A Appendix

We present proofs omitted from the main text here.

Lemma 1. Let m € N. Then, there exists a hypothesis class H C Y% such that for any learning
rule A : U2 (X x V)™ — H, there exists a distribution D over X x Y such that:

1. There exists a function f* € H with Ry (f*;D) = 0.

2. With probability of at least 1/7 over the choice of S ~ D™ we have that Ry (A(S); D) > 1/8.

Proof. The proof follows from Lemma 3 in [[13]. We construct Hy as follow. Pick 3m points
T1,..., T3y in X such that for all 4, j € [3m],U(x;) NU(x;) = 0. For each b € {0,1}3™, we
construct a set Zy, : Initialize Z, = (), for each ¢ € [3m)], if b; = 1 then pick a point z € U(x;) such
that z ¢ 2 for each b’ # b, and add it to Z,. Let hy, : X — Y be a hypothesis such that hy(z) = 1
if and only if x ¢ Z,. Then, Ho = {hy : b € {0,1}*™}. Consider a subset of Ho:

3m
HE{hy € Moy bi=m}
i=1
and a family of distributions ® £ {D;,..., Dy}, where T = (gz) and D; is uniform over only 2m
points in {(x1,1),..., (23m,1)} 2 C foreachi = 1,...,T. For every distribution D;, there exists

a classifier h* € H such that Ry (h*; D;) = 0. We now prove that there exists a distribution D, such
that

E swpm [Ru(A(S); Dy)] >

N

To show this, we pick an arbitrary sequence S C C' with size m. Denote by Es the event that
S C supp(D;), where D; is a randomly picked distribution from ©. We first lower bound the
expected robust loss of the classifier that rule A outputs, namely A(S), given the event Eg,

E p,[Ru(A(S); Di)|Es] = Ep, |E (4 y)~D, [ sulz )]l[A(S)(a:’) “yl||Es|. 7
' eU(x
By law of total probability, we have
E(zyy~p, | sup L[A(S)(z) # y]]
' €U (x)
(®)
2P (4 )~ [E(z,)2S|E (,9)~D: [ SelbllI() )I[A(S)(xl) # y]|E(x7y)¢S‘| :
Since |S| = m, and D; is uniform over its support of size 2m,
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Plug[8]and [0]into[7,we have

1
E p, [Ru(A(S); Di)| Es] = 5Ep, Es

' eU(x)

E (2,4)~D: l sup L[A(S)(2") # Y)|E,p)¢s

Since A(S) € H, by construction of , there are at least m points in C' where A(S) is not robustly
correct. Hence we can unroll the expectation over D; as follows
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where step (i) use the fact that E p, [1 ;) esupp(p,) | Es] = %, since for every (z,y) ¢ S, there are
exactly half of the distributions in {D € ©|Es} whose supports contain (z, y). And in step (ii), for
every point (z,y) ¢ S, we have sup, ¢y () L[A(S)(2") # y] = 1.

Thus it follows bythat E p, [Ru(A(S); D;)|Es] > . By law of total expectation,

1

Ep, [Es~pm[Ru(A(S); D;i)]] = Esp, [Ep,[Ru(A(S): D;)|Es]] > 1

This implies that there exists 7 € [3m] such that E spm [Ry(A(S); D,)] > 1. By Markov’s
inequality,

Es~pp [Fu(A(S); Dr)] — (1 -17/8)
7/8
which completes the proof. O

Ps~pp [Ru(A(S);Dr) > 1-7/8] >

1
>77
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Proposition 1. Let H C Y% be a hypothesis class and let H be the corrupted set of hypotheses
induced by perturbation U. Then we have

Proof. Obviously dg(H) > d%(H) by definition. We now prove dg(H) < d4(H), that is, let
S ={x1,...,2,} C X be G-shattered by #, S is also adversarially G-shattered by H. Suppose
f: X — Y is the function that witnesses the adversarial G-shattering of 7{. For each 1 < i < n,
() if f(x;) = y; € Y, then § € H, §(x;) = y; implies that g(2') = y;, V2’ € U(x;) and §(;) # y;
implies that g(z') # y;, V2’ € U(x;) or g(x;) =L . Both cases imply that 32’ € U(x;), g(a') #
f(x;). Gi)if f(x;) =L, then g(z;) =L means 3z’ € U(x;),g(z’) # f(x;) and §(z;) #L means
g(x;) = y; for some y; € Y, which implies g(z') = y;,Va' € U(x;). In this case H G-shatters S
|iloincides with the definition of H adversarially G-shatters .S by replacing T = S\T' in DeﬁnitioE]l
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