702 A APPENDIX

A.1 DATASET

Problem Types	Problem Classes
	Diet Problem
	Transportation Problem
	Blending Problem
LPs	Production Planning Problem
	Network Flow Problem
	Portfolio Optimization Problem
	Cutting Stock Problem
	Staff Scheduling Problem'
	Knapsack Problem
	Traveling Salesman Problem (TSP)
MILPs	Vehicle Routing Problem (VRP)
	Bin Packing Problem
	Set Covering Problem
	Capacitated Facility Location Problem
	Capital Budgeting Problem
	Assignment Problem

A.2 MODEL EQUIVALENCE CLASS

Definition A.1 (Model Equivalence) We say $C(\mathcal{P})$ is a model equivalence class of the MILP/LP problem instance \mathcal{P} if $\forall \hat{\mathcal{P}} \in C(\mathcal{P}), \exists$ permutation matrices P_1, P_2 which shuffles the index of a vector or column index of a matrix s.t. $\hat{\mathcal{P}}$ can be written in the following form:

\min_x	$\hat{c}^T x,$				
s.t.	$\hat{A}x\hat{\circ}\hat{b},$	\hat{l}	\leq	x	\leq

û

where $\hat{b} = P_2 b$, $\hat{C} = P_1 C$, $\hat{A} = P_2 A P_1$, $\hat{\circ} = P_2 \circ$, $\hat{l} = P_1 l$, $u = P_1 u$.

 $\forall \mathcal{P}_2 \in \mathcal{C}(\mathcal{P}_1)$, we say \mathcal{P}_2 is **model-equivalent** to \mathcal{P}_1 , denote as $\mathcal{P}_1 \sim \mathcal{P}_2$.

A.3 WEIGHTED BIPARTITE GRAPH FOR REPRESENTING MILP/LP

A weighted bipartite graph for a MILP/LP instance is denoted by $\mathbf{G} = (\mathbf{V} \cup \mathbf{W}, \mathbf{E})$, with vertex set $\mathbf{V} \cup \mathbf{W}$ divided into 2 groups $\mathbf{V} = \{\mathbf{v}_1, \dots, \mathbf{v}_m\}$ for constraints, and $\mathbf{W} = \{\mathbf{w}_1, \dots, \mathbf{w}_n\}$ for variables, \mathbf{E} consisting of $E_{ij} = E(v_i, w_j), \forall i = 1, \dots, m, j = 1, \dots, n$. To fully represent all information in a MILP/LP instance, we associate each vertex with features:

- The constraint vertex $\mathbf{v}_i \in \mathbf{V}$ is equipped with a feature vector \mathbf{H}^V with elements $\mathbf{h}_i^V = (b_i, o_i) \in \mathcal{H}^V = \mathbb{R} \times \{\leq, \geq, =, <, >\}$
- The variable vertex $\mathbf{w}_j \in \mathbf{W}$ is equipped with a feature vector \mathbf{H}^W with elements $\mathbf{h}_j^W = (c_j, l_j, u_j, \tau_j) \in \mathcal{H}^W = \mathbb{R} \times \{\mathbb{R} \cup -\infty\} \times \{\mathbb{R} \cup \infty\} \times \{0, 1\}$. $\tau_j = 1$ if $j \in \mathbb{I}$ and $\tau_j = 0$ otherwise.
- The edge $E_{ij} \in \mathbb{R}$ connects $\mathbf{v}_i \in \mathbf{V}$ and $\mathbf{w}_j \in \mathbf{W}$, $E_{ij} = \mathbf{A}_{ij}$. There is no edge connecting vertices in the same vertex group.

756 import json 758 from gurobipy import Model, GRB 759 760 # {problem_class} - {problem_name} 761 # Problem type: {problem_type} 762 # Domain: {domain} 763 # Property: (fill in this comment by briefly describing the 764 variant of the problem) 765 766 # Read data 767 with open('data.json', 'r') as f: 768 769 data = json.load(f) 770 771 ### (fill in this section) Read parameters from data (assign 772 domain specific parameter name) 773 774 ### (fill in this section) Get hyperparameter from parameters 775 (assign domain specific parameter name) 776 777 # Create a new model model = Model("{problem_class}") 779 780 ### (fill in this section) Add variables of the classic 781 {problem_name} (assign domain specific name) 782 783 ### (fill in this section) Set objective of the {problem_name} 784 (assign domain specific name) 785 786 ### (fill in this section) Add constraints of the 787 {problem_name} (assign domain specific name) 788 789 # Save the model as a '.lp' file. model.write('model.lp') 791 792

Figure 4: Code skeleton for optimization model simulation.

A.4 CONNECTION BETWEEN MODEL EQUIVALENCE AND GRAPH ISOMORPHISM

To test whether 2 modeling instances were permutation equivalent, we can equivalently conduct isomorphism testing between their corresponding weighted bipartite graphs. Lemma A.1 establishes an equivalence between assessing modeling appropriateness and graph isomorphism testing.

