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A APPENDIX

A.1 DATASET

Table 2: Optimization problem types and classes including in our OptiBench.
Problem Types Problem Classes

LPs

Diet Problem
Transportation Problem
Blending Problem
Production Planning Problem
Network Flow Problem
Portfolio Optimization Problem
Cutting Stock Problem
Staff Scheduling Problem’

MILPs

Knapsack Problem
Traveling Salesman Problem (TSP)
Vehicle Routing Problem (VRP)
Bin Packing Problem
Set Covering Problem
Capacitated Facility Location Problem
Capital Budgeting Problem
Assignment Problem

A.2 MODEL EQUIVALENCE CLASS

Definition A.1 (Model Equivalence) We say C(P) is a model equivalence class of the MILP/LP
problem instance P if 8P̂ 2 C(P), 9 permutation matrices P1, P2 which shuffles the index of a
vector or column index of a matrix s.t. P̂ can be written in the following form:

min
x

ĉ
T
x,

s.t. Âx�̂b̂, l̂  x  û

where b̂ = P2b, Ĉ = P1C, Â = P2AP1, �̂ = P2�, l̂ = P1l, u = P1u.

8P2 2 C(P1), we say P2 is model-equivalent to P1, denote as P1 ⇠ P2.

A.3 WEIGHTED BIPARTITE GRAPH FOR REPRESENTING MILP/LP

A weighted bipartite graph for a MILP/LP instance is denoted by G = (V [ W,E), with vertex
set V [W divided into 2 groups V = {v1, · · · ,vm} for constraints, and W = {w1, · · · ,wn} for
variables, E consisting of Eij = E(vi, wj), 8i = 1, · · · ,m, j = 1, · · · , n. To fully represent all
information in a MILP/LP instance, we associate each vertex with features:

• The constraint vertex vi 2 V is equipped with a feature vector HV with elements hV
i =

(bi, oi) 2 HV = R⇥ {,�,=, <,>}
• The variable vertex wj 2 W is equipped with a feature vector HW with elements hW

j =

(cj , lj , uj , ⌧j) 2 HW = R⇥ {R [ �1}⇥ {R [1}⇥ {0, 1}. ⌧j = 1 if j 2 I and ⌧j = 0
otherwise.

The edge Eij 2 R connects vi 2 V and wj 2 W, Eij = Aij . There is no edge connecting vertices
in the same vertex group.
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Figure 4: Code skeleton for optimization model simulation.

A.4 CONNECTION BETWEEN MODEL EQUIVALENCE AND GRAPH ISOMORPHISM

To test whether 2 modeling instances were permutation equivalent, we can equivalently conduct
isomorphism testing between their corresponding weighted bipartite graphs. Lemma A.1 establishes
an equivalence between assessing modeling appropriateness and graph isomorphism testing.

Definition A.2 (Graph Isomorphism) Consider 2 graphs G1 = (G1,H
V
1 ⇥ H

W
1 ) and G2 =

(G2,H
V
2 ⇥ H

W
2 ) with Gi = (Vi [ W

i
,E

i)|1i2. We say G1 and G1 are isomorphic if there
exists permutation matrix P1,P2such that: P1E

1
P

T
2 = E

2
,P1H

W
1 = H

W
2 ,P2H

V
1 = H

V
2 . If 2

graphs G1 and G1 are isomorphic, denote G1
g⇠ G2.

Lemma A.1 8 MILP/LP instances P1,P2 with corresponding bipartite graph G1,G1, we have

P1 ⇠ P2 () G1
g⇠ G2.
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Figure 5: Standard structure for word problem crafted from INFORMS AIMMS-MOPTA Optimiza-
tion Modeling Competition.

A.5 PROOF OF LEMMA A.1:

We prove this lemma by proving 2 claims:

Claim 1: G1 ⇠ G2 =) P1 ⇠ P2.

