Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 DATASET

Table 2: Optimization problem types and classes including in our OptiBench.

Problem Types | Problem Classes

Diet Problem

Transportation Problem
Blending Problem

Production Planning Problem
Network Flow Problem
Portfolio Optimization Problem
Cutting Stock Problem

Staff Scheduling Problem’

Knapsack Problem

Traveling Salesman Problem (TSP)
Vehicle Routing Problem (VRP)

Bin Packing Problem

Set Covering Problem

Capacitated Facility Location Problem
Capital Budgeting Problem
Assignment Problem

LPs

MILPs

A.2 MODEL EQUIVALENCE CLASS

Definition A.1 (Model Equivalence) We say C(P) is a model equivalence class of the MILP/LP
problem instance P if VP € C(P),3 permutation matrices Py, Py which shuffles the index of a
vector or column index of a matrix s.t. ‘P can be written in the following form:

miné’ z,
x

s.1. flxéi),ff z <1

where b = Pyb, C = P C, A= P,AP;, 6 = Pso, [= Pil,u = Pu.
VPy € C(P1), we say P2 is model-equivalent to Py, denote as Py ~ Pa.

A.3 WEIGHTED BIPARTITE GRAPH FOR REPRESENTING MILP/LP

A weighted bipartite graph for a MILP/LP instance is denoted by G = (V U W, E), with vertex
set V.U W divided into 2 groups V = {vy, - - , v, } for constraints, and W = {w,--- ,w,} for
variables, E consisting of E;; = E(v;,w;), Vi =1,--- ,m,j = 1,--- ,n. To fully represent all
information in a MILP/LP instance, we associate each vertex with features:

* The constraint vertex v; € V is equipped with a feature vector H” with elements h)" =
(bi70i) € HV =R x {Sa Zv =<, >}
* The variable vertex w; € W is equipped with a feature vector H" with elements h}/v =

(cj lj,uj, 1) € HWV =R x {RU —o00} x {RUoc} x {0,1}. 7, =1if j € land 7; = 0
otherwise.

The edge E;; € Rconnects v; € Vand w; € W, E;; = A,;;. There is no edge connecting vertices
in the same vertex group.

14

Under review as a conference paper at ICLR 2025

4 N
import json
from gurobipy import Model, GRB

{problem_class} — {problem_name}

Problem type: {problem_type}

Domain: {domain}

Property: (fill in this comment by briefly describing the
variant of the problem)

Read data
with open('data.json', 'r') as f:
data = json.load(f)

(fill in this section) Read parameters from data (assign
domain specific parameter name)

(fill in this section) Get hyperparameter from parameters
(assign domain specific parameter name)

Create a new model
model = Model(“{problem_class}")

(fill in this section) Add variables of the classic
{problem_name} (assign domain specific name)

(fill in this section) Set objective of the {problem_name}
(assign domain specific name)

#H# (il in this section) Add constraints of the
{problem_name} (assign domain specific name)

Save the model as a '.1lp' file.
model.write('model.lp')

Figure 4: Code skeleton for optimization model simulation.

A.4 CONNECTION BETWEEN MODEL EQUIVALENCE AND GRAPH ISOMORPHISM

To test whether 2 modeling instances were permutation equivalent, we can equivalently conduct
isomorphism testing between their corresponding weighted bipartite graphs. Lemma[A-T]establishes
an equivalence between assessing modeling appropriateness and graph isomorphism testing.

Definition A.2 (Graph Isomorphism) Consider 2 graphs G = (G1,HY x HY) and G, =
(Go, HY x HY) with G; = (VI U W E')|;<;<o. We say Gi and G, are isomorphic if there
exists permutation matrix Py, Posuch that: P1E'P} = E2, P,H}Y = HY , P.HY = HY. If2
graphs G1 and Gy are isomorphic, denote Gy Z Go.

Lemma A.1 YV MILP/LP instances P1, P with corresponding bipartite graph G, G, we have

P~ Py =G L Go.