802 **Definition A.2 (Graph Isomorphism)** Consider 2 graphs $\mathcal{G}_1 = (\mathbf{G}_1, \mathbf{H}_1^V \times \mathbf{H}_1^W)$ and $\mathcal{G}_2 = (\mathbf{G}_2, \mathbf{H}_2^V \times \mathbf{H}_2^W)$ with $\mathbf{G}_i = (\mathbf{V}^i \cup \mathbf{W}^i, \mathbf{E}^i)|_{1 \le i \le 2}$. We say \mathcal{G}_1 and \mathcal{G}_1 are isomorphic if there 804 exists permutation matrix $\mathbf{P}_1, \mathbf{P}_2$ such that: $\mathbf{P}_1 \mathbf{E}^1 P_2^T = \mathbf{E}^2, \mathbf{P}_1 \mathbf{H}_1^W = \mathbf{H}_2^W, \mathbf{P}_2 \mathbf{H}_1^V = \mathbf{H}_2^V$. If 2 805 graphs \mathcal{G}_1 and \mathcal{G}_1 are isomorphic, denote $\mathcal{G}_1 \stackrel{g}{\sim} \mathcal{G}_2$.

Lemma A.1 \forall *MILP/LP instances* $\mathcal{P}_1, \mathcal{P}_2$ *with corresponding bipartite graph* $\mathcal{G}_1, \mathcal{G}_1$ *, we have* $\mathcal{P}_1 \sim \mathcal{P}_2 \iff \mathcal{G}_1 \stackrel{g}{\sim} \mathcal{G}_2$.

809

806

793 794

796

797 798

799

800

801

810				
811	**Problem Statement: {problem_name} in			
812	{domain}**			
813				
814	**Background:**			
815	(A brief description of background			
816	information)			
817				
818	**Problem Description:**			
819	(A brief description of {problem_name} in			
820	{domain})			
821				
822	**Parameters:**			
823	Only consider parameters listed below. And			
824	these parameters will be provided in a			
825	separated "data.json".			
826	{parameter_skeleton}			
827				
828	**Decision Variables:**			
829	(A list of decision variables and their			
830	description)			
831				
832	**UDJECTIVE:**			
833	(State the objective function)			
834				
835	**CONSTRAINTS:**			
836				
837	(anguage)			
838	**Tmplementation Notes:**			
839	(Any additional notes for implementation)			
840				
841	**Expected Outcome:**			
842	(a brief description of the expected outcome)			
843				
844				
845				
846	Figure 5: Standard structure for word problem crafted from INFORMS AIMMS-MOPTA Optimiza-			
847	tion Modeling Competition.			
848				
849				
850				
851				
852	A.5 PROOF OF LEMMA A.1:			
853				
854				
855	We prove this lemma by proving 2 claims:			
856				
857				
858				
859				
860	Claim 1: $\mathcal{G}_1 \sim \mathcal{G}_2 \Longrightarrow \mathcal{P}_1 \sim \mathcal{P}_2.$			
861 862	Suppose $\mathcal{G}_1 \sim \mathcal{G}_2$. For bipartite graphs \mathcal{G}_1 and \mathcal{G}_2 , nodes v_i would only connect with some node w_j if the <i>i</i> th constraint involves decision variable <i>m</i> . Therefore the adjacency matrix of \mathcal{C}_1 would be			
863	$\mathbf{k} = \mathbf{k} = \mathbf{k}$ (k) $\begin{bmatrix} 0 & \mathbf{A}_{1}^{T} \end{bmatrix}$ is a set of the s			
003	in the form $\mathbf{A}_{adj}^{(\kappa)} = \begin{bmatrix} \mathbf{O} & \mathbf{I}_{k} \\ \mathbf{A}_{k} & \mathbf{O} \end{bmatrix}$, $\forall k = 1, 2$. Now, by the assumption that $\mathcal{G}_{1} \sim \mathcal{G}_{2}$, \exists permutation			

964	
804	**Problem Statement: Knapsack Problem in Cargo Loading**
600	
866	**Background:**
867	In the context of cargo loading, the knapsack problem involves selecting a subset of items
868	to include in a cargo such that the total value of the selected items is maximized, while
869	This problem is a classical example of a combinatorial optimization problem and is widely
870	studied in operations research.
871	
872	**Problem Description:**
873	Given a set of items, each with a specific value and weight, the objective is to determine
874	vehicle's weight capacity. The decision to include an item in the cargo is binary (either
875	the item is included or it is not).
876	
877	**Parameters:**
878	Only consider parameters listed below. And these parameters will be provided in a separated
879	data.json . {
880	'values': 'the value of each item; list of length (number of items)',
881	'weights': 'the weight of each item; list of length (number of items)',
882	'capacity': 'the capacity of the vehicle; single float value',
883	}
884	**Decision Variables:**
885	- \($x[i]$ \): A binary variable that indicates whether item \(i \) is included in the cargo
886	(1) or not (0).
887	
888	**Objective:**
889	product of the value of each item and its corresponding binary decision variable.
890	
891	**Constraints:**
892	The total weight of the items included in the cargo cannot exceed the vehicle's capacity.
893	binary decision variable and ensuring that this sum does not exceed the given capacity.
894	
895	**Implementation Notes:**
896 897	 The problem is formulated as a "Acad-Integer Enter Programming (Wife, problem. The decision variables are binary, indicating the inclusion or exclusion of each item. The model should be saved as a '.lp' file for further analysis and solution.
898	
899	**Expected Outcome:**
900	The expected outcome is a selection of items that maximizes the total value while ensuring that the total weight does not exceed the vehicle's capacity. The solution will provide the
901	optimal set of items to include in the cargo.
902	
903	
904	Figure 6: Example for word problem on cargo loading.
905	
906	
907 matri	x P such that
908	$\begin{bmatrix} \mathbf{P}_V & 0 \end{bmatrix}$
909	$\mathbf{P} = \begin{bmatrix} -v & -v \\ 0 & \mathbf{P}_W \end{bmatrix},$
910	[, , ,]
911	$\mathbf{P}\mathbf{A}_{adj}^{(z)}\mathbf{P}=\mathbf{A}_{adj}^{(z)},$
912	$\mathbf{P}_{V}^{T}\mathbf{H}_{1}^{V}=\mathbf{P}^{T}\mathbf{H}_{2}^{V},$
913	$\mathbf{D}^T \mathbf{H}^W = \mathbf{D}^T \mathbf{H}^W$
914	$\mathbf{L}_{W}\mathbf{L}_{1} = \mathbf{L}_{W}\mathbf{L}_{2}$.
915 There	efore, we have
916	
917	$\mathbf{A}_{adj}^{(2)} = \begin{bmatrix} 0 & \mathbf{P}_V \mathbf{A}_1^T \\ \mathbf{P}_W \mathbf{A}_1 & 0 \end{bmatrix} \text{ and } \mathbf{H}_2 = \begin{bmatrix} \mathbf{P}_V \mathbf{H}_1^V \\ \mathbf{P}_W \mathbf{H}_1^W \end{bmatrix}.$

