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Abstract

Multi-label image recognition stands as a foundational task in computer vision. Recently,
vision-language models have achieved significant progress in this domain. However, previous
approaches mostly utilized language models in a simplistic manner, without fully leveraging
their potential. To address this, we propose a Mamba-enhanced Visual-Linguistic Represen-
tation (MVLR) framework for multi-label image recognition, which aims to better leverage
the capabilities of the visual-linguistic representations. In our MVLR, we first propose a
Prompt-Driven Label Representation learning (PDLR), which consists of both hard and
soft prompts for acquiring comprehensive semantic knowledge for all labels from the large
language model. After extracting the label representations, we propose an Interaction and
Fusion Model (IFM) to interact with those representations and then fuse them together.
To be specific, IFM first employs a label attention to explore the label co-occurrence rela-
tions and a context-aware attention to adaptively aggregate context information into label
representations. Then, IFM further employs a channel attention to fuse the two features
together, forming more reliable and effective label representations. Finally, we propose a
Quadruplet Mamba-enhanced Visual- Linguistic block (QMVL) to mutually interact with
visual and linguistic features with the strong structure of Mamba. Our QMVL simulta-
neously emphasizes the features of both visual and linguistic modalities, which is greatly
different from previous works of taking linguistic information as a secondary supplementary
item. Extensive experiments on several popular datasets, including MS-COCO, Pascal VOC
2007 and NUS-WIDE for general multi-label recognition, demonstrate the superiority of our
MVLR.

1 Introduction

Multi-label recognition (MLR) Chen et al. (2019a); Wang et al. (2020); Du et al. (2024) is a foundational yet
challenging task in computer vision that enables comprehensive scene understanding through simultaneous
identification of multiple labels within a single image. This capability holds transformative potential for
critical applications including: (1) intelligent surveillance systems requiring real-time analysis of human
attributes Tan et al. (2020); Wu et al. (2022); Wang et al. (2022), (2) next-generation retrieval systems
with semantic-aware search capabilities Wei et al. (2024), and (3) medical image diagnosis where multi-label
annotation improves diagnostic accuracy. Despite decades of research, current MLR systems still struggle
with complex label correlations and semantic gaps, particularly in handling the interplay between visual and
linguistic modalities - a fundamental limitation our work directly addresses.

With the emergence of vision-language pre-training techniques Radford et al. (2021); Jia et al. (2021), many
recent works Chen et al. (2019a); You et al. (2020); Wang et al. (2020); Zhao et al. (2021); Zhu et al. (2022);
Li et al. (2023) have utilized the linguistic modality to supplement semantic information into the visual
features. Leveraging the rich semantic knowledge present in large language models, these approaches have
shown enhancements in multi-label recognition tasks. Although current methods Chen et al. (2019a); You
et al. (2020); Wang et al. (2020); Zhao et al. (2021); Zhu et al. (2022); Li et al. (2023) have made good
progress for multi-label image recognition through utilizing visual-linguistic information, there are still some
shortcomings. First, the knowledge extraction challenge persists in current paradigms. To be specific, the
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current methods all use rudimentary techniques to acquire knowledge of the large language models, failing to
fully harness the potential of these expansive models. For example, most methods Chen et al. (2019a); You
et al. (2020); Wang et al. (2020); Zhu et al. (2022) rely on static label names as sole inputs to language models,
generating rigid linguistic embeddings. This static approach fundamentally limits the model’s capacity to
capture dynamic semantic relationships. Second, the correlation modeling challenge emerges from isolated
label processing. Existing frameworks extract label embeddings independently without modeling inter-
label dependencies (e.g., "dog" → "animal" or "running" → "motion"), overlooking the hierarchical and
compositional nature of semantic structures that could significantly boost recognition accuracy. Third,
treating linguistic features as secondary supplements neglects their importance. While modern language
models can produce discriminative embeddings Radford et al. (2021), current architectures fail to establish
equitable cross-modal interaction mechanisms, creating an information bottleneck that undervalues linguistic
cues compared to visual features. Therefore, placing more emphasis on linguistic features and conducting
more in-depth visual-linguistic interactions could largely enhance the model’s capabilities.

In order to address the aforementioned problems, we propose a Mamba-enhanced Visual-Linguistic
Representation (MVLR) framework for multi-label image recognition. Inspired by previous works Mehta
et al. (2022); Yao et al. (2023), we formulate a Prompt-Driven Label Representations learning (PDLR) to
tackle the first issue. The goal of PDLR is to extract reliable and comprehensive linguistic embeddings
for all labels. To be specific, we take two kinds of prompts as inputs of the language model for acquiring
semantic knowledge. One is the hard prompts, where the prompts follow the hand-crafted templates like
“a photo of a [CLS].". “[CLS]" represents a label name like “table" or “bird". The other is soft prompts,
where all prompts are set as learnable embeddings, which could be adaptively adjusted along with the train-
ing process. For hard prompts, they are manually set and help to extract static but accurate linguistic
embeddings for each label. For soft prompts, they are learnable embeddings guided by the training loss and
help to capture latent and necessary linguistic embeddings for all labels.

To address the second issue, an Interaction and Fusion Module (IFM) is further proposed to deeply ag-
gregate the captured label representations. In the proposed IFM, we first conduct a label attention to
explore the label co-occurrence among different labels based on the extracted label embeddings w.r.t hard
prompts. Then, we further conduct a context-aware attention module based on the extracted label em-
beddings w.r.t soft prompts to adaptively aggregate context information into label representations, which
explores the contextual-aware label attention. Specifically, we further propose a knowledge-to-context regu-
larization (KCR) loss to constrain the two features from learning similar representations, further enhancing
the generalization ability. Later, we further fuse the above two kinds of features by using a channel interac-
tion, which forms more effective, reliable and comprehensive label representations. As we can see, the core
of our proposed IFM is to facilitate interactions among various label representations, establishing profound
connections between different labels. As a result, the proposed IFM could overcome the limitation of the
isolated process of extracting label features in PDLR.