15

Under review as a conference paper at ICLR 2025

e N
**%Problem Statement: {problem_name} in

{domain}s#k

**kBackground:
(A brief description of background
information)

**kProblem Description:skk
(A brief description of {problem_name} in
{domain})

**kParameters:*k

Only consider parameters listed below. And
these parameters will be provided in a
separated 'data.json".
{parameter_skeleton}

*kDecision Variables:x
(A list of decision variables and their
description)

*x*k0bjective:xx
(State the objective function)

*kConstraints:x
(A list of constraints in pure natural
language)

**xImplementation Notes:*x
(Any additional notes for implementation)

xkExpected Outcome:sxx
(a brief description of the expected outcome)

Figure 5: Standard structure for word problem crafted from INFORMS AIMMS-MOPTA Optimiza-
tion Modeling Competition.

A.5 PROOF OF LEMMA [A.T:

We prove this lemma by proving 2 claims:

Claim1: G; ~ Gy — P; ~ Ps.

Suppose G ~ Ga. For bipartite graphs G; and G-, nodes v; would only connect with some node w;
if the j-th constraint involves decision variable x;. Therefore the adjacency matrix of G would be
0 _ [0 AY

in the form Aadj = 1A, 0

} ,Vk = 1,2. Now, by the assumption that G; ~ G, 3 permutation

16

Under review as a conference paper at ICLR 2025

864
865 **Problem Statement: Knapsack Problem in Cargo Loading**
866 **Background: **
867 In the context of cargo loading, the knapsack problem involves selecting a subset of items
868 to include in a cargo such that the total value of the selected items is maximized, while
869 ensuring that the total weight of the selected items does not exceed the vehicle's capacity.
870 This problem is a classical example of a combinatorial optimization problem and is widely

studied in operations research.
871
872 **Problem Description:**
873 Given a set of items, each with a specific value and weight, the objective is to determine
874 which items to include in the cargo to maximize the total value without exceeding the

vehicle's weight capacity. The decision to include an item in the cargo is binary (either
875 the item is included or it is not).
876
877 **Parameters:**
878 Only consider parameters listed below. And these parameters will be provided in a separated
879 "data.json".

{
880 'values': 'the value of each item; list of length (number of items)’',
881 'weights': 'the weight of each item; list of length (number of items)',
882 ‘capacity': 'the capacity of the vehicle; single float value',

}
883
884 **Decision Variables:**
885 - \(x[i] \): A binary variable that indicates whether item \(i \) is included in the cargo
886 (1) or not (0).
887

Objective:
888 Maximize the total value of the items included in the cargo. This is achieved by summing the
889 product of the value of each item and its corresponding binary decision variable.
890
891 **Constraints:**

The total weight of the items included in the cargo cannot exceed the vehicle's capacity.
892 This is ensured by summing the product of the weight of each item and its corresponding
893 binary decision variable and ensuring that this sum does not exceed the given capacity.
894
895 **Implementation Notes:**

- The problem is formulated as a Mixed-Integer Linear Programming (MILP) problem.
896 - The decision variables are binary, indicating the inclusion or exclusion of each item.
897 - The model should be saved as a '.lp' file for further analysis and solution.
898
899 **Expected Outcome:**

The expected outcome is a selection of items that maximizes the total value while ensuring
900

that the total weight does not exceed the vehicle's capacity. The solution will provide the
901 optimal set of items to include in the cargo.
902
903
904 Figure 6: Example for word problem on cargo loading.
905
906
907 matrix P such that
908 p_[Pv 0
909 1o Pwl|’
910 (

1) (2)
911 PA 4P = Ay,
TV _ pTyaV
912 PTHY = PTHY,
913 PT HW _ PT HW
914 w++1 w32
915 Therefore, we have
916
T 14
917 AQ _ 0 PyAi| .nd H, — PyvH;
adj PwA; 0 PwH¥V

17

Under review as a conference paper at ICLR 2025

In a cargo loading scenario, you need to choose a subset of items, each with a given value
and weight, to maximize total value without surpassing the vehicle's weight capacity. The
decision to include an item is binary. You'll be given a list of item values, weights, and
the vehicle's capacity. Your task is to determine which items to include to achieve the
highest total value while staying within the weight limit.