In a cargo loading scenario, you need to choose a subset of items, each with a given value and weight, to maximize total value without surpassing the vehicle's weight capacity. The decision to include an item is binary. You'll be given a list of item values, weights, and the vehicle's capacity. Your task is to determine which items to include to achieve the highest total value while staying within the weight limit. You should only consider parameters listed below. And these parameters will be provided in a separated "data.json". { 'values': 'the value of each item; list of length (number of items)', 'weights': 'the weight of each item; list of length (number of items)', 'capacity': 'the capacity of the vehicle; single float value', }

Figure 7: Example for concise version word problem on cargo loading.

	(mark) an alara) (anak) an ana)
#	<pre>f {problem_class} = {problem_name} f {problem_type}</pre>
#	f Domain: {domain}
#	<pre># Property: (fill in this comment by briefly describing th ariant of the problem)</pre>
#	f Read data
v	/ith open('data.json', 'r') as f: /ata = json.load(f)
#	### (fill in this section) Read parameters from data (assign Nomain specific parameter name)
#	### (fill in this section) Get hyperparameter from paramete assign domain specific parameter name)
≠ n	<pre>f Create a new model nodel = Model("{problem_class}")</pre>
#	<pre>### (fill in this section) Add variables of the class: problem_name} (assign domain specific name)</pre>
#	<pre>### (fill in this section) Set objective of the {problem_name assign domain specific name)</pre>
4	### (fill in this section) Add constraints of t

Figure 8: Code skeleton for optimization model simulation.

We may reformulate the MILP/LP instance \mathcal{P}_2 as follows:

By the definition of permutation equivalent, we say $\mathcal{P}_2 \sim \mathcal{P}_1$.

$$egin{aligned} \mathcal{P}_2: & \min_{\mathbf{x}\in\mathbb{R}^p imes\{0,1\}^{n-p}}\mathbf{c}^T\mathbf{P}_V\mathbf{x}, \ & ext{ s.t. } \mathbf{P}_W\mathbf{A}\mathbf{P}_V\mathbf{x}\circ\mathbf{P}_W\mathbf{b}, \mathbf{l}\leq\mathbf{P}_V\mathbf{x}\leq\mathbf{u} \end{aligned}$$

Claim 2: $\mathcal{P}_1 \sim \mathcal{P}_2 \Longrightarrow \mathcal{G}_1 \sim \mathcal{G}_2.$

Suppose $\mathcal{P}_1 \sim \mathcal{P}_2$. By the definition of permutation equivalent class, \exists permutation matrix \mathbf{P}_1 and \mathbf{P}_2 such that

574	$\mathbf{A}_2 = \mathbf{P}_2 \mathbf{A}_1 \mathbf{P}_1$
975	$\mathbf{b}_2 = \mathbf{P}_2 \mathbf{b}_1$
976	$S_2 = 2S_1,$
977	$\mathbf{C}_2 = \mathbf{P}_1^{I} \mathbf{C}_1,$
978	$\mathbf{P}_2 \circ_1 = \circ_2,$

Therefore, the corresponding adjacent matrix in the bipartite graph of \mathcal{P}_2 is

981 982 982 983 984 985 986 986 987 988 $\mathbf{A}_{adj}^{(2)} = \begin{bmatrix} 0 & \mathbf{A}_2^T \\ \mathbf{A}_2 & 0 \end{bmatrix}$ $= \begin{bmatrix} 0 & \mathbf{P}_1^T \mathbf{A}_1^T \mathbf{P}_2^T \\ \mathbf{P}_2 \mathbf{A}_1 \mathbf{P}_2 & 0 \end{bmatrix}$ $= \begin{bmatrix} \mathbf{P}_1^T & 0 \\ 0 & \mathbf{P}_2 \end{bmatrix} \begin{bmatrix} 0 & \mathbf{A}_1^T \\ \mathbf{A}_1 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{P}_1 & 0 \\ 0 & \mathbf{P}_2^T \end{bmatrix}$ $= \hat{\mathbf{P}}^T \mathbf{A}_{adi}^{(1)} \hat{\mathbf{P}}$