Suppose G1 ⇠ G2. For bipartite graphs G1 and G2, nodes vi would only connect with some node wj

if the j-th constraint involves decision variable xi. Therefore the adjacency matrix of Gk would be

in the form A
(k)
adj =


0 A

T
k

Ak 0

�
, 8k = 1, 2. Now, by the assumption that G1 ⇠ G2, 9 permutation

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Figure 6: Example for word problem on cargo loading.

matrix P such that

P =


PV 0
0 PW

�
,

PA
(1)
adjP = A

(2)
adj ,

P
T
V H

V
1 = P

T
H

V
2 ,

P
T
WH

W
1 = P

T
WH

W
2 .

Therefore, we have

A
(2)
adj =


0 PV A

T
1

PWA1 0

�
and H2 =


PV H

V
1

PWH
W
1

�
.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Figure 7: Example for concise version word problem on cargo loading.

Figure 8: Code skeleton for optimization model simulation.

We may reformulate the MILP/LP instance P2 as follows:

P2 : min
x2Rp⇥{0,1}n�p

c
T
PV x,

s.t. PWAPV x �PWb, l  PV x  u,

By the definition of permutation equivalent, we say P2 ⇠ P1.

Claim 2: P1 ⇠ P2 =) G1 ⇠ G2.
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Suppose P1 ⇠ P2. By the definition of permutation equivalent class, 9 permutation matrix P1 and
P2 such that

A2 = P2A1P1

b2 = P2b1,

C2 = P
T
1 C1,

P2�1 = �2,
Therefore, the corresponding adjacent matrix in the bipartite graph of P2 is

A
(2)
adj =


0 A

T
2

A2 0

�

=


0 P

T
1 A

T
1 P

T
2

P2A1P2 0

�

=


P

T
1 0
0 P2

� 
0 A

T
1

A1 0

� 
P1 0
0 P

T
2

�

= P̂
T
A

(1)
adjP̂

In addition, we have b2 = P2b1, c2 = P
T
1 c1. Therefore,

H2 =


H

V
2

H
W
2

�
=


P

T
1 0
0 P2

� 
H

V
1

H
W
1

�
= P̂

T
H1.

According to the definition of graph isomorphism, G1 is isomorphic to G2.

A.6 ALGORITHMS

Algorithm 2 WL test for MILP/LP Graphs
Require: A graph instance (G,H) 2 Gm,n ⇥HV

m ⇥HW
n and iterate limit L > 0.

1: Initialize with C
0,V
i = HASH0,V (hV

i ), C
0,W
j = HASH0,W (hW

j )
2: for l = 1, 2, · · · , L do

3: C
l,V
i = HASH(Cl�1,V

i ,
Pn

j=1 Ei,jHASH
0
l,W (Cj)l�1,W )

4: C
l,W
i = HASH(Cl�1,W

i ,
Pn

j=1 Ei,jHASH
0
l,V (Cj)l�1,V )

5: end for

6: return The multisets containing all colors {{CL,V
i }}mi=0, {{C

L,W
i }}nj=0.

Algorithm 3 Determine if the graph is decomposable symmetric
Require: Graph G’s adjacent matrix A and classification for stable partitiona of it’s variable nodes

I = {I1, I2, · · · , IJ}.
1: Choose a index sets Ii with |Ii| > 1.
2: for i : Ii do

3: Search all constraint nodes that connect to node i as J
4: Exclude node j 2 J if it is uniquely colored.
5: for j : J do

6: Search all Variables that connect to node j as K
7: if K ✓ I1 then

8: pass

9: else if then

10: return False
11: end if

12: end for

13: end for

14: return True

aSee formal definition in Appendix A.8
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A.7 COMPLEXITY ANALYSIS

For the two main types of problem realizations in our benchmark, Algorithm 2 must converge in
just one iteration. In addition, for problems with m variables and n constraints, the time complexity
to distinguish tested problem realizations from the standard realization is at most O(mn+ n log n),
which is is significantly lower than classical algorithms employed by popular solvers, such as sim-
plex method for LP and branch and bound algorithm for MILP. Specifically,

1. For WL-determinable problem instances, Algorithm 2 converges after only 1 iteration,
and the time complexity is O(mn).