To overcome the third problem, we further conduct a mutual interaction between visual and linguistic modal-
ities by a proposed Quadruplet Mamba-enhanced Visual-Linguistic block (QMVL), which is constructed on
the Mamba structure Zhu et al. (2024) of good at modeling the sequence relations. Different from existing
methods Chen et al. (2019a); You et al. (2020); Wang et al. (2020); Zhu et al. (2022; 2023b) where tex-
tual information is only unidirectionally integrated with visual information, our proposed QMVL allows a
bidirectional interaction between the two modalities. In QMVL, we merge visual and linguistic features in
both forward and inverse sequences to generate four concatenated features. Each feature pair corresponds to
either the visual or linguistic modality, which is then fed into a Mamba block Zhu et al. (2024), for extracting
the respective features. In this module, the Mamba structure is taken for visual-linguistic interaction due to
its strong ability in relation modeling. Specifically, both forward and inverse sequences are employed in the
Mamba block, which aims to extract more order-independent relations and representations. Finally, unlike
previous methods Chen et al. (2019a); You et al. (2020); Wang et al. (2020); Zhu et al. (2022; 2023b) that
employ fixed classification weights (e.g., linear layers) to generate the final predictions, our method predicts
the scores based on the similarity between these two representations (i.e., the dot product of visual and
feature representations), where the visual features representthe input features and linguistic features denote
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the class center of each label. In this way, it achieves input-adaptive category centers, largely enhancing the
model’s generalization capability. To sum up, the main contributions of this work include:

• We propose the Mamba-enhanced Visual-Linguistic Representation (MVLR), a novel visual-
linguistic representation learning framework for multi-label image recognition, which achieves state-
of-the-art performance on multiple widely used benchmarks.

• We propose an Interaction and Fusion Module (IFM) to deeply aggregate the label representa-
tions. Specifically, multiple attention mechanisms including a label attention, a context-aware label
attention and a channel attention are employed to capture label relations and establish profound
connections between different labels.

• We propose a Quadruplet Mamba-enhanced Visual-Linguistic attention (QMVL) to conduct a bidi-
rectional interaction between visual and linguistic modalities based the Mamba structure. The
proposed QMVL simultaneously emphasizes the features of both modalities thereby maximizing the
utilization of language models in the process.

2 Related Work

2.1 Multi-Label Classification

Multi-label recognition Wang et al. (2016); Liu et al. (2022) is a crucial task within computer vision. Early
methodologies Ye et al. (2020); Lanchantin et al. (2021) primarily focused on a single visual modality as
the input, often employing Recurrent Neural Networks (RNN) and graph-based models for modeling the
label relations. For instance, Wang et al. Wang et al. (2016) investigate semantic correlations by integrating
RNN with the feature extractor, while some other researchers Ye et al. (2020); Tan et al. (2020) consider
using the graph convolutional network (GCN) to capture the relations among different labels. Recently,
transformer Vaswani et al. (2017) has been proposed and demonstrated strong abilities in relation modeling
especially for long sequences. works Lanchantin et al. (2021); Weng et al. (2023) that capture the relations
based on the transformer attention. For example, Lanchantin et al. Lanchantin et al. (2021) utilized a
transformer encoder to model relations between visual features and labels. Weng et al. Weng et al. (2023)
propose an Attribute Correlation Module (ACM) based on transformer attention to capture label correlations.

Most previous methods Tan et al. (2019; 2020) solely rely on the visual modality, resulting in a limited
capacity of the model in semantic understanding. Recently, a large number of language models Devlin et al.
(2019) have been proposed and have achieved great success in related fields. Many researchers Chen et al.
(2019a;b); Wang et al. (2020); You et al. (2020); Liu et al. (2021); Zhu et al. (2022); Zhao et al. (2021); Zhu
et al. (2023b); Li et al. (2023) also realize the importance of language modality and gradually use both visual
and linguistic modalities to address multi-label image recognition problems, usually incorporating linguistic
modalities to enrich semantic information. For example, You et al. You et al. (2020) propose a cross-modality
attention module to merge visual features and label embeddings. Chen et al. Chen et al. (2019a) and Zhu
et al. Zhu et al. (2023b) unilaterally incorporated semantic information into visual features using low-rank
bilinear pooling, while Wang et al. Wang et al. (2020) introduce multiple graph layers to gradually infuse
label semantics into feature learning.

It is a feasible approach to leverage both visual and linguistic modalities for addressing multi-label image
recognition. For example, Wang et al. Wang et al. (2024a) propose a CLIP-guided vision-language fusion
framework for pedestrian attribute recognition, where several transformer blocks are employed to fuse vision
and language features for final recognition. Zhu et al. Zhu et al. (2023a) also propose a similar method to
conduct vision-language fusion, but its target scenario is video-based pedestrian attribute recognition. Our
proposed method is developed based on the visual-linguistic features. Compared to previous works, we aim
to achieve a more in-depth visual-linguistic representation learning by the proposed PDLR, IFM and QMVL,
which targets extracting effective label representations, exploring in-depth label relations, and conducting
comprehensive interactions, respectively.
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2.2 Vision-Language Models

The utilization of large-scale vision-language pre-training has emerged as a potent strategy spanning a di-
verse array of visual tasks Sun et al. (2022); Radford et al. (2021). Vision-language models (VLMs) Radford
et al. (2021); Jia et al. (2021) harness a contrastive-based pre-training methodology to forge a cohesive rep-
resentation uniting visual and linguistic elements, building a strong connection between the two modalities.
Many researchers have achieved good applications in downstream tasks using vision-language models Sun
et al. (2022). For example, DualCoOp Sun et al. (2022) leverages the CLIP model Radford et al. (2021) for
multi-label image recognition for achieving fast adaption by only using limited annotations. Recently, there
has been a trend among researchers to merge pre-trained language and vision models to create robust Vision-
Language Models (VLMs). In this paper, our proposed method is also constructed based on vision-language
models, achieving reliable multi-label image recognition by learning robust visual-linguistic representations.