You should only consider parameters listed below. And these parameters will be provided in a
separated "data.json".
{

‘values': 'the value of each item; list of length (number of items)',

'weights': 'the weight of each item; list of length (number of items)’,

‘capacity': 'the capacity of the vehicle; single float value',

Figure 7: Example for concise version word problem on cargo loading.

import json
from gurobipy import Model, GRB

{problem_class} — {problem_name}

Problem type: {problem_type}

Domain: {domain}

Property: (filL in this comment by briefly describing the
variant of the problem)

Read data
with open('data.json', 'r') as f:
data = json.load(f)

(fill in this section) Read parameters from data (assign
domain specific parameter name)

(fill in this section) Get hyperparameter from parameters
(assign domain specific parameter name)

Create a new model
model = Model(“{problem_class}”)

(fill in this section) Add variables of the classic
{problem_name} (assign domain specific name)

(fill in this section) Set objective of the {problem_name}
(assign domain specific name)

(fill in this section) Add constraints of the
{problem_name} (assign domain specific name)

Save the model as a '.1p' file.
model.write('model.lp")
S J

Figure 8: Code skeleton for optimization model simulation.

We may reformulate the MILP/LP instance P5 as follows:

min cTPyx,
xERP X {0,1}7—P

st. PwAPyxoPywb,l < Pyx < u,

By the definition of permutation equivalent, we say Py ~ P1.

Claim 2: Pl ~ PQ — gl ~ gg.

18

Under review as a conference paper at ICLR 2025

Suppose P; ~ P,. By the definition of permutation equivalent class, 3 permutation matrix P; and
P such that

A, =PA4P,
by = Psby,
C,=PlcCy,
P3o; = oy,

Therefore, the corresponding adjacent matrix in the bipartite graph of P is

@ [0 AT
Aadj_ A2 ()2
[o PTATPY
P,AP, 0
~[PT oo AT|[Py O
T 0 PylA; 0[O0 PT
)
=PTA)P

In addition, we have by = Poby,co = PTcl. Therefore,

_ (WY _[PT o] [HY] _pr
H2_[H¥V]_{O Py| [HY =P Hy.

According to the definition of graph isomorphism, G; is isomorphic to Gs.

A.6 ALGORITHMS

Algorithm 2 WL test for MILP/LP Graphs
Require: A graph instance (G, H) € Gy, X H,y, x H, and iterate limit L > 0.
1 Initialize with C{""" = HASHy v (hY), C3" = HASHo w (hYV)
2: forl=1,2,---,Ldo
3: CHY = HASH(C;™ VY, Y0 B jHASH] ,, (C;) -1 W)
4: CV = HASH(C; "W Y| By jHASH] ,(C;) =)
;

: end for
: return The multisets containing all colors {{CV }}m {{CF ’W}};”:O.

Algorithm 3 Determine if the graph is decomposable symmetric

Require: Graph G’s adjacent matrix A and classification for stable partitionf’| of it’s variable nodes
7= {117]27 o 7IJ}'
1: Choose a index sets I; with | I;| > 1.

2: fori: I; do

3: Search all constraint nodes that connect to node ¢ as J
4: Exclude node j € J if it is uniquely colored.

5: forj: 7 do

6: Search all Variables that connect to node j as I
7: if £ C 7; then

8: pass

9: else if then
10: return False
11: end if

12: end for

13: end for
14: return True

“See formal definition in Appendix [A.8

19

Under review as a conference paper at ICLR 2025

A.7 COMPLEXITY ANALYSIS

For the two main types of problem realizations in our benchmark, Algorithm [2| must converge in
just one iteration. In addition, for problems with m variables and n constraints, the time complexity
to distinguish tested problem realizations from the standard realization is at most O(mn + nlogn),
which is is significantly lower than classical algorithms employed by popular solvers, such as sim-
plex method for LP and branch and bound algorithm for MILP. Specifically,

1. For WL-determinable problem instances, Algorithm [2| converges after only 1 iteration,
and the time complexity is O(mn).

