
A Proofs

Proof of Theorem 3.1. Recall that we denote the true label function as y⇤. First, we show the upper
bound. By the assumption that ↵ < 1, we have that for all o 2 O, the signs of the expected
classification ō and correct classification y⇤(o) match, so that ↵ � ô = |y⇤(o)� ō| = 1� |ō|. Then
for all o 2 O,

`(ō, y⇤(o)) = 1� ōy⇤(o) (13)
= 1� |ō| (14)

=
1� ōō

1 + |ō| (15)

=
`(ō, ō)

1 + |ō| (16)

 `(ō, ō)

2� ↵
, (17)

with equality if and only if ↵ = ô. Now to bound the risk, we can write,

R(h) := Eo⇠O,c⇠C [`(h(o, c), y
⇤(o))] (18)

=

Z

C

Z

O

`(h(o, c), y⇤(o)) (19)

=

Z

O

`(ō, y⇤(o)) (20)

Z

O

`(ō, ō)

2� ↵
(21)

=
1

2� ↵

Z

O

Z

C

`(h(o, c), ō) (22)

=
1

2� ↵

Z

C

||B(h, c)|| (23)

=
K

2� ↵
, (24)

where all double integrals are exchangeable by Fubini’s theorem. It also follows that equality for the
upper bound holds if and only if ↵ = ô for all o.

For the lower bound, notice that for all o 2 O, we have |ō| 1, so

`(ō, y⇤(o)) � 1� |ō| (25)

=
`(ō, ō)

1 + |ō| (26)

� `(ō, ō)

2
, (27)

where line 25 is an equality if and only if the signs of the expected and correct classifications match,
and line 27 is an equality if and only if |ō| = 1; together, these two conditions imply that the object is
correctly classified over all contexts. Then a similar computation as for the upper bound shows that

R(h) �
Z

O

`(ō, ō)

2
(28)

=
K

2
, (29)

where now equality holds if and only if all objects are correctly classified over all contexts, i.e.,
R(h) = 0.

15

B Greedy Bias Correction for visual tasks

Algorithm 2: Visual Learning Using Context-Agnostic Synthetic Data
Input: Object space O, context space C, random permutations ⇧, observation function �,

number of rounds R, batch size B, number of classes N , resample probability p,
classifier update subroutine Fit, projected gradient descent subroutine PGD,
classifier h

Output: Trained classifier h
for r 1 to R do

// initialize empty training batch and random contexts

X ;;
for n 1 to N do

cn ⇠ C;
end
for b 1 to B do

// sample random permutation

⇡ ⇠ ⇧(N);
// generate new training data

for n 1 to N do
o ⇠ O(n); // sample object for class

x �(o, c⇡(n)); // observe object and random (permuted) context

x0 PGD(h, x); // perform local refinement

X X [{(x0, y)}; // add to training set

cn x0; // previous sample becomes next context

end
// resample contexts

for n 1 to N do
p0 Uniform(0, 1);
if p0 < p then

cn ⇠ C;
end

end
end
// perform classifier update

h Fit(h,X);
end

16

C Experimental setup

We used PyTorch 1.5.0 [Paszke et al., 2019], OpenCV 4.2.0 [Bradski, 2000], and scikit-image 0.17.2
[van der Walt et al., 2014] for all experiments. In setting the number of epochs, we did not observe
any significant degradation or improvements in performance when training for longer. We use fewer
epochs in the case of Omniglot due to computational constraints, as the model is retrained for each
test split.

For GTSRB, we use a 5-layer convolutional neural network adapted from the official PyTorch tutorials.
To train with Picto, the data augmentation consists of PyTorch transforms RandomAffine(5, trans-
late=(.15, .15), scale=(0.65, 1.05), shear=5), RandomPerspective(0.5, p=1); ColorJitter(brightness=.8,
contrast=.8, saturation=.8, hue=.05); OpenCV box blur with a random kernel size between 1 and 6 in
both dimensions (independently sampled, so not necessarily square); and a random exposure adjust-
ment by adjusting all pixels by the same random amount between –30% and 50%. For refinement, we
used step sizes of ↵ = 2/255 with 8 steps and an epsilon of ✏ = 4/255 for the foreground only. For
the observation function, we superimpose the segmented foreground of the transformed pictographic
sign over the context. We train for 300 epochs using the Adam optimizer (learning rate 1e-4, weight
decay 1e-4), with 5 examples of each class per batch and 20 batches per epoch. We report results for
the model that achieves the best performance on the training set, checking every 5 epochs.