2.3 State Space Model

Being at the forefront of the State-Space Models (SSMs) era, Gu et al. Gu et al. (2022); Wang et al. (2024b)
introduced the innovative Structured State-Space Sequence (S4) model, which serves as an alternative to
convolutional neural networks (CNNs) or transformers for effectively capturing long-range dependencies. A
recent advancement by the work Smith et al. (2023) introduces the S5 layer, which incorporates MIMO
SSM and efficient parallel scanning into the existing S4 layer architecture. Concurrently, Fu et al. (2023)
introduces the H3 SSM layer, further enhancing the efficacy of SSMs. In a recent development, Gu & Dao
(2024) introduced a versatile language model known as Mamba. Specifically, Mamba surpasses transformers
in performance metrics across diverse scales of extensive real-world data. The research of Mamba has piqued
the research interest of many researchers, where lots of Mamba-based works are proposed and achieved
promising applications in various tasks, like Vision Mamba Zhu et al. (2024); Wang et al. (2024b). More
works about state-space models can be refer to related surveys, like Wang et al. (2024b). In this study, we
aim to extend the application of Mamba to the domain of multi-label image recognition. The primary focus
is on harnessing the robust structure of Mamba to facilitate visual-linguistic interactions.

3 Proposed Method

The overall pipeline of our MVLR framework is shown in Figure 1. In this section, we first define some basic
notations in Section 3.1, and then introduce the proposed PDLR (Section 3.2), IFM (Section 3.3) and QMVL
(Section 3.4) in detail. Finally, we introduce the proposed visual-linguistic enhanced training in Section 3.5.

3.1 Preliminary

Notations. For multi-label image recognition, assume the input image I ∈ RH×W ×3 is labeled with C
candidate categories, where y ∈ RC represents the multi-hot label vector and yj = 1 means the input image
contains the jth label and vice versa. For the input image I, we employ an image encoder (e.g., ResNet He
et al. (2016) or ViT Wang et al. (2021)) to extract visual featuresX ∈ RM×d, where M indicates the number
of pixels or patches, and d is the feature dimension.

Attention mechanism. Transformer has achieved significant success in visual tasks Wang et al. (2021);
Chen et al. (2021); Arnab et al. (2021), particularly due to its well-designed attention mechanism, which
exhibits strong capability in relation modeling. Typically, there are two kinds of attention mechanisms in
the transformer, i.e., self-attention and cross-attention. For self-attention, it models the relations among the
elements within an input sequence E ∈ RM×d (M is the number of vectors and d denotes the dimension of
the features), which is formulated as:

Self-Attn(E) = softmax(QKT
√

d
)V ,

where Q = EWQ, K = EWK , V = EWV ,

(1)
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Figure 1: Overview of the proposed MVLR framework. 1) PDLR adopts both hard prompts and soft
prompts to model label representations. 2) IFM deeply aggregates the label embeddings from hard and soft
prompts with several attentions and interactions. And LKCR is measured to enhance the generalization. 3)
QMVL employs a quadruplet mamba structure to perform cross-modal interaction. The context-aware label
representations are then regarded as the classification weights and the prediction is based on the similarity
between these two representations, which achieves input-adaptive category centers.

where WQ, WK and WV are learnable weights. We take M = softmax( QKT
√

d
) to denote the attention map

that captures the pair-wise relations of vectors in E. In contrast, cross-attention takes different sources as
input and is good at capturing cross-domain interactions. Suppose the inputs are denoted as E and Z, the
process is formulated as:

Cross-Attn(E, Z) = softmax(QKT
√

d
)V ,

where Q = EWQ, K = ZWK , V = ZWV .

(2)

State Space Model. State Space Models (SSM) Gu et al. (2022) are designed around continuous systems
that map a 1-D function or sequence, x(t) ∈ RL → y(t) ∈ RL, through a hidden state h(t) ∈ RN . Assume
the evolution parameter of the system is denoted as AN×N and the projection parameters are denoted by
BN×1 and C1×N , the SSM system model the input data via an ordinary differential equation (ODE) as
following:

h′(t) = Ah(t) + Bx(t),
y(t) = Ch(t).

(3)

In recent Mamba structures Gu & Dao (2024); Mehta et al. (2022), they approximate the continuous ODE
through a discretization, where a timescale parameter ∆ is employed to transform the continuous parameters
A, B to their discrete form A, B. To be specific, the typical transform method is zero-order hold (ZOH),
which can be represented as follows:

A = exp(∆A),
B = (∆A)−1(exp(∆A) − I) · ∆B.

(4)

After obtaining the discrete parameters A and B, the discretized version of ODE can be written as:

ht = Aht−1 + Bxt,

yt = Cht.
(5)
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3.2 Prompt-Driven Label Representations Learning

Large VLMs Radford et al. (2021); Jia et al. (2021) typically encompass a wealth of semantic knowledge
since the pre-training on large-scale image-text pairs. Therefore, by setting appropriate textual inputs for
each label, the embeddings extracted by the language model will contain the underlying semantic relations
between different labels. For example, the textual embeddings of “trees” and “lawn” are likely to be close,
while “television” and “elephant” may be more distant. In the realm of large language models, these suitable
textual inputs are referred to as “prompts”. Inspired by previous works Mehta et al. (2022); Yao et al. (2023),
we formulate a Prompt-Driven Label Representations learning (PDLR) for obtaining the well linguistic
embeddings for all labels in this section. In the proposed PDLR, two kinds of prompts, namely hard and
soft prompts, are taken as inputs for the large language model.

Hard prompts. For the hard prompts, we take the hand-crafted templates (i.e., hard prompts) “This
photo contains [CLS].” as the inputs for all C labels. Then the text encoder is adopted to extract C label
embeddings w.r.t the hard prompts, which are denoted as T hard = {thard

1 , ..., thard
C } ∈ RC×d, where d is the

hidden dimension of CLIP.

Soft prompts. Based on the above hard prompts, the networks could extract accurate linguistic embeddings
for all labels. However, all prompts are manually set and will not be changed according to the training loss.
Inspired by Zhou et al. (2022b;a), we also utilize a set of soft prompts to extract label embeddings, where all
prompts are learnable embeddings and will be adjusted to the optimal representations during the training
process. To be specific, we prepend L prompt tokens to each label and yield “[p1][p2]...[pL][sj ]”, where pl ∈
Rd is learnable to adapt the task and sj is the word embedding of the jth label name. Then the sequences are
fed into text encoder to extract C label embeddings, which are denoted as T soft = {tsoft

1 , ..., tsoft
C } ∈ RC×d.

3.3 Interaction and Fusion Module
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Figure 2: Illustration of the Interaction and Fu-
sion Module (IFM). Label attention and Context-
aware attention are first applied to capture label re-
lations and cross-modal dependencies, respectively.
Then Tka and Tca are deeply aggregated through
channel interaction. Two relation maps are then
gathered to refine the final label representations.

