣∣∣∣ pXY

pXpY

∣∣∣∣∣∣∣∣
∞

− I2(X;Y ). (58)

Finally, the variance of the mean of M i.i.d. random variables yields the thesis

VarpXY

[
EpM

XY
[log R̂]

]
=

VarpXY
[log R̂]

M
≤

4H2(pXY , pXpY )

∣∣∣∣∣∣∣∣ pXY

pXpY

∣∣∣∣∣∣∣∣
∞

− I2(X;Y )

M
. (59)
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C.4 Proof of Lemma 3

Lemma 3. Let (xi,yi), ∀i ∈ {1, . . . , N}, be N data points. Let Jf (T ) be the value function
in (5). Let J π

f (T ) and J σ
f (T ) be numerical implementations of Jf (T ) using a random

permutation and a random derangement of y, respectively. Denote with K the number of
points yk, with k ∈ {1, . . . , N}, in the same position after the permutation (i.e., the fixed
points). Then

J π
f (T ) ≤ N −K

N
J σ
f (T ). (60)

Proof. Define J π
f (T ) as the Monte Carlo implementation of Jf (T ) when using the permuta-

tion function π(·)

J π
f (T ) =

1

N

N∑
i=1

T (xi,yi)−
1

N

N∑
i=1

f∗(T (xi,yj)
)
, (61)

where the pair (xi,yj) is obtained via a random permutation of the elements of y as j = π(i),
∀i ∈ {1, . . . , N}. Since K is a non-negative integer representing the number of fixed points
i = π(i), the value function can be rewritten as

J π
f (T ) =

1

N

N∑
i=1

T (xi,yi)−
1

N

K∑
i=1

f∗(T (xi,yi)
)
− 1

N

N−K∑
i=1

f∗(T (xi,yj ̸=i)
)
, (62)

which can also be expressed as

J π
f (T ) =

1

N

K∑
i=1

T (xi,yi)+
1

N

N−K∑
i=1

T (xi,yi)−
1

N

K∑
i=1

f∗(T (xi,yi)
)
− 1

N

N−K∑
i=1

f∗(T (xi,yj ̸=i)
)
.

(63)
In (63) it is possible to recognize that the second and last term of the RHS constitutes the
numerical implementation of Jf (T ) using a derangement strategy on N −K elements, so
that

J π
f (T ) =

1

N

K∑
i=1

T (xi,yi)−
1

N

K∑
i=1

f∗(T (xi,yi)
)
+

N −K

N
Jσ
f (T ). (64)

However, by definition of Fenchel conjugate

1

N

K∑
i=1

T (xi,yi)− f∗(T (xi,yi)
)
≤ 0, (65)

since for t = 1
u− f∗(u) ≤ u− (ut− f(t)) = f(1) = 0. (66)

Hence, we can conclude that

J π
f (T ) ≤ N −K

N
Jσ
f (T ). (67)

C.5 Proof of Lemma 4

Lemma 4. Let R̂ be the optimal density ratio and let X ∼ N (0, σ2
X) and N ∼ N (0, σ2

N ) be

uncorrelated scalar Gaussian random variables such that Y = X +N . Assume VarpXY
[log R̂]

exists. Let pMXY be the empirical distribution of M i.i.d. samples from pXY and let EpM
XY

denote the sample average over pMXY . Then, under the randomness of the sampling procedure,
it holds that

VarpXY

[
EpM

XY
[log R̂]

]
=

1− e−2I(X;Y )

M
. (68)
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Proof. From the hypothesis, the density ratio can be rewritten as R̂ = pN (y − x)/pY (y) and
the output variance is clearly equal to σ2

Y = σ2
X + σ2

N . Notice that this is equivalent of
having correlated random variables X and Y with correlation coefficient ρ, since it is enough

to study the case σX = ρ and σN =
√
1− ρ2.

