
A Appendix

We present proofs omitted from the main text here.

Lemma 1. Let m ∈ N. Then, there exists a hypothesis class H ⊂ YX such that for any learning
rule A : ∪∞

n=0(X × Y)n → H, there exists a distribution D over X × Y such that:
1. There exists a function f∗ ∈ H with RU (f

∗;D) = 0.
2. With probability of at least 1/7 over the choice of S ∼ Dm we have that RU (A(S);D) ≥ 1/8.

Proof. The proof follows from Lemma 3 in [13]. We construct H0 as follow. Pick 3m points
x1, . . . , x3m in X such that for all i, j ∈ [3m],U(xi) ∩ U(xj) = ∅. For each b ∈ {0, 1}3m, we
construct a set Zb : Initialize Zb = ∅, for each i ∈ [3m], if bi = 1 then pick a point z ∈ U(xi) such
that z /∈ Zb′ for each b′ ̸= b, and add it to Zb. Let hb : X → Y be a hypothesis such that hb(x) = 1
if and only if x /∈ Zb. Then, H0 = {hb : b ∈ {0, 1}3m}. Consider a subset of H0:

H ≜ {hb ∈ H0 :

3m∑
i=1

bi = m}

and a family of distributions D ≜ {D1, . . . ,DT }, where T =
(
3m
2m

)
and Di is uniform over only 2m

points in {(x1, 1), . . . , (x3m, 1)} ≜ C for each i = 1, . . . , T. For every distribution Di, there exists
a classifier h∗ ∈ H such that RU (h

∗;Di) = 0. We now prove that there exists a distribution Dr such
that

E S∼Dm
r
[RU (A(S);Dr)] ≥

1

4
.

To show this, we pick an arbitrary sequence S ⊂ C with size m. Denote by ES the event that
S ⊂ supp(Dj), where Dj is a randomly picked distribution from D. We first lower bound the
expected robust loss of the classifier that rule A outputs, namely A(S), given the event ES ,

EDi
[RU (A(S);Di)|ES ] = EDi

[
E (x,y)∼Di

[
sup

x′∈U(x)

1[A(S)(x′) ̸= y]

]∣∣∣∣∣ES

]
. (7)

By law of total probability, we have

E (x,y)∼Di

[
sup

x′∈U(x)

1[A(S)(x′) ̸= y]

]

≥P(x,y)∼Di
[E(x,y)/∈S ]E (x,y)∼Di

[
sup

x′∈U(x)

1[A(S)(x′) ̸= y]|E(x,y)/∈S

]
.

(8)

Since |S| = m, and Di is uniform over its support of size 2m,

P(x,y)∼Di
[E(x,y)/∈S ] ≥

1

2
. (9)

Plug 8 and 9 into 7,we have

EDi
[RU (A(S);Di)|ES ] ≥

1

2
EDi

[
E (x,y)∼Di

[
sup

x′∈U(x)

1[A(S)(x′) ̸= y]|E(x,y)/∈S

] ∣∣∣∣∣ES

]
.

Since A(S) ∈ H, by construction of H, there are at least m points in C where A(S) is not robustly
correct. Hence we can unroll the expectation over Di as follows

EDi

[
E (x,y)∼Di

[
sup

x′∈U(x)

1[A(S)(x′) ̸= y]|E(x,y)/∈S

] ∣∣∣∣∣ES

]

≥ 1

m

∑
(x,y)/∈S

EDi
[1(x,y)∈supp(Di)|ES ] sup

x′∈U(x)

1[A(S)(x′) ̸= y]

(i)

≥ 1

m

∑
(x,y)/∈S

1

2
sup

x′∈U(x)

1[A(S)(x′) ̸= y]
(ii)

≥ 1

2
,

(10)
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where step (i) use the fact that EDi [1(x,y)∈supp(Di)|ES ] =
1
2 , since for every (x, y) /∈ S, there are

exactly half of the distributions in {D ∈ D|ES} whose supports contain (x, y). And in step (ii), for
every point (x, y) /∈ S, we have supx′∈U(x) 1[A(S)(x′) ̸= y] = 1.

Thus it follows by 10 that EDi [RU (A(S);Di)|ES ] ≥ 1
4 . By law of total expectation,

EDi

[
E S∼Dm

i
[RU (A(S);Di)]

]
= E S∼Di

[EDi
[RU (A(S);Di)|ES ]] ≥

1

4
.

This implies that there exists r ∈ [3m] such that E S∼Dm
r
[RU (A(S);Dr)] ≥ 1

4 . By Markov’s
inequality,

PS∼Dm
r
[RU (A(S);Dr) > 1− 7/8] ≥

ES∼Dm
r
[RU (A(S);Dr)]− (1− 7/8)

7/8
≥ 1

7
,

which completes the proof.

Proposition 1. Let H ⊂ YX be a hypothesis class and let H̃ be the corrupted set of hypotheses
induced by perturbation U . Then we have

dG(H̃) = dUG(H).

Proof. Obviously dG(H̃) ≥ dUG(H) by definition. We now prove dG(H̃) ≤ dUG(H), that is, let
S = {x1, . . . , xn} ⊂ X be G-shattered by H̃, S is also adversarially G-shattered by H. Suppose
f : X → Ỹ is the function that witnesses the adversarial G-shattering of H̃. For each 1 ≤ i ≤ n,
(i) if f(xi) = yi ∈ Y, then g̃ ∈ H̃, g̃(xi) = yi implies that g(x′) = yi,∀x′ ∈ U(xi) and g̃(xi) ̸= yi
implies that g(x′) ̸= yi,∀x′ ∈ U(xi) or g̃(xi) =⊥ . Both cases imply that ∃x′ ∈ U(xi), g(x

′) ̸=
f(xi). (ii) if f(xi) =⊥, then g̃(xi) =⊥ means ∃x′ ∈ U(xi), g(x

′) ̸= f(xi) and g̃(xi) ̸=⊥ means
g̃(xi) = yi for some yi ∈ Y, which implies g(x′) = yi,∀x′ ∈ U(xi). In this case H̃ G-shatters S
coincides with the definition of H adversarially G-shatters S by replacing T = S\T in Definition
4.
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