To fully leverage the strengths of the extracted label
representations, we propose an Interaction and Fusion
Module (IFM). As shown in Figure 2, in the proposed
IFM, we first explore the label relations among the
extracting label representations Tka and Tca. To be
specific, for the labels embeddings Tka (w.r.t the hard
prompts), we employ a label attention to explore
the label co-occurrence among different labels. For
the label embeddings Tca w.r.t the soft prompts, we
further propose a context-aware attention mod-
ule to adaptively aggregate context information into
label representations and model the context-aware la-
bel relation. Later, we employ a channel attention
to interact with the two kinds of label representa-
tions. Finally, we propose a Relation Aggregation
to aggregate the relation-enhanced label representa-
tions together.

Label attention. We perform a label attention
on the extracted label embeddings T hard (w.r.t hard
prompts) to capture the knowledge-guided relations,
which is formally written as:

T ka, Mka = Self-Attn(T hard), (6)
where T ka ∈ RC×d is the relation-enhanced label embeddings. Mka ∈ RC×C denotes the knowledge-
guided attention map, where Mka

ij depicts the relation between thard
i and thard

j , indicating the underlying
co-occurrence probability of the ith and the jth label.

Context-aware attention. As mentioned above, the proposed label attention could extract rich semantic
knowledge and relations. However, such information is static and independent of the input image. To
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address this, we further propose a context-aware attention module to capture context-aware label relations
based on the image features and label embeddings w.r.t soft prompts. To be specific, we condition the label
embeddings T hard (w.r.t soft prompts) on visual features, which is formulated as:

T
′soft = Cross-Attn(T soft, X),

T ca, Mca = Self-Attn(T
′soft),

(7)

where T
′soft captures the interaction between each label representation and all spatial regions. T ca is the

context-aware label representations and Mca represents the context-aware attention map. In this way, fine-
grained context clues would be incorporated into static label semantics, which makes the extracted label
embeddings more reliable.

Channel interaction. To deeply interact the relation-enhanced label representations T ka and T ca, specif-
ically, we propose a channel interaction between them to continually inject general knowledge to T ca, which
is formulated as:

T ca = T ca + MLP([T ka, T ca]), (8)

where MLP(·) denotes a Multi-Layer Perceptron and [·] denotes the concatenation operation. For simplicity,
we reuse the notation T ca for the modulated embedding. Moreover, soft prompting is potential to overfit
the seen data and forget the general knowledge Bulat & Tzimiropoulos (2023); Yao et al. (2023). Therefore,
we further introduce a knowledge-to-context regularization (KCR) loss to enhance the generalization ability,
which is formulated as:

LKCR = 1
C

C∑
j=1

(1 −
tka

j (tca
j )T

||tka
j ||||tca

j ||
). (9)

Both T ca and T ka are label embeddings extracted through distinct methods. By minimizing the distance
between them via Eq. 9, these embeddings converge to similar representations. This alignment reduces
intra-class variance for each label, thereby enhancing model generalization.

Relation aggregation. Besides, the relation among labels should consider both general knowledge and
practical contexts. Therefore, we propose to aggregate knowledge-guided attention map Mka and context-
aware attention map Mca through a re-weighting scheme. The aggregated map is then adopted to enhance
the label representations:

T = (αMka + (1 − α)Mca)T ca, (10)

where α is set to be learnable and T ∈ RC×d denotes the relation-enhanced label representations.

3.4 Quadruplet Mamba-Enhanced Visual-Linguistic Attention

So far, we have captured the prompt-driven label representations, while the mutual interaction between
visual and linguistic modalities is still underexplored. Inspired by the previous work Zhu et al. (2024),
we aim to utilize the Mamba structure to interact with visual features and label representations. Since the
Mamba structure is designed for sequence data, the captured relations would depend on the order of the input
sequence. Therefore, we formulate the proposed Mamba-enhanced visual-linguistic attention as a quadruplet
structure, named Quadruplet Mamba-enhanced Visual-Linguistic attention (QMVL). To be specific, for the
input label embeddings T and visual representations X, we concatenate them into four forms as follows:

H1 = concat(X, T),
H2 = concat(X, inv(T)),
H3 = concat(T, X),
H4 = concat(T, inv(X)),

(11)

where concat indicates the concatenate operation and inv represents inversing the sequence. Specifically, H1
and H2 encompass the normal and inverse sequences w.r.t the linguistic embeddings, while H3 and H4 do so
w.r.t the visual embeddings. H1 and H2 are sent to a Mamba attention block for extracting refined linguistic
embeddings Trf of all labels, while H3 and H4 are sent to the other Mamba attention block for extracting
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Table 1: Comparison (%) to state-of-the-art methods on MS-COCO. Results with different backbone
and input resolution are reported. Among them, mAP, OF1, and CF1 are the primary metrics (highlighted
in red) as the others may be significantly affected by the threshold.
Method Backbone Resolution mAP ALL Top-3