It is easy to verify via simple calculations that

I(X;Y ) = EpXY
[log R̂]

= log
σY

σN
+ EpXY

[
y2

2σ2
Y

− (y − x)2

2σ2
N

]
= · · · = log

σY

σN
=

1

2
log

(
1 +

σ2
X

σ2
N

)
= −1

2
log
(
1− ρ2

)
. (69)

Similarly,

VarpXY

[
log R̂

]
= EpXY

[(
log

(
σY

σN

)
+

y2

2σ2
Y

− (y − x)2

2σ2
N

)2]
− I2(X;Y )

=
1

4
EpXY

[(
y − x

σN

)4

+

(
y

σY

)4

− 2

(
y

σY

)2(
y − x

σN

)2]
= · · · = Kurt[Z]

(
1

2
− σ2

N

2σ2
Y

)
− σ2

X

2σ2
Y

=
σ2
X

σ2
Y

= 1− σ2
N

σ2
Y

= 1− e−2I(X;Y ) = ρ2, (70)

where the last steps use the fact that the Kurtosis of a normal distribution is 3 and that the
mutual information can be expressed as in (69). Finally, the variance of the mean of M i.i.d.
random variables yields the thesis

VarpXY

[
EpM

XY
[log R̂]

]
=

VarpXY
[log R̂]

M
. (71)

If X and N are multivariate Gaussians with diagonal covariance matrices ρ2Id×d and
(1− ρ2)Id×d, the results for both the MI and variance in the scalar case are simply multiplied
by d.

C.6 Proof of Theorem 2

Theorem 2. Let the discriminator D(·) be with enough capacity. Let N be the batch size
and f be the generator of the KL divergence. Let J π

KL(D) be defined as

J π
KL(D) = E(x,y)∼pXY (x,y)

[
log

(
D
(
x,y

))
− f∗

(
log

(
D
(
x, π(y)

)))]
. (72)

Denote with K the number of indices in the same position after the permutation (i.e., the
fixed points), and with R(x,y) the density ratio in (2). Then,

D̂(x,y) = argmax
D

J π
KL(D) =

NR(x,y)

KR(x,y) +N −K
. (73)

Proof. The idea of the proof is to express J π
KL(D) via Monte Carlo approximation, in order

to rearrange fixed points, and then go back to Lebesgue integration. The value function
JKL(D) can be written as

JKL(D) = E(x,y)∼pXY (x,y)

[
log
(
D(x,y)

)]
− E(x,y)∼pX(x)pY (y)

[
D
(
x,y

)]
+ 1. (74)

Similarly to (62), we can express J π
KL(D) as

J π
KL(D) =

1

N

N∑
i=1

log
(
D(xi,yi)

)
− 1

N

K∑
i=1

D(xi,yi)−
1

N

N−K∑
i=1

D(xi,yj ̸=i) + 1, (75)
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where K is the number of fixed points of the permutation j = π(i),∀i ∈ {1, . . . , N}. However,
when N → ∞, we can use Lebesgue integration and rewrite (75) as

J π
KL(D) =

∫
x

∫
y

(
pXY (x,y) log

(
D(x,y)

)
− K

N
pXY (x,y)D(x,y)

)
dx dy

−
∫
x

∫
y

N −K

N
pX(x)pY (y)D(x,y) dx dy + 1. (76)

To maximize J π
KL(D), it is enough to take the derivative of the integrand with respect to D

and equate it to 0, yielding the following equation in D

pXY (x,y)

D(x,y)
− K

N
pXY (x,y)−

N −K

N
pX(x)pY (y) = 0. (77)

Solving for D leads to the thesis

D̂(x,y) =
NR(x,y)

KR(x,y) +N −K
, (78)

since J π
KL(D̂) is a maximum being the second derivative w.r.t. D a non-positive function.