2. For decomposable symmetric problem instances, Algorithm [2| converges after only 1
iteration, and we shall further conduct automorphism detection using algorithm [3] which
takes time complexity O(n Inn). The total time complexity could be O(mn + nlnn)

A.8 PROOF FOR THEOREM [4.1]

Theorem A.1 Denote Algorithmby A(Giest, Gstandard)- Suppose Pstandard is WL-determinable
or decomposable symmetric, then YPicst, we have A(Giests Gstandard) == True <= Prest ~
Pstandard-

Before establishing the proof, we first introduce the coloring refinement process of WL test for
MILP/LP problem since it is the first step 1 in algorithm .A. For iteration [of the algorithm we will
be assigning to each node a tuple H} containing the node’s old compressed label and a multiset of
the node’s neighbors’ compressed labels. A multiset is a set (a collection of elements where order is
not important) where elements may appear multiple times.

At each iteration [/, we will additionally be assigning to each node a new “compressed” label C
with the same H} will get the same compressed label.

Repeat the above process for up to (m-+n) (the number of nodes) iterations or until the partition of
nodes by compressed label does not change from one iteration to the next, we will get a converged
multiset.

In addition, we introduce preliminary tools for an algorithm-independent definition.

In fact, WL-determinable and symmetric decomposable can be defined without relying on WL-test
algorithm. We introduced equivalent definitions based on stable partition index sets.

Definition A.3 (Stable Partition Index Sets) For a modeling instance P in the form of (|I}) with
n decision variables and n constraints, define index set for optimization variables by 1T =
{I,I, -+, I} and index set for constraints by J = {J1, Ja,--- , Ji}, where

s Ui = {12, om} Upey Je = {1,2,- nds
* L0 Dy =0Tk, 0k, =0,V €[4, Ll]i # g, andpog €1, [ill,p # g
The following condition holds:
1. (¢c;,) = (cir, TVi, 10" € I, for somep € 1,2,--- |s;
2. (bj,05) = (bjr,0;¥], 5" € Jg for some g € 1,2,--- t;
3. Vpel,2,-- ,s,q€1,2,--- t,andi,i € I, we have z]‘eJq a;j = ZjeJq airj;
4. Vpel,2,--- ,s,q€1,2,--- ,t,and j,j' € Jg, we have Zz’elp a;j = Zz‘el,, ajr;

Lemma A.2 [f there are no collision of hash functions and their weighted averages, then WL test
will finally terminated at some stable partition.

Lemma[A.2]is proved in|Chen et al.|(2022b).
Definition A.4 (WL-determinable, by trivial partition) P is WL-determinable if 3 stable parti-

tion index sets T and [J such that T or [J are trivial partitions, i.e. s = m andt = n.

20

Under review as a conference paper at ICLR 2025

Definition A.5 (Decomposable Symmetric, by grouped partition) P is decomposable symmetric
if 3 stable partition index set T and J such that:

1. There are only two types of index set in L and J. Type 1 set only contains a single index.
Type 2 contains several indexes, denote these sets by I,--- ,Ig; J1,--- , Jp.

2. Iy,--- Iy and Jy,- -, Jy are equal-sized with |I,| = |J,| > 1,¥p € {1,2,--- ,s'} and
q€{1,2, 7t/}'

3. Vpe{l,2,---,5}qe{1,2,--- ¥’} i€ I, j € Jg, we have |{a;j|a;; # 0} =1,Vj €
Jq and \{a¢j|aij # O}I =1,Vi € Ip.

By Lemma([A.2] we can show two sets of definitions are equivalent.

Now we construct our proof by discussing two cases:

Case 1: Suppose Psiandard 18 WL-determinable. Want to show A(Giest, Gstandard) ==
True <— Ptest ~ Pstandard'

When A(Giest, Gstandarda) == True and Psiagndara WL-determinable, we have len(A;) =
len(C1) & len(Az) =len(Cy).