CP CR CF1 OP OR OF1 CP CR CF1 OP OR OF1
ML-GCN Chen et al. (2019b) ResNet101 (448, 448) 83.0 85.1 72.0 78.0 85.8 75.4 80.3 89.2 64.1 74.6 90.5 66.5 76.7
CMA You et al. (2020) ResNet101 (448, 448) 83.4 82.1 73.1 77.3 83.7 76.3 79.9 87.2 64.6 74.2 89.1 66.7 76.3
ASL Ridnik et al. (2021) ResNet101 (448, 448) 85.0 - - 80.3 - - 82.3 - - - - - -
Q2L-R101 Liu et al. (2021) ResNet101 (448, 448) 84.9 84.8 74.5 79.3 86.6 76.9 81.5 78.0 69.1 73.3 80.7 70.6 75.4
SALGL Zhu et al. (2023b) ResNet101 (448, 448) 85.8 87.2 74.5 80.4 87.8 77.6 82.4 90.4 65.7 76.1 91.9 67.9 78.1
MVLR ResNet101 (448, 448) 88.5 83.1 82.5 82.8 83.5 85.3 84.4 88.7 69.4 77.9 90.5 71.3 79.8
SSGRL Chen et al. (2019a) ResNet101 (576, 576) 83.6 89.5 68.3 76.9 91.2 70.7 79.3 91.9 62.1 73.0 93.6 64.2 76.0
C-Tran Lanchantin et al. (2021) ResNet101 (576, 576) 85.1 86.3 74.3 79.9 87.7 76.5 81.7 90.1 65.7 76.0 92.1 71.4 77.6
ADD-GCN Ye et al. (2020) ResNet101 (576, 576) 85.2 84.7 75.9 80.1 84.9 79.4 82.0 88.8 66.2 75.8 90.3 68.5 77.9
Q2L-R101 Liu et al. (2021) ResNet101 (576, 576) 86.5 85.8 76.7 81.0 87.0 78.9 82.8 90.4 66.3 76.5 92.4 67.9 78.3
SALGL Zhu et al. (2023b) ResNet101 (576, 576) 87.3 87.8 76.8 81.9 88.1 79.5 83.6 91.1 66.9 77.2 92.4 69.0 79.0
MVLR ResNet101 (576, 576) 89.0 83.0 83.7 83.3 83.7 86.8 85.2 89.3 70.2 78.6 91.5 72.0 80.6
M3TR Zhao et al. (2021) ViT-B/16 (448, 448) 87.5 88.4 77.2 82.5 88.3 79.8 83.8 91.9 68.1 78.2 92.6 69.6 79.4
PatchCT Li et al. (2023) ViT-B/16 (448, 448) 88.3 83.3 82.3 82.6 84.2 83.7 83.8 90.7 69.7 78.8 90.3 70.8 79.8
MVLR ViT-B/16 (448, 448) 90.4 85.3 84.2 84.8 85.2 87.2 86.2 91.2 70.8 79.7 92.1 72.6 81.2

refined visual features Xrf . Both the normal and inverse sequences are sent to the same Mamba block and
their outputs would be summed together as the final features. In this way, the proposed quadruplet structure
could reduce the dependence on sequence order, thereby extracting more order-independent relations. It is
worth noting that when extracting refined features from one modality (i.e., visual or linguistic), we place
the features of the opposite modality at the forefront, ensuring that the features of this modality are fully
exposed to the other modality, thereby enhancing interaction to the fullest extent. As far as we know,
it is the first attempt to adopt such structure for multi-label image classification. The detailed structure
of Mamba structure is illustrated in Fig. 1, where each Mamba block includes a Norm layer, three linear
projection layers, two activations and one SSM block. For the details about the Mamba block could refer to
the work Zhu et al. (2024).

3.5 Visual-Linguistic Enhanced Training

Different from previous works Chen et al. (2019a); You et al. (2020); Wang et al. (2020); Zhu et al. (2022;
2023b) that employ fixed classification weights (e.g., linear layers) for recognition, we regard each label
linguistic representation as the center of the corresponding category, which is an input-adaptive manner
and helps to enhance the model’s generalization capability. To be specific, the presence probability of the
jth label is predicted through measuring the similarity between visual representation Xrf and the jth label
representation T rf

j :

pj = sigmoid(Xrf (T rf
j )T), (12)

where sigmoid(·) is the sigmoid function to map the predicted logit into a probability. Based on final
predictions in Eq. 12, the Asymmetric Loss Ridnik et al. (2021) is employed for multi-label classification:

LCLS = 1
C

C∑
j=1

{
(1 − pj)γ+

log pj , yj = 1,

pγ−

j log(1 − pj), yj = 0,
(13)

where γ+ and γ− are asymmetric focusing parameters for positive and negative samples, respectively.

Together with the hard-to-soft regularization loss, the final objective is defined as:

L = LCLS + λLKCR, (14)

where λ is a hyper-parameter to make a trade-off between the two losses.
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Table 2: Comparison (%) to state-of-the-art methods on Pascal VOC 2007. Results are reported
in terms of class-wise average precision (AP) and mean average precision (mAP). † indicates the ViT-B/16
backbone is used.

Method aero bike bird boat bottlebus car cat chair cow table dog horse motorpersonplant sheepsofa train tv mAP
SSGRL Chen et al. (2019a) 99.5 97.1 97.6 97.8 82.6 94.8 96.7 98.1 78.0 97.0 85.6 97.8 98.3 96.4 98.8 84.9 96.5 79.8 98.4 92.8 93.4
ML-GCN Chen et al.
(2019b)

99.5 98.5 98.6 98.1 80.8 94.6 97.2 98.2 82.3 95.7 86.4 98.2 98.4 96.7 99.0 84.7 96.7 84.3 98.9 93.7 94.0

ASL Ridnik et al. (2021) - - - - - - - - - - - - - - - - - - - - 94.4
SALGL Zhu et al. (2023b) 99.9 98.8 98.3 98.2 81.6 96.5 98.1 97.8 85.2 97.0 89.6 98.5 98.7 97.1 99.2 86.9 96.4 89.9 99.5 95.2 95.1
MVLR 99.7 98.1 98.5 99.3 87.0 98.2 98.3 98.9 86.7 98.3 89.9 99.2 98.7 97.7 99.3 88.3 97.6 87.0 99.3 94.1 95.7
Q2L-TRL Liu et al. (2021) 99.9 98.9 99.0 98.4 87.7 98.6 98.8 99.1 84.5 98.3 89.2 99.2 99.2 99.2 99.3 90.2 98.8 88.3 99.5 95.5 96.1
M3TR† Zhao et al. (2021) 99.9 99.3 99.1 99.1 84.0 97.6 98.0 99.0 85.9 99.4 93.9 99.5 99.4 98.5 99.2 90.3 99.7 91.6 99.8 96.0 96.5
PatchCT† Li et al. (2023) 100.0 99.4 98.8 99.3 87.2 98.6 98.8 99.2 87.2 99.0 95.5 99.4 99.7 98.9 99.1 91.8 99.5 94.5 99.5 96.3 97.1
MVLR† 100.0 98.9 99.4 99.1 91.2 99.5 98.9 99.5 91.1 99.7 93.1 99.8 99.6 98.7 99.4 90.5 99.9 91.0 99.9 96.7 97.3

4 Experiments

4.1 Datasets and Metrics

We employ six datasets for evaluation in total. To be specific, MS-COCO Lin et al. (2014), PASCAL VOC
2007 Everingham et al. (2010) and NUS-WIDENUS-WIDE Chua et al. (2009) are adopted for general multi-
label image recognition. The details of the datasets would be introduced in the Appendix. Following the
previous works Wang et al. (2016); Chen et al. (2019b); Zhu et al. (2023b), the mean average precision
(mAP) is reported to evaluate the overall performance for general multi-label image recognition. Besides,
we also report Class-wise Precision (CP), Recall (CR), F1 (CF1), and the average Overall Precision (OP),
Recall (OR), F1 (OF1). Note that “CF1" and “OF1" are more informative since Precision and Recall vary
with the threshold.