C.7 Proof of Corollary 2.1

Corollary 2.1 (Permutation bound). Let KL-DIME be the estimator obtained via iterative
optimization of J π

KL(D), using a batch of size N every training step. Then,

IπKL−DIME := E(x,y)∼pXY (x,y)

[
log

(
D̂(x,y)

)]
< log(N). (79)

Proof. Theorem 2 implies that, when the batch size is much larger than the density ratio
(N >> R), then the discriminator’s output converges to the density ratio. Indeed,

lim
N→∞

D̂(x,y) = lim
N→∞

NR(x,y)

KR(x,y) +N −K
= R(x,y). (80)

Instead, when the density ratio is much larger than the batch size (R >> N), then the
discriminator’s output converges to a constant, in particular

lim
R→∞

D̂(x,y) = lim
R→∞

NR(x,y)

KR(x,y) +N −K
=

N

K
. (81)

However, from Lemma 5, it is true thatK = 1 on average. Therefore, an iterative optimization
algorithm leads to an upper-bounded discriminator, since

D̂(x,y) < N, (82)

which implies the thesis.

C.8 Proof of Lemma 5

Lemma 5 (see (Alon & Spencer, 2016)). The average number of fixed points in a random
permutation π(·) is equal to 1.

Proof. Let π(·) be a random permutation on {1, . . . , N}. Let the random variable X
represent the number of fixed points (i.e., the number of cycles of length 1) of π(·). We
define X = X1 +X2 + · · · +XN , where Xi = 1 when π(i) = i, and 0 otherwise. E[X] is
computed by exploiting the linearity property of expectation. Trivially,

E[Xi] = P[π(i) = i] =
1

N
, (83)

which implies

E[X] =

N∑
i=1

1

N
= 1. (84)
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D Appendix: Experimental Details

D.1 Multivariate Linear and Nonlinear Gaussians Experiments

The neural network architectures implemented for the linear and cubic Gaussian experiments
are: joint, separable, deranged, and the architecture of NJEE, referred to as ad hoc.

Joint architecture. The joint architecture is a feed-forward fully connected neural network
with an input size equal to twice the dimension of the samples distribution (2d), one output
neuron, and two hidden layers of 256 neurons each. The activation function utilized in each
layer (except from the last one) is ReLU. The number of realizations (x,y) fed as input of
the neural network for each training iteration is N2, obtained as all the combinations of the
samples x and y drawn from pXY (x,y).

Separable architecture. The separable architecture comprises two feed-forward neural
networks, each one with an input size equal to d, output layer containing 32 neurons and 2
hidden layers with 256 neurons each. The ReLU activation function is used in each layer
(except from the last one). The first network is fed in with N realizations of X, while the
second one with N realizations of Y .

Deranged architecture. The deranged architecture is a feed-forward fully connected neural
network with an input size equal to twice the dimension of the samples distribution (2d),
one output neuron, and two hidden layers of 256 neurons each. The activation function
utilized in each layer (except from the last one) is ReLU. The number of realizations (x,y)
the neural network is fed with is 2N for each training iteration: N realizations drawn from
pXY (x,y) and N realizations drawn from pX(x)pY (y) using the derangement procedure
described in Sec. 5.
The architecture deranged is not used for ICPC because in (32) the summation at the
denominator of the argument of the logarithm would require neural network predictions
corresponding to the inputs (xi,yj), ∀i, j ∈ {1, . . . , N} with i ̸= j.

Ad hoc architecture. The NJEE MI estimator comprises 2d − 1 feed-forward neural
networks. Each neural network is composed by an input layer with size between 1 and 2d− 1,
an output layer containing N − k neurons, with k ∈ N small, and 2 hidden layers with 256
neurons each. The ReLU activation function is used in each layer (except from the last one).
We implemented a Pytorch (Paszke et al., 2016) version of the code produced by the authors
of (Shalev et al., 2022) 2, to unify NJEE with all the other MI estimators.