By Algorithm |1} every color in the multisets output by WL test must be distinct and multisets
for Pstandara 1S the same as multisets for Pgigndarq- By Definition [@ one stable partition of
Gstandara andis {I1,--- I}, {J1, -+ , Jm}, where I, J; are a single-element set, WLOG, assume
I, = ix, J; = j;. Similarly, denote the stable partition of G;cs: by {11, , I}, {J1, -+, J}, }, with
I = [ix), J) = [4]]).

Now, define a bijection mapping that shuffles [i1, - ,%4,] and [ji,---,jn] to get
[ih,-- ,4,] and [ji,---,4,], denote such mapping by P. (Since each element in
[i1, -+ imly 1, - dnls 81, ¢ i0,), or [41,--- ,Jjn] is distinct, we can uniquely find such
bijection).

Notice that such bijection may only map index of v3tendard o index of v§65t, we can separately
define a bijection for decision variable index as P; and a bijection for constraint index as P;.

Therefore, exists bijection P; and P5 such that P;.,; can be written in the following form:

miné’ z,
x

s.t. Azdb, i <z <4

where b = P2bstandardvc = PlcstandardaA = PQAstandardPh 6 = P2®standard7 l
Pllstandard7 u = Plustandard- This lmphes Ptest ~ Pstandard-

Case 2 : Suppose Psiandard is decomposible symmetric. When algorithm A output “Isomorphic”,
the partition sets of Gstqndard and Geest can be denoted as

Tatandard = [I1, -+ Ioy Togr, -+ L);

Tstandard = [J1,- 5 Ji, Jip1, -+ 5 i)

Tyewt = (I, Ig, Iy, -+ L)

Jrest = [T+, I g, -+, Ji),
where set [Iq,- = , Il [IAl,A~ . ,fk], [J1,- - ’Jll’ [jl, e ,:]Al}, only contains one index, and set
Hit1, o Ls), Lk, 5 Ls)y [Tty o Jels [Jkt1, -+ 5 Ji], are equal-sized and consisting at

least 2 indexes.

By the definition of decomposable symmetric instances, for any two sets K,S €
Tit1s o Isy Tog1y - 5 Lsy Jo1y -+ s Ity Jp1, -+ 5 Je), K and S are either disconnected or ex-
ists a bijection connection between nodes from K to S.

21

Under review as a conference paper at ICLR 2025

Now, define a bijection mapping that maps [I1,- -, Ix, Ixy1, - Is, J1, - s iy Jig1, -+, Ji] to
[f17~-~ N g, Ty, 7jl,jl+1, e ,jt], by mapping one-element set to one-element
set, and mapping multi-elements sets according to the connectivity between nodes in corresponding
sets, denote such bijection by P.

Similar to case 1, we can infer Piest ~ Pstandard-

A.9 RANDOMLY SAMPLING SUFFICES TO OBTAIN WL-DETERMINABLE INSTANCE

To make WL test work, it is desirable to sample a WL-determinable instance. In Theorem [A.2]
we proved that for a large range of modeling problems with flexible property (Definition [A.7),
especially for problems in our benchmark dataset, we can sample WL-determinable instance from
its parameter set with probability 1.

Definition A.6 (Modeling Parameter Set) For a class of model formulation M with n decision
variables and m constraints, the parameter set Sy, ,,(M) is a collection of all possible values for
problem data (A, c, b, o).

An example of a formulation parameter set is attached in Appendix ??.

Given a model’s parameter set, we say model M is a flexible model if, for any variables z; in M,
at least one of its associated parameters —whether the objective coefficient or any of the constraint
coefficients —can be arbitrarily chosen from its parameter set, which is expected to be sufficiently
large. A formal definition of flexible model is as follows:

Definition A.7 (Flexible Model) We say a model M is flexible if the following condition holds:

V variables x;,i = 1,---n,3 element p € [Afi, ¢i] s.t. p can be arbitrarily chosen from some
uncountable set S(p) C R. In other words, for given model M, for any variables x; in M, at
least one of its associated parameters —whether the objective coefficient or any of the constraint
coefficients —can be arbitrarily chosen from a sufficiently large space.