4.2 Implementation Details

We utilize CLIP Radford et al. (2021) for extracting textual embeddings and visual features. By default, we
employ ResNet-101 He et al. (2016) as the image encoder. The text encoder remains fixed during the training
phase. The number of learnable prompt tokens, denoted as L, is configured to 4. Values for γ+ and γ− are
designated as 0 and 2, respectively. The hyper-parameter λ is established as 4.0. Input images are resized to
448×448 during both the training and testing phases. The model is trained over 30 epochs using the AdamW
optimizer with a batch size of 32. The learning rate is defined as 0.0001 and diminishes following a cosine
policy. Consistent with prior research Ridnik et al. (2021); Zhu et al. (2023b), we implement exponential
moving average on model parameters with a decay rate of 0.9997.

4.3 Comparison with State-of-the-art
Table 3: Comparison (%) to state-of-the-art
methods on NUS-WIDE. † indicates ViT-B/16
backbone is used.

Method mAP ALL Top-3
CF1 OF1 CF1 OF1

CMA You et al. (2020) 61.4 60.5 73.7 55.5 70.0
ASL Ridnik et al. (2021) 63.9 62.7 74.6 - -
SALGL Zhu et al. (2023b) 66.3 64.1 75.4 59.5 71.0
MVLR 67.3 64.9 75.5 60.0 71.5
Q2L-TRL Liu et al. (2021) 66.3 64.0 75.0 - -
PatchCT† Li et al. (2023) 68.1 65.5 74.7 61.2 71.0
MVLR† 68.9 66.1 76.1 61.7 71.7

The comparisons on MS-COCO, PASCAL VOC
2007, and NUS-WIDE are shown in Table 1, Table 2
and Table 3, respectively. MVLR achieves state-of-
the-art performance across various backbones and
resolutions on all datasets, surpassing other meth-
ods with a decent margin. On the MS-COCO, com-
pared with SALGL Zhu et al. (2023b) that utilized
linguistic modality while hindering its role, MVLR
exhibits considerable performance gains, exceeding
them by 2.7% mAP, suggesting the superiority of
fully exploiting linguistic modality. Compared with
ML-GCN Chen et al. (2019b) that also maps label representations into category centers while neglecting
the visual context, MVLR achieves 5.5% gains in mAP, demonstrating the effectiveness of learning input-
adaptive category centers. Moreover, our method outperforms all other methods on resolution of 576 × 576
and ViT-B/16 backbone, surpassing previous state-of-the-art by 1.7% and 2.1% mAP respectively. On the
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NUS-WIDE, our method surpasses all other methods on ResNet101 and ViT-B/16 backbones, achieving
67.3% and 68.9% mAP, respectively, which demonstrates the robustness of MVLR when addressing the
noisy real-world images. On the PASCAL VOC 2007, MVLR also outperforms all other methods. With
ViT-B/16 backbone, the AP of our method on all 20 categories exceeds 91.1%, which demonstrates the
effectiveness of our method in handling objects of distinct sizes and semantics. The experimental results
clearly confirm the effectiveness of our proposed method, and also show good generalizability to different
network architectures.

4.4 Ablation Studies

Table 4: Ablation study (%) on the proposed
modules. The baseline method in the first row uti-
lizes the pure category names to extract label repre-
sentations.

PDLR IFM QMVL MS-COCO NUS-WIDE
mAP CF1 OF1 mAP CF1 OF1
81.8 67.3 66.4 59.2 42.3 55.6

✓ 83.4 76.8 80.7 60.6 55.0 73.5
✓ 85.9 81.0 83.3 65.3 63.4 74.9

✓ ✓ 88.0 82.4 84.1 65.8 63.7 74.9
✓ ✓ 86.2 81.1 83.5 65.6 63.5 74.9
✓ ✓ ✓ 88.5 82.8 84.4 67.3 64.8 75.3

Effect of proposed modules. The foremost thing
we are interested in is the improvements brought
by the proposed PDLR, IFM and QMVL. To verify
this, we set a baseline method that utilizes pure cat-
egory names to extract label representations and no
further interactions are performed between modali-
ties. As shown in Table 4, the performance of using
pure label names is unsatisfactory, leading to poor
CF1 and OF1. While PDLR heals the performance
significantly. We attribute this to that PDLR ef-
fectively extracts the semantic knowledge from the
text encoder. When combined with IFM, the per-
formance achieves a large boost (+4.6% and +5.2% mAP on COCO and NUS respectively), suggesting the
effectiveness of deep fusion. Moreover, the proposed QMVL enhances the performance significantly, e.g., im-
prove mAP by 4.1% and 6.1% on COCO and NUS compared to baseline. Notably, three proposed modules
work mutually and bring profound improvements when combined together, which fairly demonstrates the
effectiveness of all proposed modules.

Table 5: Ablation study (%) on the scanning
order in QMVL. Different orders are illustrated in
Figure 3.

Method Order MS-COCO NUS-WIDE
mAP CF1 OF1 mAP CF1 OF1

Mamba F. 87.4 81.3 83.9 66.1 63.7 74.7
Mamba O-F.B. 87.8 81.9 84.0 66.2 64.0 74.8
Mamba P-F.B.-S1 88.4 82.6 84.2 67.1 64.8 75.3
Mamba P-F.B.-S2 88.5 82.8 84.4 67.3 64.9 75.5

Scanning order in QMVL. Another important
thing is the effect of the scanning order in QMVL.
The mamba structure experts in processing 1-D se-
quences, and we aim to reduce the order-dependence
of QMVL through appropriate scanning. As shown
in Figure 3, there are typically four ways to scan
the input sequences from two modalities. Figure 3
a) and Figure 3 b) view the concatenated sequence
as a whole entity and b) further performs both for-
ward and backward scan. Figure 3 c) and Figure 3 d) consider the difference of sequences and apply partial
reverse scanning on the former sequence and the latter sequence, respectively. From Table 5, partial re-
verse scanning (P-F.B.) performs significantly better than overall processing (O-F.B.). This is due to that
reversing sequence independently is crucial for cross-modal interaction in mamba. Reversing the latter se-
quence (P-F.B.-S2) exhibits slightly better performance than the former (P-F.B.-S1), which indicates that
bidirectional scanning of the current modality captures more effective interaction.