988 989 990

991

992 993 994

995 996

997 998 999

979

980

In addition, we have $\mathbf{b}_2 = \mathbf{P}_2 \mathbf{b}_1, \mathbf{c}_2 = \mathbf{P}_1^T \mathbf{c}_1$. Therefore,

$$\mathbf{H}_{2} = \begin{bmatrix} \mathbf{H}_{2}^{V} \\ \mathbf{H}_{2}^{W} \end{bmatrix} = \begin{bmatrix} \mathbf{P}_{1}^{T} & 0 \\ 0 & \mathbf{P}_{2} \end{bmatrix} \begin{bmatrix} \mathbf{H}_{1}^{V} \\ \mathbf{H}_{1}^{W} \end{bmatrix} = \hat{\mathbf{P}}^{T} \mathbf{H}_{1}.$$

According to the definition of graph isomorphism, \mathcal{G}_1 is isomorphic to \mathcal{G}_2 .

A.6 ALGORITHMS

Algorithm 2 WL test for MILP/LP Graphs

Require: A graph instance $(G, H) \in \mathcal{G}_{m,n} \times \mathcal{H}_m^V \times \mathcal{H}_n^W$ and iterate limit L > 0. 1: Initialize with $C_i^{0,V} = HASH_{0,V}(h_i^V), C_j^{0,W} = HASH_{0,W}(h_j^W)$ 1000 1001 2: for $l = 1, 2, \dots, L$ do 3: $C_i^{l,V} = HASH(C_i^{l-1,V}, \sum_{j=1}^n E_{i,j}HASH'_{l,W}(C_j)^{l-1,W})$ 4: $C_i^{l,W} = HASH(C_i^{l-1,W}, \sum_{j=1}^n E_{i,j}HASH'_{l,V}(C_j)^{l-1,V})$ 1002 1003 1004 5: end for 6: return The multisets containing all colors $\{\{C_i^{L,V}\}\}_{i=0}^m, \{\{C_i^{L,W}\}\}_{i=0}^n$ 1008 Algorithm 3 Determine if the graph is decomposable symmetric 1010 **Require:** Graph \mathcal{G} 's adjacent matrix **A** and classification for stable partition^a of it's variable nodes 1011 $\mathcal{I} = \{I_1, I_2, \cdots, I_J\}.$ 1012 1: Choose a index sets I_i with $|I_i| > 1$. 1013 2: **for** i : *I*^{*i*} **do** 1014 3: Search all constraint nodes that connect to node i as \mathcal{J} 1015 4: Exclude node $j \in \mathcal{J}$ if it is uniquely colored. 1016 5: for $j : \mathcal{J}$ do Search all Variables that connect to node j as \mathcal{K} 6: 1017 7: if $\mathcal{K} \subseteq \mathcal{I}_1$ then 1018

 1019
 8:
 pass

 1020
 9:
 else if then

 1021
 10:
 return False

 1022
 11:
 end if

 <sup>1022
 12:</sup> end for

 1023
 13:
 end for

^{1024 14:} **return** True

^aSee formal definition in Appendix A.8

1026 A.7 COMPLEXITY ANALYSIS 1027

1028 For the two main types of problem realizations in our benchmark, Algorithm 2 must converge in 1029 just one iteration. In addition, for problems with m variables and n constraints, the time complexity to distinguish tested problem realizations from the standard realization is at most $\mathcal{O}(mn + n \log n)$, 1030 which is is significantly lower than classical algorithms employed by popular solvers, such as sim-1031 plex method for LP and branch and bound algorithm for MILP. Specifically, 1032

- 1. For WL-determinable problem instances, Algorithm 2 converges after only 1 iteration, and the time complexity is $\mathcal{O}(mn)$.
- 1035 1036

1034

- 2. For decomposable symmetric problem instances, Algorithm 2 converges after only 1 iteration, and we shall further conduct automorphism detection using algorithm 3, which takes time complexity $\mathcal{O}(n \ln n)$. The total time complexity could be $\mathcal{O}(mn + n \ln n)$
- 1039 A.8 PROOF FOR THEOREM 4.1 1040

1041 **Theorem A.1** Denote Algorithm [] by $\mathcal{A}(\mathcal{G}_{test}, \mathcal{G}_{standard})$. Suppose $\mathcal{P}_{standard}$ is WL-determinable 1042 or decomposable symmetric, then $\forall \mathcal{P}_{test}$, we have $\mathcal{A}(\mathcal{G}_{test}, \mathcal{G}_{standard}) == True \iff \mathcal{P}_{test} \sim$ 1043 $\mathcal{P}_{standard}$.

1044 Before establishing the proof, we first introduce the coloring refinement process of WL test for 1045 MILP/LP problem since it is the first step 1 in algorithm \mathcal{A} . For iteration l of the algorithm we will 1046 be assigning to each node a tuple H_i^L containing the node's old compressed label and a multiset of 1047 the node's neighbors' compressed labels. A multiset is a set (a collection of elements where order is 1048 not important) where elements may appear multiple times.