Theorem A.2 (Efficient Sampling) For a flexible model M with parameter set S, (M), ran-
domly sample in its parameter set under any continuous distribution may get a WL-determinable
instance in probability 1.

We present the proof for Theorem[A.2]in Appendix [A.T0]

A.10 PROOF OF THEOREMI[A.2]

Proof: Claim 1: P([AT;, ¢;] = AT}, ¢;]) = O aslongas i # j.

Suppose M is a flexible model. By the definition of the flexible model, for each variable x;, there
exists at least one element p € [ATZ, ¢;] that can be randomly chosen from an uncountable set
Sp C R. This implies that the parameters corresponding to different indices ¢ and j can vary
independently within their respective uncountable set. Sampling from a continuous distribution over
the parameter space Sy, (M) involves independently sampling [AT;, ¢;] from some continuous
distribution for each ¢. Now, by the property of continuous sampling and independence of [ATl, ¢l
and [AT}, ¢;], we have

P([Al;, i = AL ¢5]) =0,
ie.

P([Arljz7cz] 7£ A::,:jacj]) =1L
Claim 2: Suppose a modeling instance M(s) has[AT;, ¢;] # [AT;, ¢;], Vi # j, then this instance is
WL-determinable.

Denote the index set that e; = [A?i, ¢;] and e; = [A?:j, ¢;] differs by K, with Vk € K, e, # ejr,
e; 18 the k-th element in vector e;.

It suffices to show that V;j # j’, the joint probability of the following events is 1:

22

Under review as a conference paper at ICLR 2025

1. Event A: ¢; # cjr;
2. EventB:), a;; # >, aij for some T;

3. EventC: }_ _;aiq # D c s Giq for some J containing index j or j” and some i # i’ € I,

where I, J elements in stable partition sets Z, 7.

Formally speaking, we want to show P(A U B U C) = 1. Now, consider two cases when j # j' =
1’ DR 7/”7/.

Case 1: ej;, = ¢j, e/, = cj for some k € K. Apparently, we have ¢; # c;r.

Case 2: ej, = ayj, €5/, = a;; for some k € K and some ¢ = 1,--- ,m. We have a;; # a;; for
somei=1,---,m. We want to show P(B U C|Case 2) = 1.

Consider I containing 7, at least one element i € I can be arbitrarily chosen from sufficiently

large support and makes a;; # a;;». WLOG, suppose I C Iisaset containing all ¢’s such that
a;j # a;;/, and for the remaining ¢’s, we have Zie]/f(aij — aijr) = ¢, for some constant c.

P(Z“ij#Z%') =P (> ai; #) aiy

el el iel iel

=1-P Zaij—Zaij/:—c

iel iel
=1

The last equality holds since), _;a;» and), _; a;; are independent and can be sampled from
some continuous distribution.

P(AUBUC)=P(AUBUC|Case 1 UCase2)

P(Case 1)P(AU B U C|Case 1) + P(Case 2) P(AU B U C|Case2)
P(Case 1) + P(Case 2)
1

By theorem 2, we may get a WL-determinable instance in probability 1.

A.11 EXAMPLES

Example A.1 (Model Parameter Set for Blending Problem) For example, a blending problem
can be formulated as:

i=1
n
s.1. Zajiati ij,Vj =1,---,m.
i=1
T; < u,-,Vz' = 1,'~- , N

The corresponding parameter set Sy, n(Moiend) can be defined as

Smon(Mbplend) = {(A, c,b,0)|A = [AT,IH]T, where A € R™ ™ and I, isann x n

identitymatrix;c = [Clv"' 7CTL]T € Rn7b = [_p17"' y —PJ, —U1, ’_un]ﬂ € Rm+na
T
o= [Z,"' S e ,g}lx(m+n)}.