Table 6: Comparison (%) on the cross-modal in-
teraction structure, including attention-based and
mamba structures.
Method FLOPs (G) MS-COCO NUS-WIDE

mAP CF1 OF1 mAP CF1 OF1
Cross-Attn. 1.46 88.0 82.2 84.0 66.4 64.4 75.1
Self-Attn. 1.75 88.3 82.6 84.4 66.9 64.7 75.2
QMVL 1.17 88.5 82.8 84.4 67.3 64.9 75.5

Comparisons between attention-based struc-
tures and QMVL. Attention-based structures are
adopt at processing inputs from different modali-
ties. In this part, we compare the attention-based
methods and our proposed QMVL. Specifically, we
employ the standard self-attention block Vaswani
et al. (2017) and cross-attention block Vaswani et al.
(2017) respectively. For the self-attention, inputs
from different modalities are concatenated first. As shown in Table 6, self-attention performs better than
cross-attention while suffering from larger FLOPs. Our proposed QMVL achieves better performance with
lower FLOPs, which verifies that QMVL is more efficient at cross-modal interactions. We attribute this to
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a) Forward (F.)

...... ...... ......

......

Sequence-1 Sequence-2

......

Sequence-1 Sequence-2

......

Sequence-1 Sequence-2

......

Sequence-1 Sequence-2
S1 Forward Scan S1 Backward Scan S2 Forward Scan S2 Backward Scan

Forward Scan Forward Scan Backward Scan

b) Overall Forward and Backward (O-F.B.)

c) Partial Forward & Backward with Sequence-1 (P-F.B.-S1) d) Partial Forward & Backward with Sequence-2 (P-F.B.-S2)

Figure 3: Illustration of the scanning order in the cross-modal mamba blocks. Typically, there
are four ways to perform scanning for the two sequences. a) “F.” and b) “O-F.B.” treat the concatenated
sequence as an overall entity while b) performs both forward and backward scan. c) “P-F.B.-S1” and d)
“P-F.B.-S2” consider the difference of input sequences and perform partial reverse scanning. S1 and S2 come
from different modalities.

that our quadruplet design enables order-independent interactions while keeping the efficiency of the mamba
structure.

Table 7: Ablation study (%) on the generation of category centers.
“Label Rep.” means the category centers are generated from label represen-
tations.

Method Text MS-COCO NUS-WIDE
mAP CF1 OF1 mAP CF1 OF1

Classifier Learning CLIP-Text 85.0 78.7 82.4 65.4 63.3 73.3
Label Rep. CLIP-Text 81.6 54.6 47.7 58.6 29.1 36.6
Label Rep. + QMVL CLIP-Text 85.9 81.0 83.3 65.3 63.4 74.9

88.5 82.8 84.4 67.3 64.8 75.3MVLR CLIP-Text (↑3.5) (↑4.1) (↑2.0) (↑1.9) (↑1.5) (↑2.0)
Classifier Learning BERTBase 84.8 78.3 82.1 64.8 63.1 73.7
Label Rep. BERTBase 83.6 78.1 81.8 60.2 57.5 73.6
Label Rep. + QMVL BERTBase 85.7 80.8 83.0 64.9 63.1 74.6

87.8 82.1 83.9 66.5 64.2 74.9MVLR BERTBase (↑3.0) (↑3.8) (↑1.8) (↑1.7) (↑1.1) (↑1.2)

Is using label representa-
tions as category centers
better? We verify the ef-
fectiveness of using label rep-
resentations as category cen-
ters. As shown in Table 7,
we set “Classifier Learning” as
a reference, where we perform
an uni-directional interaction
and C traditional classifiers
are learned. Accordingly, “La-
bel Rep.” denotes the cate-
gory centers are mapped from
label representations, and “Label Rep. + QMVL” indicates that the QMVL is further employed. The low
performance of “Label Rep.” indicates that generating category centers directly from static label repre-
sentations is inferior. However, this can be improved by constructing dynamic category centers through
“Label Rep.+ QMVL”. This indicates that QMVL can effectively model the cross-modal alignment and en-
able input-adaptive category centers. Moreover, MVLR surpasses all three reference methods, which further
demonstrates the superiority of our proposed components including PDLR, IFM and QMVL. Our approach
is robust to the choice of text encoder, and similar conclusions can be drawn when using BERT Devlin et al.
(2019) as the text encoder (shown in Table 7).

Table 8: Ablation study (%) on the components
of PDLR. L is the number of learnable tokens.

Prompt Method L
MS-COCO NUS-WIDE

mAP CF1 OF1 mAP CF1 OF1
Hard - 87.5 81.5 83.3 66.3 64.2 74.8
Soft 4 88.2 82.3 84.3 66.6 64.6 75.0

Hard+Soft 4 88.5 82.8 84.4 67.3 64.9 75.5
Hard+Soft 8 88.6 82.8 84.7 67.0 64.6 75.0
Hard+Soft 12 88.3 82.7 84.6 66.9 64.3 74.9

Components of PDLR. As shown in Table 8,
employing solely hard prompts or soft prompts re-
sults in degraded performance, e.g., using only hard
prompts leads to 1.0% mAP drop on both COCO
and NUS-WIDE. Using more soft prompt tokens
(e.g., L = 8) yields better results on MS-COCO but
inferior results on the noisy NUS-WIDE. Therefore,
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Figure 4: Ablation study on the components of IFM. “LA.” denotes label attention. “CA.” denotes
context-aware attention. “CI.” is channel interaction.

we suggest using 4 prompt tokens in PDLR as a
good trade-off.

Components of IFM. As presented in Figure 4, context-aware attention plays a vital role in the proposed
IFM, bringing 1.7% and 1.5% mAP improvements on COCO and NUS-WIDE respectively. This is due to
that context-aware attention significantly facilitates the integration of downstream semantics. The label
attention, channel interaction and regularization loss LKCR all help improve the performance and works
mutually in our proposed MVLR, which fairly verifies the importance of each component in IFM.