Each neural estimator is trained using Adam optimizer (Kingma & Ba, 2014), with learning
rate 5× 10−4, β1 = 0.9, β2 = 0.999. The batch size is initially set to N = 64.
For the Gaussian setting, we sample a 20-dimensional Gaussian distribution to obtain x
and n samples, independently. Then, we compute y as linear combination of x and n:

y = ρx +
√
1− ρ2 n, where ρ is the correlation coefficient. For the cubic setting, the

nonlinear transformation y 7→ y3 is applied to the Gaussian samples. During the training
procedure, every 4k iterations, the target value of the MI is increased by 2 nats, for 5 times,
obtaining a target staircase with 5 steps. The change in target MI is obtained by increasing
ρ, that affects the true MI according to

I(X;Y ) = −d

2
log(1− ρ2). (85)

D.1.1 Supplementary Analysis of the MI Estimators Performance

Additional plots reporting the MI estimates obtained from MINE, NWJ, and SMILE with
τ = ∞, are outlined in Fig. 6. The variance attained by these algorithms exponentially
increases as the true MI grows, as stated in (11).

We report in Fig. 7 the behavior we obtained for ISMILE when the training of the neural
network is performed by using the cost function in (31). The training diverges during the
first steps when τ = 1 and τ = 5. Differently, when τ = ∞, ISMILE corresponds to IMINE

(without the moving average improvement), therefore the MI estimate does not diverge.

2https://github.com/YuvalShalev/NJEE
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Figure 6: NWJ, SMILE (τ = ∞), and MINE MI estimation comparison with d = 20 and
N = 64. The Gaussian setting is represented in the top row, while the cubic setting is shown
in the bottom row.

Interestingly, by comparing ISMILE (τ = ∞) trained with the JS divergence and with the
MINE cost function (in Fig. 6 and Fig. 7, respectively), the variance of the latter case is
significantly higher. Hence, the JS maximization trick seems to have an impact in lowering
the estimator variance.

D.1.2 Analysis for Different Values of d and N

The class of f -DIME estimators is robust to changes in d and N , as the estimators’ variance
decreases (see (68) and Fig. 11) when N increases and their achieved bias is not significantly
influenced by the choice of d. Differently, INJEE and ICPC are highly affected by variations
of those parameters, as described in Fig. 3 and Fig. 4. More precisely, ICPC is not strongly
influenced by a change of d, but the bias significantly increases as the batch size diminishes,
since the upper bound lowers. INJEE achieves a higher bias both when d decreases and
when N increases w.r.t. the default values d = 20, N = 64. In addition, when d is large, the
training of INJEE is not feasible, as it requires a lot of time (see Fig. 5) and memory (as a
consequence of the large number of neural networks utilized) requirements.

We show the achieved bias, variance, and mean squared error (MSE) corresponding to the
three settings reported in Fig. 2, 3, and 4 in Fig. 8, 9, and 10, respectively. The achieved
variance is bounded when the estimator used is IKL−DIME or ICPC . In particular, Figures
8, 9, 10, and 11 demonstrate that IKL−DIME satisfies Lemma ??.
Additionally, we report the achieved bias, variance and MSE when d = 20 and N varies
according to Tab. 1. We use the notation N = [512, 1024] to indicate that each cell of the
table reports the values corresponding to N = 512 and N = 1024, with this specific order,
inside the brackets. Similarly, we show the attained bias, variance, and MSE for d = [5, 10]
and N = 64 in Tab. 3. The achieved bias, variance and MSE shown in Tab. 1 and Tab.
3 motivate that the class of f -DIME estimators attains the best values for bias and MSE.
Similarly, IKL−DIME obtains the lowest variance, when excluding ICPC from the estimators
comparison (ICPC should not be desirable as it is upper bounded). The illustrated results
are obtained with the joint architecture (except for NJEE) because, when the batch size
is small, such an architecture achieves slightly better results than the deranged one, as it
approximates the expectation over the product of marginals with more samples.
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(a) τ = 1 (b) τ = 5 (c) τ = ∞

Figure 7: ISMILE behavior for different values of τ , when the JS divergence is not used to
train the neural network. The Gaussian case is reported in the top row, while the cubic case
is reported in the bottom row.

Figure 8: Bias, variance, and MSE comparison between estimators, using the joint architecture
for the Gaussian case with d = 20 and N = 64.