For MNIST, we use the two-layer convolutional neural network from the official PyTorch examples
for MNIST, with Dropout regularization replaced with pre-activation BatchNorm. To train with
Digit, the data augmentation consists of PyTorch transforms RandomAffine(15, translate=(.15, .15),
scale=(0.75, 1.05), shear=40), RandomPerspective(0.5, p=1); OpenCV box blur with a random kernel
size between 1 and 6 in both dimensions (independently sampled, so not necessarily square); then
set the foreground to all pixels with value greater than 0.2. For refinement, we used step sizes of
↵ = 1.6/255 with 8 iterations and no projection (✏ = 1). For the observation function, we blend
the object with the context at a 2:1 ratio; this ensures that inputs have a well-defined ground truth
label. We train for 300 epochs using the Adam optimizer (learning rate 1e-4, weight decay 1e-4),
with 5 examples of each class per batch and 20 batches per epoch. We report results for the model
that achieves the best performance on the training set, checking every 5 epochs.

For Omniglot, we use the pre-activation variant of ResNet18 [He et al., 2015]. To train with Omnifont,
we first preprocess with scikit-learn skeletonize and dilation to standardize stroke widths. Data
augmentation consists of PyTorch transforms RandomAffine(15, translate=(.15, .15), scale=(0.75,
1.1), shear=20), RandomPerspective(0.25, p=1); OpenCV box blur with a random kernel size between
1 and 3 in both dimensions (independently sampled, so not necessarily square); then resize the images
to 28 by 28. For refinement, we used step sizes of ↵ = 1.6/255 with 8 iterations and no projection
(✏ = 1). For the observation function, we blend the object with the context at a 2:1 ratio; this
ensures that inputs have a well-defined ground truth label. For the n-way classification task, we
randomly sample n characters from the Omniglot test set, and use the corresponding characters from
the Omnifont dataset as our training set. We then train a fresh model for 150 epochs using the Adam
optimizer (learning rate 1e-4, weight decay 1e-4), and report performance on the all 20n images in
the Omniglot test set, averaged over 20 runs (10 runs for the ablation studies).

For the GradCAM visualizations, we use the public grad-cam package [Gildenblat and contributors,
2021] from the Python Package Index (PyPI), with the target_layer set to the last LeakyReLU layer
in the encoder, and both aug_smooth and eigen_smooth set to true.

17

D Full experimental results

We compare a model trained using our methods with previous state-of-the-art results from related
settings using few-shot learning and domain adaptation on GTSRB (Table 2), MNIST (Table 3), and
Omniglot (Table 4). When multiple experiments are reported for the same approach, we compare
against both the most accurate result as well as the result using the least amount of target data. We
distinguish between labelled (L) and unlabelled (UL) data; experiments for which the training data is
not known are marked (?).

Table 2: GTSRB results.

Approach Method Training Data Accuracy
Source Target (%)

Baselines
Source Only (Saito et al. [2017]) SynSign 79.2
Human (Stallkamp et al. [2012]) 98.8
Target Only (Ganin et al. [2016]) All L 99.8

Few-Shot Learning
VPE (Kim et al. [2019])§ Picto⇤ 22 classes L 83.8
MatchNet (Vinyals et al. [2016])§ 22 classes L 53.3
QuadNet (Kim et al. [2018])§† 22 classes L 45.3

Domain Adaptation

DSN (Bousmalis et al. [2016]) SynSign 1280 UL 93.0
ML (Schoenauer-Sebag et al. [2019])§ SynSign 22 classes L 89.1
MADA (Pei et al. [2018])§‡ SynSign 22 classes L 84.8
DANN (Ganin et al. [2016]) SynSign 31367 UL 88.7
ATT (Saito et al. [2017]) SynSign 31367 UL 96.2

Context Agnostic

baseline Picto 0 72.0
+ random-context Picto 0 72.1

+ refinement-only Picto 0 86.4
+ bias-correction Picto 0 87.3

+ full Picto 0 95.9
§Test accuracy on remaining 21 unseen classes.
⇤Kim et al. [2019] use a pictographic dataset similar to Picto.
†Reported in Kim et al. [2019].
‡Reported in Schoenauer-Sebag et al. [2019].