2. For decomposable symmetric problem instances, Algorithm 2 converges after only 1
iteration, and we shall further conduct automorphism detection using algorithm 3, which
takes time complexity O(n lnn). The total time complexity could be O(mn+ n lnn)

A.8 PROOF FOR THEOREM 4.1

Theorem A.1 Denote Algorithm 1 by A(Gtest,Gstandard). Suppose Pstandard is WL-determinable
or decomposable symmetric, then 8Ptest, we have A(Gtest,Gstandard) == True () Ptest ⇠
Pstandard.

Before establishing the proof, we first introduce the coloring refinement process of WL test for
MILP/LP problem since it is the first step 1 in algorithm A. For iteration l of the algorithm we will
be assigning to each node a tuple H

L
i containing the node’s old compressed label and a multiset of

the node’s neighbors’ compressed labels. A multiset is a set (a collection of elements where order is
not important) where elements may appear multiple times.

At each iteration l, we will additionally be assigning to each node a new “compressed” label CL
i

with the same H
L
i will get the same compressed label.

Repeat the above process for up to (m+n) (the number of nodes) iterations or until the partition of
nodes by compressed label does not change from one iteration to the next, we will get a converged
multiset.

In addition, we introduce preliminary tools for an algorithm-independent definition.

In fact, WL-determinable and symmetric decomposable can be defined without relying on WL-test
algorithm. We introduced equivalent definitions based on stable partition index sets.

Definition A.3 (Stable Partition Index Sets) For a modeling instance P in the form of (1) with
n decision variables and n constraints, define index set for optimization variables by I =
{I1, I2, · · · , Is} and index set for constraints by J = {J1, J2, · · · , Jt}, where

•
Ss

l=1 Il = {1, 2, · · · ,m},
St

k=1 Jk = {1, 2, · · · , n};

• Ili \ Ilj = ;, Jkp \ Jkq = ;, 8i, j 2 [1, · · · , |Il|], i 6= j, and p, q 2 [1, · · · , |Jk|], p 6= q.

The following condition holds:

1. (ci, ⌧i) = (ci0 , ⌧i08i, i0 2 Ip for some p 2 1, 2, · · · , s;

2. (bj , �j) = (bj0 , �j08j, j0 2 Jq for some q 2 1, 2, · · · , t;

3. 8p 2 1, 2, · · · , s, q 2 1, 2, · · · , t, and i, i
0 2 Ip, we have

P
j2Jq

aij =
P

j2Jq
ai0j;

4. 8p 2 1, 2, · · · , s, q 2 1, 2, · · · , t, and j, j
0 2 Jq , we have

P
i2Ip

aij =
P

i2Ip
aij0 ;

Lemma A.2 If there are no collision of hash functions and their weighted averages, then WL test
will finally terminated at some stable partition.

Lemma A.2 is proved in Chen et al. (2022b).

Definition A.4 (WL-determinable, by trivial partition) P is WL-determinable if 9 stable parti-
tion index sets I and J such that I or J are trivial partitions, i.e. s = m and t = n.
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Definition A.5 (Decomposable Symmetric, by grouped partition) P is decomposable symmetric
if 9 stable partition index set I and J such that:

1. There are only two types of index set in I and J . Type 1 set only contains a single index.
Type 2 contains several indexes, denote these sets by I1, · · · , Is0 ; J1, · · · , Jt0 .

2. I1, · · · , Is0 and J1, · · · , Jt0 are equal-sized with |Ip| = |Jq| > 1, 8p 2 {1, 2, · · · , s0} and
q 2 {1, 2, · · · , t0}.

3. 8p 2 {1, 2, · · · , s0}, q 2 {1, 2, · · · , t0}, i 2 Ip, j 2 Jq , we have |{aij |aij 6= 0}| = 1, 8j 2
Jq and |{aij |aij 6= 0}| = 1, 8i 2 Ip.

By Lemma A.2, we can show two sets of definitions are equivalent.

Now we construct our proof by discussing two cases:

Case 1: Suppose Pstandard is WL-determinable. Want to show A(Gtest,Gstandard) ==
True () Ptest ⇠ Pstandard.