The variance of the f -DIME estimators achieved in the Gaussian setting when N ranges
from 64 to 1024 is reported in Fig. 11. The behavior shown in such a figure demonstrates
what is stated in Lemma ??, i.e., the variance of the f -DIME estimators varies as 1

N .

Figure 9: Bias, variance, and MSE comparison between estimators, using the joint architecture
for the Gaussian case with d = 5 and N = 64.
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Figure 10: Bias, variance, and MSE comparison between estimators, using the joint architec-
ture for the Gaussian case with d = 20 and N = 1024.

Figure 11: Variance of the f -DIME estimators corresponding to different values of batch
size.
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Table 1: Bias (B), variance (V), and MSE (M) of the MI estimators using the joint architecture,
when d = 20 and N = [512, 1024], for the Gaussian setting. Each f -DIME estimator is
abbreviated to f -D.

Gaussian
MI 2 4 6 8 10

NJEE [0.42, 0.44] [0.40, 0.42] [0.37, 0.41] [0.34, 0.40] [0.32, 0.38]
SMILE [0.25, 0.27] [0.48, 0.51] [0.64, 0.67] [0.74, 0.73] [0.86, 0.83]

B GAN-D [0.11, 0.09] [0.15, 0.13] [0.16, 0.12] [0.14, 0.04] [0.01, 0.16]
HD-D [0.08, 0.07] [0.15, 0.12] [0.24, 0.20] [0.37, 0.30] [0.47, 0.43]
KL-D [0.07, 0.06] [0.12, 0.10] [0.21, 0.17] [0.38, 0.31] [0.69, 0.56]
CPC [0.08, 0.05] [0.34, 0.23] [1.07, 0.80] [2.32, 1.87] [3.96, 3.37]
NJEE [0.01, 0.00] [0.01, 0.01] [0.02, 0.01] [0.02, 0.01] [0.02, 0.01]
SMILE [0.01, 0.01] [0.03, 0.02] [0.06, 0.03] [0.11, 0.07] [0.17, 0.11]

V GAN-D [0.01, 0.01] [0.03, 0.02] [0.06, 0.04] [0.11, 0.07] [0.17, 0.12]
HD-D [0.01, 0.01] [0.03, 0.02] [0.05, 0.04] [0.07, 0.06] [0.09, 0.08]
KL-D [0.01, 0.01] [0.01, 0.01] [0.02, 0.01] [0.02, 0.01] [0.02, 0.01]
CPC [0.01, 0.00] [0.01, 0.00] [0.01, 0.00] [0.00, 0.00] [0.00, 0.00]
NJEE [0.18, 0.20] [0.18, 0.18] [0.16, 0.18] [0.14, 0.17] [0.12, 0.16]
SMILE [0.08, 0.08] [0.26, 0.28] [0.47, 0.48] [0.66, 0.61] [0.90, 0.80]

M GAN-D [0.03, 0.02] [0.05, 0.04] [0.09, 0.05] [0.13, 0.08] [0.18, 0.15]
HD-D [0.02, 0.01] [0.05, 0.04] [0.11, 0.08] [0.21, 0.15] [0.31, 0.26]
KL-D [0.01, 0.01] [0.03, 0.02] [0.06, 0.04] [0.17, 0.11] [0.49, 0.33]
CPC [0.01, 0.01] [0.13, 0.06] [1.16, 0.64] [5.38, 3.48] [15.67, 11.38]

Table 2: Bias (B), variance (V), and MSE (M) of the MI estimators using the joint architecture,
when d = [5, 10] and N = [64], for the Gaussian setting. Each f -DIME estimator is
abbreviated to f -D.