1049 At each iteration l, we will additionally be assigning to each node a new "compressed" label C_i^L with the same H_i^L will get the same compressed label. 1051

1052 Repeat the above process for up to (m+n) (the number of nodes) iterations or until the partition of 1053 nodes by compressed label does not change from one iteration to the next, we will get a converged 1054 multiset.

1055 In addition, we introduce preliminary tools for an algorithm-independent definition. 1056

In fact, WL-determinable and symmetric decomposable can be defined without relying on WL-test 1057 algorithm. We introduced equivalent definitions based on stable partition index sets. 1058

1059 **Definition A.3 (Stable Partition Index Sets)** For a modeling instance \mathcal{P} in the form of (\overline{I}) with n decision variables and n constraints, define index set for optimization variables by \mathcal{I} = 1061 $\{I_1, I_2, \dots, I_s\}$ and index set for constraints by $\mathcal{J} = \{J_1, J_2, \dots, J_t\}$, where 1062

1063 1064

1068 1069

1070 1071

1078

• $\bigcup_{l=1}^{s} I_l = \{1, 2, \cdots, m\}, \bigcup_{k=1}^{t} J_k = \{1, 2, \cdots, n\};$

•
$$I_{l_i} \cap I_{l_j} = \emptyset$$
, $J_{k_p} \cap J_{k_q} = \emptyset$, $\forall i, j \in [1, \dots, |I_l|], i \neq j$, and $p, q \in [1, \dots, |J_k|], p \neq q$.

The following condition holds:

- 1. $(c_i, \tau_i) = (c_{i'}, \tau_{i'} \forall i, i' \in I_p \text{ for some } p \in 1, 2, \cdots, s;$
- 2. $(b_i, \circ_i) = (b_{i'}, \circ_{i'} \forall j, j' \in J_a \text{ for some } q \in 1, 2, \cdots, t;$

3.
$$\forall p \in 1, 2, \dots, s, q \in 1, 2, \dots, t$$
, and $i, i' \in I_p$, we have $\sum_{j \in J_q} a_{ij} = \sum_{j \in J_q} a_{i'j}$;

4.
$$\forall p \in 1, 2, \dots, s, q \in 1, 2, \dots, t$$
, and $j, j' \in J_q$, we have $\sum_{i \in I_p} a_{ij} = \sum_{i \in I_p} a_{ij'}$;

1074 **Lemma A.2** If there are no collision of hash functions and their weighted averages, then WL test 1075 will finally terminated at some stable partition. 1076

- 1077 Lemma A.2 is proved in Chen et al. (2022b).
- **Definition A.4 (WL-determinable, by trivial partition)** \mathcal{P} is WL-determinable if \exists stable parti-1079 tion index sets I and J such that I or J are trivial partitions, i.e. s = m and t = n.