The parameter set associated with x; is Sp, n(Mbpiend, 1) = {[ATZ7 cl}} = Rm+L,

23

Under review as a conference paper at ICLR 2025

Example A.2 (Undesirable Symmetry) Discriminating problem instances involving symmetry in
their decision variables or constraints can be tricky. Because some non-isomorphic bipartite graphs
cannot be distinguished by WL-test due to their automorphic structure in the graph. For example,
Chen et al. (2022b)) illustrates one case in which two MILP graphs are non-isomorphic while WL-
test outputs the same multiset.

min x1 + z2 + 3 + x4 + =5 + Te,
z€R6

st.x14+z2=1, x2o+x3 =1, 3+ 24 = 1,
CC4+:L‘5:1, T5 +x6 = 1, :L‘G—I-CCl:l,
0<z;<1,z;€Z, Vje{l,2,...,6}.

min 1 + 2 + 3 + 4 + =5 + s,
zcR6

st.x14+z2=1, x2o+x3 =1, 3+ 21 =1,
zat+as =1, x5+z6 =1, x6 + T2 =1,

0<z;<1, z,€Z Vje{l,2,...,6}

Figure 9: Two non-isomorphic MILP graphs that cannot be distinguished by WL test

Decomposable Symmetry Problem For decomposable symmetric problems, their correspond-
ing bipartite graph can be divided into several symmetric sub-graphs, with each isomorphic and
disconnected from others. For example, a instance on bin-packing with heterogeneous vehicles is
formulated as

P
min ;
2€{0,1}9,y€{0,1} ;yj
S.t. stij < by],VJ =1,---,p.
i

p
Zmz_] = 1aVZ:17 4
j=1

For the bin-packing problem with p = 3 and ¢ = 2, a corresponding bipartite is illustrated in figure
where the red node represents decision variables and the blue nodes represent constraints.

Sy —p
1
1
1
1 Sy —p
1
1
S1
SZ —p

Figure 10: Bipartite for a bin-packing problem. Different colors indicate that the nodes are colored
using the WL test.

24

Under review as a conference paper at ICLR 2025

This figure illustrates the representation of a symmetric decomposable graph. There are four groups
of nodes with the same colors in each group, and two nodes with distinct colors. In addition, a node
in any group, for example, the lightest red group, only connects with one node in other groups.

Such graphs are quite special since by excluding uniquely colored nodes and their connecting edges,
the remaining symmetric nodes (nodes labeled in the same color via the WL test) can combined to
form several isomorphic, disconnected, and WL-determinable graphs, as the dashed line highlights

in Figure

Figure 11: Decompose a decomposable symmetric graph

A.12 ERROR ANALYSIS

We analyzed the source of the errors and observed that for most problems, the compilation errors in
the generated code are relatively smaller than the modeling errors. This indicates that, in most cases,
our benchmark assesses modeling capabilities rather than the LLMs’ ability to generate solver code.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Error Rate and Error Type by Problem Class

s Modeling Error
0.8 [Compile Error
0.7 Lp MILP
0.6
0.5 -
5
& 041
0.3
0.2
0.1
0.0
. & O &) & <O S &) O S O & S <O
© &% S <° S o N 0 & o 3§ & N & T S
T o0 B S ST O T S 0 o e S O
oé\ &S & N & & S s@(\ S (\(’é\ S & & &S & &S & S K oq@ \‘b" S v""\ S q"\z&) \é@\e@
. oy P C ~ & P O S
& » &® S& K 200 e
& € Kk

Problem Classes

Figure 12: Modeling Error and Compiling Error for Different Problem Classes

26

	Introduction
	Background and related work
	Background
	Related Work

	OptiBench
	Model-Data Separation
	Multi-dimensional Complexity
	Quality control

	Evaluation Paradigm
	Evaluation Principal
	Evaluation Method
	Theoretical Guarantee

	Experiment and Analysis
	Conclusion
	Appendix
	Dataset
	Model Equivalence Class
	Weighted Bipartite Graph for Representing MILP/LP
	Connection between Model Equivalence and Graph Isomorphism
	Proof of lemma A.1:
	Algorithms
	Complexity Analysis
	Proof for Theorem 4.1
	Randomly sampling suffices to obtain WL-determinable instance
	Proof of Theorem A.2
	Examples
	Error Analysis