Gaussian
MI 2 4 6 8 10

NJEE [0.30, 0.29] [0.03, 0.13] [0.46, 0.06] [1.23, 0.38] [2.35, 0.80]
SMILE [0.29, 0.24] [0.61, 0.52] [0.76, 0.68] [0.85, 0.71] [0.96, 0.68]

B GAN-D [0.06, 0.12] [0.09, 0.17] [0.14, 0.17] [0.06, 0.20] [0.30, 0.18]
HD-D [0.04, 0.09] [0.09, 0.14] [0.15, 0.22] [0.28, 0.39] [0.53, 0.40]
KL-D [0.04, 0.07] [0.09, 0.13] [0.19, 0.30] [0.40, 0.58] [0.93, 1.05]
CPC [0.17, 0.20] [0.80, 0.89] [2.10, 2.20] [3.89, 3.93] [5.85, 5.86]
NJEE [0.04, 0.05] [0.06, 0.08] [0.09, 0.10] [0.15, 0.13] [0.27, 0.13]
SMILE [0.06, 0.06] [0.09, 0.13] [0.12, 0.20] [0.23, 0.32] [0.46, 0.46]

V GAN-D [0.05, 0.06] [0.08, 0.12] [0.13, 0.19] [0.24, 0.30] [0.69, 0.52]
HD-D [0.05, 0.06] [0.08, 0.11] [0.12, 0.16] [0.20, 0.24] [0.57, 0.49]
KL-D [0.04, 0.05] [0.06, 0.08] [0.06, 0.10] [0.06, 0.10] [0.06, 0.10]
CPC [0.03, 0.04] [0.02, 0.03] [0.01, 0.01] [0.00, 0.00] [0.00, 0.00]
NJEE [0.13, 0.13] [0.06, 0.09] [0.30, 0.10] [1.66, 0.28] [5.78, 0.76]
SMILE [0.14, 0.11] [0.46, 0.40] [0.70, 0.66] [0.95, 0.83] [1.37, 0.93]

M GAN-D [0.06, 0.08] [0.09, 0.15] [0.15, 0.22] [0.24, 0.34] [0.78, 0.55]
HD-D [0.05, 0.07] [0.09, 0.13] [0.15, 0.21] [0.28, 0.40] [0.86, 0.65]
KL-D [0.04, 0.06] [0.07, 0.10] [0.10, 0.19] [0.22, 0.44] [0.92, 1.20]
CPC [0.06, 0.08] [0.67, 0.83] [4.42, 4.84] [15.14, 15.45] [34.22, 34.32]
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Table 3: Bias (B), variance (V), and MSE (M) of the MI estimators using the joint architecture,
when d = [5, 10] and N = [64], for the Gaussian setting. Each f -DIME estimator is
abbreviated to f -D.

Gaussian
MI 2 4 6 8 10

NJEE 0.29 0.18 0.01 0.17 0.37
SMILE 0.18 0.37 0.44 0.50 0.52

B GAN-D 0.17 0.27 0.35 0.34 0.26
HD-D 0.16 0.28 0.43 0.61 0.73
KL-D 0.13 0.25 0.48 0.87 1.44
CPC 0.25 0.98 2.29 3.99 5.88
NJEE 0.06 0.10 0.13 0.17 0.16
SMILE 0.05 0.11 0.18 0.30 0.51

V GAN-D 0.06 0.11 0.19 0.32 0.55
HD-D 0.06 0.11 0.20 0.29 0.43
KL-D 0.05 0.09 0.11 0.12 0.11
CPC 0.04 0.03 0.01 0.00 0.00
NJEE 0.14 0.14 0.13 0.20 0.30
SMILE 0.09 0.25 0.38 0.55 0.79

M GAN-D 0.09 0.19 0.31 0.43 0.62
HD-D 0.09 0.19 0.39 0.66 0.96
KL-D 0.07 0.15 0.34 0.87 2.19
CPC 0.10 0.99 5.25 15.89 34.57

The class f -DIME is able to estimate the MI for high-dimensional distributions, as shown
in Fig. 12, where d = 100. In that figure, the estimates behavior is obtained by using the
simple architectures described in Sec. D.1 of the Appendix. Thus, the input size of these
neural networks (200) is comparable with the number of neurons in the hidden layers (256).
Therefore, the estimates could be improved by increasing the number of hidden layers and
neurons per layer. The graphs in Fig. 12 illustrate the advantage of the architecture deranged
over the separable one.