1080 **Definition A.5 (Decomposable Symmetric, by grouped partition)** \mathcal{P} is decomposable symmetric *if* \exists *stable partition index set* \mathcal{I} *and* \mathcal{J} *such that:* 1082 1. There are only two types of index set in \mathcal{I} and \mathcal{J} . Type 1 set only contains a single index. Type 2 contains several indexes, denote these sets by $I_1, \dots, I_{s'}; J_1, \dots, J_{t'}$. 1084 2. $I_1, \dots, I_{s'}$ and $J_1, \dots, J_{t'}$ are equal-sized with $|I_p| = |J_q| > 1, \forall p \in \{1, 2, \dots, s'\}$ and $q \in \{1, 2, \cdots, t'\}.$ 1087 3. $\forall p \in \{1, 2, \dots, s'\}, q \in \{1, 2, \dots, t'\}, i \in I_p, j \in J_q$, we have $|\{a_{ij}|a_{ij} \neq 0\}| = 1, \forall j \in J_q \text{ and } |\{a_{ij}|a_{ij} \neq 0\}| = 1, \forall i \in I_p$. 1088 1089 1090 By Lemma A.2, we can show two sets of definitions are equivalent. 1091 1092 Now we construct our proof by discussing two cases: 1093 1094 **Case 1:** Suppose $\mathcal{P}_{standard}$ is WL-determinable. Want to show $\mathcal{A}(\mathcal{G}_{test}, \mathcal{G}_{standard}) ==$ 1095 True $\iff \mathcal{P}_{test} \sim \mathcal{P}_{standard}$. When $\mathcal{A}(\mathcal{G}_{test}, \mathcal{G}_{standard}) =$ True and $\mathcal{P}_{standard}$ WL-determinable, we have $len(\mathbb{A}_1) =$ $len(\mathcal{C}_1)$ & $len(\mathbb{A}_2) = len(\mathcal{C}_2)$. By Algorithm I, every color in the multisets output by WL test must be distinct and multisets 1099 for $\mathcal{P}_{standard}$ is the same as multisets for $\mathcal{P}_{standard}$. By Definition A.4, one stable partition of $\mathcal{G}_{standard}$ and is $\{I_1, \dots, I_n\}, \{J_1, \dots, J_m\}$, where I_k, J_l are a single-element set, WLOG, assume 1100 1101 $I_k = i_k, J_l = j_l$. Similarly, denote the stable partition of \mathcal{G}_{test} by $\{I'_1, \dots, I'_n\}, \{J'_1, \dots, J'_m\}$, with 1102 $I'_k = [i_k], J'_l = [j'_l].$ 1103 Now, define a bijection mapping that shuffles $[i_1, \dots, i_m]$ and $[j_1, \dots, j_n]$ to get $[i'_1, \dots, i'_m]$ and $[j'_1, \dots, j'_n]$, denote such mapping by **P**. (Since each element in $[i_1, \dots, i_m], [j_1, \dots, j_n], [i'_1, \dots, i'_m]$, or $[j'_1, \dots, j'_n]$ is distinct, we can uniquely find such 1104 1105 1106 bijection). 1107 Notice that such bijection may only map index of $v_i^{standard}$ to index of v_j^{test} , we can separately define a bijection for decision variable index as \mathbf{P}_1 and a bijection for constraint index as \mathbf{P}_1 . 1108 1109 1110 Therefore, exists bijection \mathbf{P}_1 and \mathbf{P}_2 such that \mathcal{P}_{test} can be written in the following form: 1111 1112
$$\begin{split} \min_{x} & \hat{c}^T x, \\ \text{s.t. } & \hat{A} x \hat{\circ} \hat{b}, \hat{l} \leq x \leq \hat{u} \end{split}$$
1113 1114 1115 1116 1117 where $\hat{b} = P_2 b_{standard}, \hat{C} = P_1 C_{standard}, \hat{A} = P_2 A_{standard} P_1, \hat{\circ} = P_2 \circ_{standard}, \hat{l} = P_$ 1118 $P_1 l_{standard}, u = P_1 u_{standard}$. This implies $\mathcal{P}_{test} \sim \mathcal{P}_{standard}$. 1119 1120 **Case 2** : Suppose $\mathcal{P}_{standard}$ is decomposible symmetric. When algorithm \mathcal{A} output "Isomorphic", 1121 the partition sets of $\mathcal{G}_{standard}$ and \mathcal{G}_{test} can be denoted as 1122 $\mathcal{I}_{standard} = [I_1, \cdots, I_k, I_{k+1}, \cdots, I_s];$ 1123 $\mathcal{J}_{standard} = [J_1, \cdots, J_l, J_{l+1}, \cdots, J_t];$ 1124 1125 $\mathcal{I}_{test} = [\hat{I}_1, \cdots, \hat{I}_k, \hat{I}_{k+1}, \cdots, \hat{I}_s];$ 1126 $\mathcal{J}_{test} = [\hat{J}_1, \cdots, \hat{J}_l, \hat{J}_{l+1}, \cdots, \hat{J}_t],$ 1127 1128 where set $[I_1, \dots, I_k], [\hat{I}_1, \dots, \hat{I}_k], [J_1, \dots, J_l], [\hat{J}_1, \dots, \hat{J}_l]$, only contains one index, and set $[I_{k+1}, \dots, I_s], [\hat{I}_{k+1}, \dots, \hat{I}_s], [J_{k+1}, \dots, J_t], [\hat{J}_{k+1}, \dots, \hat{J}_t]$, are equal-sized and consisting at 1129 1130 least 2 indexes. 1131 By the definition of decomposable symmetric instances, for any two sets K, S \in 1132 $[I_{k+1}, \cdots, I_s, I_{k+1}, \cdots, I_s, J_{k+1}, \cdots, J_t, J_{k+1}, \cdots, J_t], K \text{ and } S \text{ are either disconnected or ex-}$ 1133 ists a bijection connection between nodes from K to S.