18

Table 3: MNIST results.

Approach Method Training Data Accuracy
Source Target (%)

Baselines Human (Netzer et al. [2011]) 98.0
Target Only (Tzeng et al. [2017]) All L 99.2

Few-Shot Learning

FADA (Motiian et al. [2017a]) SVHN 1 L / class 72.8
+ more data SVHN 7 L / class 87.2

SiamNet (Koch [2015]) Omniglot 1 L / class 70.3
MatchNet (Vinyals et al. [2016]) Omniglot 1 L / class 72.0
APL (Ramalho and Garnelo [2019]) Omniglot 1 L / class 61.0

+ more data Omniglot ?‡ 86.0

Domain Adaptation

DSN (Bousmalis et al. [2016]) SVHN 1000 UL 82.7
DRCN (Ghifary et al. [2016]) SVHN ? 81.9
DANN (Ganin et al. [2016]) SVHN ? 73.9
ATT (Saito et al. [2017]) SVHN ? L + 1000 UL 86.0
ADDA (Tzeng et al. [2017]) SVHN 60,000 UL 76.0
CyCADA (Hoffman et al. [2017]) SVHN 60,000 UL 90.4

Context Agnostic

baseline Digit 0 81.9
+ random-context Digit 0 88.3

+ refinement-only Digit 0 89.7
+ bias-correction Digit 0 89.2

+ full Digit 0 90.2
‡Cumulative accuracy from adapting over the test set.

Table 4: Omniglot results for one-shot classification.‡

Approach Method Training Data Accuracy (%)
5-way 20-way

Baselines Human (Lake et al. [2015]) 95.5

Few-Shot Learning

MANN (Santoro et al. [2016]) Omniglot 82.2
SiamNet (Koch [2015]) Omniglot 96.7§ 92.0
MatchNet (Vinyals et al. [2016]) Omniglot 98.1 93.8
PN (Snell et al. [2017]) Omniglot 98.8 96.0
BPL (Lake et al. [2015]) Omniglot 96.7
APL (Ramalho and Garnelo [2019]) Omniglot 97.9 97.2
RN (Sung et al. [2018]) Omniglot 99.6 97.6
MAML++ (Antoniou et al. [2018]) Omniglot 99.5 97.7
TapNet (Yoon et al. [2019]) Omniglot 98.1
GCR (Li et al. [2019]) Omniglot 99.7 99.6

Context Agnostic

baseline Omnifont 71.9
+ random-context Omnifont 69.8

+ refinement-only Omnifont 90.8
+ bias-correction Omnifont 80.5

+ full Omnifont 95.8 92.2
‡The exact set up of the one-shot classification task often varies between authors. We believe the broad
performance numbers are still useful for contextualizing our approach, and refer the reader to the original
works for details.
§As reported in Vinyals et al. [2016]

19

E Training and test set visualizations

E.1 Datasets

Figure 6: From top to bottom: samples from the GTSRB test set, Picto dataset, and SynSign dataset.

Figure 7: From top to bottom: samples from the Omniglot test set, Omnifot dataset, MNIST test set,
Digit dataset, and SVHN training set.

20

E.2 Ablation studies

Figure 8: Training images from the first ablation study using Picto dataset. From top to bottom:
baseline, random-context, refinement-only, bias-correction, full.

Figure 9: Training images from the first ablation study for the Digit dataset. From top to bottom:
baseline, random-context, refinement-only, bias-correction, full.

21

Figure 10: Grad-CAM visualizations for the PGD background perturbation ablation studies (initialized
using the bias heuristic). Full (left) and real2sim (right) methods as perturbations increase over
✏ = 0, 2, 4, 8, 16, 32, 64, 128, 255 (in order from top to bottom). Regions in yellow are more important
to the classifier output. Misclassified images are marked with red boxes.

22

Figure 11: Guided Grad-CAM visualizations for the full (middle) and real2sim (bottom) methods on
the GTSRB test set (original images on top). Regions with color visualize the fine-grained features
that contribute to the classifier output. Misclassified images are marked with red boxes.

23