D.1.3 Considerations on Derangements

To facilitate the understanding of the role of derangements during training, we provide a
practical example in the following.

Suppose for simplicity that N = 3. Then, a random permutation of y = [y1, y2, y3] can be
[y2, y3, y1], where the number of fixed points is K = 0 as no elements remain in the same
position after the permutation. However, another permutation of y is [y1, y3, y2]. In this
case, it is evident that y1 remains in the same initial position, and the number of fixed
points is K = 1. A random derangement of y = [y1, y2, y3], instead, ensures by definition
that no element of y ends up in the same initial position, contrarily from a naive random
permutation. This idea is essential to avoid having shuffled marginal samples that actually
are realizations of the joint distribution. In fact, we proved that a random permutation
strategy would lead to a biased estimator (see the permutation bound in Corollary 2.1).

D.1.4 Time Complexity Analysis

The computational time analysis is developed on a server with CPU ”AMD Ryzen Thread-
ripper 3960X 24-Core Processor” and GPU ”MSI GeForce RTX 3090 Gaming X Trio 24G,
24GB GDDR6X”.
Before analyzing the time requirements to complete the 5-step MI staircases, we specify two
different ways to implement the derangement of the y realizations in each batch:
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Figure 12: MI estimates when d = 100 and N = 64. The Gaussian setting is represented in
the top row, while the cubic setting is shown in the bottom row.

Figure 13: Comparison between the time requirements to complete the 5-step staircases for
the architectures separable, deranged with random-based derangement, and deranged with
shift-based derangement.
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Table 4: Summary of the MI estimators.

Estimator
Low MI High MI

Scalability
Bias Variance Bias Variance

IKL−DIME ✓✓ ✓✓ ∼ ✓✓ ✓✓
IHD−DIME ✓✓ ✓✓ ✓ ✓ ✓✓
IGAN−DIME ✓✓ ✓✓ ✓✓ ✓ ✓✓

ISMILE(τ = 1) ✓ ✓✓ ✓ ✓ ✓✓
INJEE ✓ ✓✓ ✓ ✓✓ ✗
ICPC ∼ ✓✓ ✗ ✓✓ ✗

ISMILE(τ = ∞) ✓ ∼ ✓ ✗ ✓✓
IMINE ✓ ✗ ✗ ✗ ✓✓
INWJ ✓ ✗ ✗ ✗ ✓✓

• Random-based. The trivial way to achieve the derangement is to randomly shuffle
the elements of the batch until there are no fixed points (i.e., all the y realizations
in the batch are assigned to a different position w.r.t. the starting location).

• Shift-based. GivenN realizations (xi,yi) drawn from pXY (x,y), for i ∈ {1, . . . , N},
we obtain the deranged samples as (xi,y(i+1)%N ), where ”%” is the modulo operator.

Although the MI estimates obtained by the two derangement methods are almost indistin-
guishable, all the results shown in the paper are achieved by using the random-based method.
We additionally demonstrate the time efficiency of the shift-based approach.

We show in Fig. 5 that the architectures deranged and separable are significantly faster w.r.t.
joint and NJEE ones, for a given batch size N and input distribution size d.
However, Fig. 5 exhibits no difference between the deranged and separable architectures. Fig.
13 illustrates a detailed representation of the time requirements of these two architectures to
complete the 5-step stairs presented in Sec. 6. As N increases, the gap between the time
needed by the architectures deranged and separable grows, demonstrating that the former is
the fastest. For example, when d = 20 and N = 30k, IGAN−DIME needs about 55 minutes
when using the architecture separable, but only 15 minutes when using the deranged one and
less than 9 minutes for the shift-based deranged architecture.