1134 Now, define a bijection mapping that maps $[I_1, \dots, I_k, I_{k+1}, \dots, I_s, J_1, \dots, J_l, J_{l+1}, \dots, J_t]$ to 1135 $[\hat{I}_1, \dots, \hat{I}_k, \hat{I}_{k+1}, \dots, \hat{I}_s, \hat{J}_1, \dots, \hat{J}_l, \hat{J}_{l+1}, \dots, \hat{J}_t]$, by mapping one-element set to one-element 1136 set, and mapping multi-elements sets according to the connectivity between nodes in corresponding 1137 sets, denote such bijection by \mathbb{P} . 1138 Similar to case 1, we can infer $\mathcal{P}_{test} \sim \mathcal{P}_{standard}$. 1139 1140 A.9 RANDOMLY SAMPLING SUFFICES TO OBTAIN WL-DETERMINABLE INSTANCE 1141 1142 To make WL test work, it is desirable to sample a WL-determinable instance. In Theorem A.2 1143 we proved that for a large range of modeling problems with **flexible property** (Definition $\overline{A.7}$), 1144 especially for problems in our benchmark dataset, we can sample WL-determinable instance from 1145 its parameter set with probability 1. 1146 1147 **Definition A.6 (Modeling Parameter Set)** For a class of model formulation \mathcal{M} with n decision 1148 variables and m constraints, the **parameter set** $S_{m,n}(\mathcal{M})$ is a collection of all possible values for 1149 problem data $(\mathbf{A}, \mathbf{c}, \mathbf{b}, \circ)$. 1150 An example of a formulation parameter set is attached in Appendix ??. 1151 1152 Given a model's parameter set, we say model \mathcal{M} is a flexible model if, for any variables x_i in \mathcal{M} , 1153 at least one of its associated parameters —whether the objective coefficient or any of the constraint 1154 coefficients —can be arbitrarily chosen from its parameter set, which is expected to be sufficiently 1155 large. A formal definition of flexible model is as follows: 1156 **Definition A.7 (Flexible Model)** We say a model \mathcal{M} is **flexible** if the following condition holds: 1157 1158 \forall variables $x_i, i = 1, \dots, \exists$ element $p \in [\mathbf{A}_{:,i}^T, c_i]$ s.t. p can be arbitrarily chosen from some 1159 uncountable set $S(p) \subset \mathbb{R}$. In other words, for given model \mathcal{M} , for any variables x_i in \mathcal{M} , at 1160 least one of its associated parameters —whether the objective coefficient or any of the constraint 1161 coefficients —can be arbitrarily chosen from a sufficiently large space. 1162 **Theorem A.2 (Efficient Sampling)** For a flexible model \mathcal{M} with parameter set $\mathcal{S}_{m,n}(\mathcal{M})$, ran-1163 domly sample in its parameter set under any continuous distribution may get a WL-determinable 1164 *instance in probability 1.* 1165 1166 We present the proof for Theorem A.2 in Appendix A.10 1167 1168 A.10 PROOF OF THEOREM A.2 1169 1170 **Proof:** Claim 1: $P([\mathbf{A}_{:i}^T, c_i] = \mathbf{A}_{:i}^T, c_j]) = 0$ as long as $i \neq j$. 1171 1172 Suppose \mathcal{M} is a flexible model. By the definition of the flexible model, for each variable x_i , there exists at least one element $p \in [\mathbf{A}_{i,i}^T, c_i]$ that can be randomly chosen from an uncountable set 1173 $S_p \subset \mathbb{R}$. This implies that the parameters corresponding to different indices i and j can vary 1174 independently within their respective uncountable set. Sampling from a continuous distribution over 1175 the parameter space $S_{m,n}(\mathcal{M})$ involves independently sampling $[\mathbf{A}_{i,i}^T, c_i]$ from some continuous 1176 distribution for each i. Now, by the property of continuous sampling and independence of $[\mathbf{A}_{i}^{T}, c_{i}]$ 1177 and $[\mathbf{A}_{i,j}^T, c_j]$, we have 1178 $P([\mathbf{A}_{\cdot i}^T, c_i] = \mathbf{A}_{\cdot i}^T, c_i]) = 0,$ 1179 1180

1181

i.e.

$$P([\mathbf{A}_{:,i}^T, c_i] \neq \mathbf{A}_{:,j}^T, c_j]) = 1.$$

1182

1183 Claim 2: Suppose a modeling instance $\mathcal{M}(\mathbf{s})$ has $[\mathbf{A}_{:,i}^T, c_i] \neq [\mathbf{A}_{:,j}^T, c_j], \forall i \neq j$, then this instance is 1184 WL-determinable.

1185 Denote the index set that $\mathbf{e}_i = [\mathbf{A}_{:,i}^T, c_i]$ and $\mathbf{e}_j = [\mathbf{A}_{:,j}^T, c_j]$ differs by K, with $\forall k \in K, e_{ik} \neq e_{jk}$, 1187 e_{ik} is the k-th element in vector \mathbf{e}_i .

It suffices to show that $\forall j \neq j'$, the joint probability of the following events is 1:

1. Event A: $c_i \neq c_{i'}$; 2. Event B: $\sum_{i \in I} a_{ij} \neq \sum_{i \in I} a_{ij'}$ for some \mathcal{I} ; 3. Event C: $\sum_{a \in J} a_{i'a} \neq \sum_{a \in J} a_{iq}$ for some J containing index j or j' and some $i \neq i' \in I$, where I, J elements in stable partition sets \mathcal{I}, \mathcal{J} . Formally speaking, we want to show $P(A \cup B \cup C) = 1$. Now, consider two cases when $j \neq j' = j$ $1, \cdots, n$. Case 1: $e_{jk} = c_j, e_{j'k} = c_{j'}$ for some $k \in K$. Apparently, we have $c_j \neq c_{j'}$. Case 2: $e_{jk} = a_{ij}, e_{j'k} = a_{ij'}$ for some $k \in K$ and some $i = 1, \dots, m$. We have $a_{ij} \neq a_{ij'}$ for some $i = 1, \dots, m$. We want to show $P(B \cup C | \text{Case } 2) = 1$. Consider I containing i, at least one element $i' \in I$ can be arbitrarily chosen from sufficiently large support and makes $a_{i'i} \neq a_{i'i'}$. WLOG, suppose $\hat{I} \subset I$ is a set containing all i's such that $a_{ij} \neq a_{ij'}$, and for the remaining *i*'s, we have $\sum_{i \in I/\hat{I}} (a_{ij} - a_{ij'}) = c$, for some constant c. $P\left(\sum_{i \in I} a_{ij} \neq \sum_{i \in I} a_{ij'}\right) = P\left(\sum_{i \in I} a_{ij} \neq \sum_{i \in I} a_{ij'}\right)$ $= 1 - P\left(\sum_{i \in \hat{I}} a_{ij} - \sum_{i \in \hat{I}} a_{ij'} = -c\right)$ The last equality holds since $\sum_{i \in \hat{I}} a_{ij'}$ and $\sum_{i \in \hat{I}} a_{ij}$ are independent and can be sampled from some continuous distribution. $P(A \cup B \cup C) = P(A \cup B \cup C | \text{Case } 1 \cup \text{Case } 2)$ $= P(\text{Case 1})P(A \cup B \cup C | \text{Case 1}) + P(\text{Case 2})P(A \cup B \cup C | \text{Case 2})$ = P(Case 1) + P(Case 2)= 1By theorem 2, we may get a WL-determinable instance in probability 1. A.11 EXAMPLES Example A.1 (Model Parameter Set for Blending Problem) For example, a blending problem can be formulated as: $\min_{x} \sum_{i=1}^{n} c_i x_i$ s.t. $\sum_{i=1}^{n} a_{ji} x_i \ge p_j, \forall j = 1, \cdots, m.$ $x_i \leq u_i, \forall i = 1, \cdots, n.$ The corresponding parameter set $S_{m,n}(\mathcal{M}_{blend})$ can be defined as $\mathcal{S}_{m,n}(\mathcal{M}_{blend}) = \left\{ (\mathbf{A}, \mathbf{c}, \mathbf{b}, \circ) \middle| \mathbf{A} = [\hat{\mathbf{A}}^T, I_n]^T, \text{ where } \hat{\mathbf{A}} \in \mathbb{R}^{m \times n} \text{ and } I_n \text{ is an } n \times n \right\}$ *identity matrix*; $\mathbf{c} = [c_1, \cdots, c_n]^T \in \mathbb{R}^n$; $\mathbf{b} = [-p_1, \cdots, -p_J, -u_1, \cdots, -u_n]^n \in \mathbb{R}^{m+n}$; $\circ = [\geq, \cdots, \geq, \leq, \cdots, \cdots, \leq]_{1 \times (m+n)}^T \Big\}.$ The parameter set associated with x_i is $\mathcal{S}_{m,n}(\mathcal{M}_{blend}, i) = \{ [\mathbf{A}_{i,i}^T, c_i] \} = \mathbb{R}^{m+1}$.