5 Conclusion

In this work, we propose MVLR, a novel Mamba-enhanced visual-linguistic representation learning frame-
work for multi-label image recognition. To address the defects of existing multi-modal approaches, we
propose four modules, namely PDLR, IFM and QMVL to fully exploit the linguistic modality and learn
the context-aware label representations and semantic-related visual representations concurrently. To be spe-
cific, the PDLR has utilized both hard and soft prompts for acquiring semantic knowledge from the large
language model, which helps the model to fully exploits the potential of linguistic modality. Then, the
extracted label representations in PDLR have been aggregated by the IFM with several attention and inter-
action modules, aiming to capture more reliable and comprehensive label representations. Later, QMVL has
conducted Mamba-enhanced visual-linguistic interactions among the visual and linguistic representations
through a quadruplet of Mamba groups. We finally obtain the deeply-interacted, reliable and comprehen-
sive visual and linguistic representaions for multi-label image recognition. Extensive experiments show that
Mamba-enhanced visual-linguistic representation learning is a reliable and useful way for multi-label image
recognition, which achieves state-of-the-art performance on multiple widely used benchmarks .

Broader Impact Statement

One limitation is that the semantic knowledge extracted by the pre-trained vision-language model relies on
the model’s pretraining data. This may introduce some unexpected noises to our method, and future work
can explore the impact of these noises or other model biases on multi-label image recognition. Additionally,
in our training datasets, there are unannotated objects present in the images, which could impact the model’s
performance in real-world scenarios. Our aim in this paper is to develop a general method for multi-label
image recognition without targeting specific applications, which does not directly involve specific societal
issues.
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A Appendix

A.1 Details of Datasets

MS-COCO. The Microsoft COCO dataset Lin et al. (2014) is widely utilized for evaluating multi-label
classification tasks. It comprises a total of 123,287 images across 80 categories, with an average of approx-
imately 2.9 labeled objects per image. We train the model on a training set containing 82,783 images and
evaluate its performance on a test set consisting of 40,504 samples.

PASCAL VOC 2007. The VOC 2007 dataset Everingham et al. (2010) serves as a widely used benchmark
for multi-label recognition tasks, consisting of 9,963 images across 20 distinct object classes. On average,
each image is annotated with 1.4 labels. Following the standard protocal Chen et al. (2019b), we train the
model on the train set containing 5,011 images and assess its performance on the test set comprising 4,952
images.

NUS-WIDE. NUS-WIDE Chua et al. (2009) consists of 269,648 images annotated with 81 visual concepts
and 5,018 labels. After removing unannotated samples, the dataset is randomly split into a training set
and a test set, where the training set comprises 125,449 images and the test set contains 83,898 images.
Noteworthy for its higher noise levels and increased difficulty compared to other benchmarks, NUS-WIDE
presents unique challenges for evaluation.

A.2 Further Analyses

Analysis of computational costs. Cross-modal interaction often suffers from heavy computational costs
due to the need for fusing two large sequences, which is partially mitigated by our mamba-based structure.
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Figure 5: Analysis on the number of parameters (left) and FLOPs (right) of different methods
of cross-modal interaction. Our QMVL has a reduced number of parameters compared to attention-based
methods. QMVL exhibits a notable reduction in FLOPs when the input resolution increases.

Table 9: Analysis on overall computational costs. “M” (Million) denotes the number of parameters.
Method FLOPs (G) Params. (M) COCO NUS
ML-Decoder Ridnik et al. (2023) 37.2 47.3 86.6 64.2
Q2L Liu et al. (2021) 43.2 143.1 84.9 65.0
Baseline 36.8 43.6 81.6 58.6
MVLR 37.6 47.8 88.5 67.3

As presented in Figure 5, we compare the proposed QMVL and two attention-based methods (i.e., self-
attention block and cross-attention block). QMVL has a reduced number of parameters compared to both
self-attention and cross-attention. Moreover, QMVL always exhibits lower FLOPs than attention-based
structure, while the reduction in FLOPs is more significant when the input resolution increases. Note that
QMVL achieves better performance (in Table 6) with lower computational costs, which indicates that QMVL
is more efficient at cross-modal interaction. We also report the overall computational costs of our method.
As shown in Table 9, compared to previous methods Ridnik et al. (2023); Liu et al. (2021), which introduce
multiple decoder layers on top of their backbone networks, our method exhibits significant advantages in
computational complexity.

Sensitivity analysis of λ. As shown in Figure 6, we evaluate the parameter sensitivity of λ in Eq. 14.
The results suggest that the performance of MVLR is generally stable. However, λ > 4 may result in a
performance decline since an overly large λ forces the learnable feature to collapse into the original feature
space. Therefore, λ = 4 is a good trade-off.

Table 10: Sensitivity analysis (%) of α. Results
are reported on MS-COCO.

α 0.0 0.2 0.4 0.5 0.6 0.8 1.0
mAP 87.9 88.0 88.4 88.5 88.2 88.0 87.5
CF1 82.3 82.2 82.6 82.8 82.7 82.4 82.0
OF1 83.8 83.8 84.1 84.4 84.2 84.1 83.5

Sensitivity analysis of α. As shown in Table 10,
we analyze the influence of different choices of α in
Eq. 10. A value between 0.4 and 0.6 achieves better
performance than alpha = 0, which verifies the ef-
fectiveness of relation aggregation. Increasing does
not scale up the performance, since the knowledge-
aware relationships may shrink the learning abilities
of soft prompts.

Qualitative results. In Figure 7, we provide the predicted results of “Classifier Learning” approach and
our proposed MVLR with a threshold of 0.6. 1) Baseline generates many false negatives, especially the
small objects in complex scenarios. 2) Baseline tends to predict “person” in most cases. We attribute this
to that the static category centers in Baseline tend to overfit the distribution of the training set, resulting
in high confidence in the frequently occurred labels such as “person”. In contrast, dynamically constructing
the input-adaptive category centers (i.e., in MVLR) mitigates this issue.
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Figure 6: Sensitivity analysis (%) of λ. Results are reported on MS-COCO (left) and NUS-WIDE (right).
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Figure 7: Predictions of “Classifier Learning” (CL) baseline and our proposed MVLR. Each
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