D.1.5 Summary of the Estimators

We give an insight on how to choose the best estimator in Tab. 4, depending on the desired
specifics. We assign qualitative grades to each estimator over different performance indicators.
All the indicators names are self-explanatory, except from scalability, which describes the
capability of the estimator to obtain precise estimates when d and N vary from the default
values (d = 20 and N = 64). The grades ranking is, from highest to lowest: ✓✓, ✓, ∼, ✗.
When more than one architecture is available for a specific estimator, the grade is assigned
by considering the best architecture within that particular case.
Even though the estimator choice could depend on the specific problem, we consider
IGAN−DIME to be the best one. The rationale behind this decision is that IGAN−DIME

achieves the best performance for almost all the indicators and lacks weaknesses. Differ-
ently, ICPC estimate is upper bounded, ISMILE achieves slightly higher bias, and INJEE is
strongly d and N dependent. However, if the considered problem requires the estimation of
a low-valued MI, IKL−DIME is slightly more accurate than IGAN−DIME .

One limitation of this paper is that the set of f -divergences analyzed is restricted to three
elements. Thus, probably there exists a more effective f -divergence which is not analyzed in
this paper.
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D.2 Self-Consistency Tests

The benchmark considered for the self-consistency tests is similar to the one applied in prior
work (Song & Ermon, 2020). We use the images collected in MNIST (LeCun et al., 1998) and
FashionMNIST (Xiao et al., 2017) data sets. Here, we test three properties of MI estimators
over images distributions, where the MI is not known, but the estimators consistency can be
tested:

1. Baseline. X is an image, Y is the same image masked in such a way to show only
the top t rows. The value of Î(X;Y ) should be non-decreasing in t, and for t = 0
the estimate should be equal to 0, since X and Y would be independent. Thus,
the ratio Î(X;Y )/Î(X;X) should be monotonically increasing, starting from 0 and
converging to 1.

2. Data-processing. X̄ is a pair of identical images, Ȳ is a pair containing the same
images masked with two different values of t. We set h(Y ) to be an additional masking

of Y of 3 rows. The estimated MI should satisfy Î([X,X]; [Y, h(Y )])/Î(X;Y ) ≈ 1,
since including further processing should not add information.

3. Additivity. X̄ is a pair of two independent images, Ȳ is a pair containing the
masked versions (with equal t values) of those images. The estimated MI should

satisfy Î([X1, X2]; [Y1, Y2])/Î(X;Y ) ≈ 2, since the realizations of the X and Y
random variables are drawn independently.

These tests are developed for IfDIME , ICPC , and ISMILE . Differently, INJEE training
is not feasible, since by construction 2d − 1 models should be created, with d = 784 (the
gray-scale image shape is 28× 28 pixels). The neural network architecture used for these
tests is referred to as conv.

Conv. It is composed by two convolutional layers and one fully connected. The first
convolutional layer has 64 output channels and convolves the input images with (5 × 5)
kernels, stride 2px and padding 2px. The second convolutional layer has 128 output channels,
kernels of shape (5× 5), stride 2 px and padding 2 px. The fully connected layer contains
1024 neurons. ReLU activation functions are used in each layer (except from the last one).
The input data are concatenated along the channel dimension. We set the batch size equal
to 256.

The comparison between the MI estimators for varying values of t is reported in Fig. 14,
15, and 16. The behavior of all the estimators is evaluated for various random seeds.
These results highlight that almost all the analyzed estimators satisfy the first two tests
(IHD−DIME is slightly unstable), while none of them is capable of fulfilling the additivity
criterion. Nevertheless, this does not exclude the existence of an f -divergence capable to
satisfy all the tests.
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(a) Baseline property, MNIST digits data set. (b) Baseline property, FashionMNIST data set.

Figure 14: Comparison between different estimators for the baseline property, using MNIST
data set on the left and FashionMNIST on the right.

(a) Data processing property, MNIST digits data
set.

(b) Data processing property, FashionMNIST data
set.

Figure 15: Comparison between different estimators for the data processing property, using
MNIST data set on the left and FashionMNIST on the right.

(a) Additivity property, MNIST digits data set. (b) Additivity property, FashionMNIST data set.

Figure 16: Comparison between different estimators for the additivity property, using MNIST
data set on the left and FashionMNIST on the right.
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