1247

1260 1261 1262

1263 1264

1277

Example A.2 (Undesirable Symmetry) Discriminating problem instances involving symmetry in their decision variables or constraints can be tricky. Because some non-isomorphic bipartite graphs cannot be distinguished by WL-test due to their automorphic structure in the graph. For example,
 Chen et al. (2022b) illustrates one case in which two MILP graphs are non-isomorphic while WL-test outputs the same multiset.

1248 $\min_{x_1} x_1 + x_2 + x_3 + x_4 + x_5 + x_6,$ v_1 w_1 v_1 w_1 1249 s.t. $x_1 + x_2 = 1$, $x_2 + x_3 = 1$, $x_3 + x_4 = 1$, 1250 v_2 w_2 v_2 w_2 1251 $x_4 + x_5 = 1, x_5 + x_6 = 1, x_6 + x_1 = 1,$ 1252 v_3 w_3 v_3 w_3 $0 \le x_i \le 1, x_i \in \mathbb{Z}, \forall j \in \{1, 2, \dots, 6\}.$ 1253 1254 v_4 w_4 v_4 w_4 $\min_{x_1} x_1 + x_2 + x_3 + x_4 + x_5 + x_6,$ 1255 v_5 w_5 w_5 v_5 s.t. $x_1 + x_2 = 1$, $x_2 + x_3 = 1$, $x_3 + x_1 = 1$, 1256 1257 $x_4 + x_5 = 1$, $x_5 + x_6 = 1$, $x_6 + x_4 = 1$, v_6 w_6 v_6 w_6 1258 $0 \le x_j \le 1, \ x_j \in \mathbb{Z}, \ \forall \ j \in \{1, 2, \dots, 6\}.$ 1259

Figure 9: Two non-isomorphic MILP graphs that cannot be distinguished by WL test

Decomposable Symmetry Problem For decomposable symmetric problems, their corresponding bipartite graph can be divided into several symmetric sub-graphs, with each isomorphic and disconnected from others. For example, a instance on bin-packing with heterogeneous vehicles is formulated as p

$$\min_{\substack{x \in \{0,1\}^q, y \in \{0,1\}^p \\ j=1}} \sum_{j=1}^{i} y_j$$
s.t.
$$\sum_i s_i x_{ij} \le b y_j, \forall j = 1, \cdots, p.$$

$$\sum_{j=1}^{p} x_{ij} = 1, \forall i = 1, \cdots, q$$

For the bin-packing problem with p = 3 and q = 2, a corresponding bipartite is illustrated in figure 10, where the red node represents decision variables and the blue nodes represent constraints.

 $\begin{array}{c} S_{1} \\ S_{2} \\ S_{2} \\ -p \\ C_{1}^{A} \\ C_{2}^{A} \\ 1 \\ x_{12} \\ x_{22} \\ x_{22} \\ y_{2} \\ y_{2} \\ y_{1} \\ x_{13} \\ x_{23} \\ y_{1} \\ y$

Figure 10: Bipartite for a bin-packing problem. Different colors indicate that the nodes are colored using the WL test.

This figure illustrates the representation of a symmetric decomposable graph. There are four groups of nodes with the same colors in each group, and two nodes with distinct colors. In addition, a node in any group, for example, the lightest red group, only connects with one node in other groups.

Such graphs are quite special since by excluding uniquely colored nodes and their connecting edges, the remaining symmetric nodes (nodes labeled in the same color via the WL test) can combined to form several isomorphic, disconnected, and WL-determinable graphs, as the dashed line highlights in Figure [1].

Figure 11: Decompose a decomposable symmetric graph

A.12 ERROR ANALYSIS