When A(Gtest,Gstandard) == True and Pstandard WL-determinable, we have len(A1) =
len(C1) & len(A2) = len(C2).
By Algorithm 1, every color in the multisets output by WL test must be distinct and multisets
for Pstandard is the same as multisets for Pstandard. By Definition A.4, one stable partition of
Gstandard and is {I1, · · · , In}, {J1, · · · , Jm}, where Ik, Jl are a single-element set, WLOG, assume
Ik = ik, Jl = jl. Similarly, denote the stable partition of Gtest by {I 01, · · · , I 0n}, {J 0

1, · · · , J 0
m}, with

I
0
k = [ik], J 0

l = [j0l ].

Now, define a bijection mapping that shuffles [i1, · · · , im] and [j1, · · · , jn] to get
[i01, · · · , i0m] and [j01, · · · , j0n], denote such mapping by P. (Since each element in
[i1, · · · , im], [j1, · · · , jn], [i01, · · · , i0m], or [j01, · · · , j0n] is distinct, we can uniquely find such
bijection).

Notice that such bijection may only map index of vstandardi to index of vtestj , we can separately
define a bijection for decision variable index as P1 and a bijection for constraint index as P1.

Therefore, exists bijection P1 and P2 such that Ptest can be written in the following form:

min
x

ĉ
T
x,

s.t. Âx�̂b̂, l̂  x  û

where b̂ = P2bstandard, Ĉ = P1Cstandard, Â = P2AstandardP1, �̂ = P2�standard, l̂ =
P1lstandard, u = P1ustandard. This implies Ptest ⇠ Pstandard.

Case 2 : Suppose Pstandard is decomposible symmetric. When algorithm A output ”Isomorphic”,
the partition sets of Gstandard and Gtest can be denoted as

Istandard = [I1, · · · , Ik, Ik+1, · · · , Is];
Jstandard = [J1, · · · , Jl, Jl+1, · · · , Jt];

Itest = [Î1, · · · , Îk, Îk+1, · · · , Îs];
Jtest = [Ĵ1, · · · , Ĵl, Ĵl+1, · · · , Ĵt],

where set [I1, · · · , Ik], [Î1, · · · , Îk], [J1, · · · , Jl], [Ĵ1, · · · , Ĵl], only contains one index, and set
[Ik+1, · · · , Is], [Îk+1, · · · , Îs], [Jk+1, · · · , Jt], [Ĵk+1, · · · , Ĵt], are equal-sized and consisting at
least 2 indexes.

By the definition of decomposable symmetric instances, for any two sets K,S 2
[Ik+1, · · · , Is, Îk+1, · · · , Îs, Jk+1, · · · , Jt, Ĵk+1, · · · , Ĵt], K and S are either disconnected or ex-
ists a bijection connection between nodes from K to S.
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Now, define a bijection mapping that maps [I1, · · · , Ik, Ik+1, · · · , Is, J1, · · · , Jl, Jl+1, · · · , Jt] to
[Î1, · · · , Îk, Îk+1, · · · , Îs, Ĵ1, · · · , Ĵl, Ĵl+1, · · · , Ĵt], by mapping one-element set to one-element
set, and mapping multi-elements sets according to the connectivity between nodes in corresponding
sets, denote such bijection by P.

Similar to case 1, we can infer Ptest ⇠ Pstandard.

A.9 RANDOMLY SAMPLING SUFFICES TO OBTAIN WL-DETERMINABLE INSTANCE

To make WL test work, it is desirable to sample a WL-determinable instance. In Theorem A.2,
we proved that for a large range of modeling problems with flexible property (Definition A.7),
especially for problems in our benchmark dataset, we can sample WL-determinable instance from
its parameter set with probability 1.

Definition A.6 (Modeling Parameter Set) For a class of model formulation M with n decision
variables and m constraints, the parameter set Sm,n(M) is a collection of all possible values for
problem data (A, c,b, �).

An example of a formulation parameter set is attached in Appendix ??.

Given a model’s parameter set, we say model M is a flexible model if, for any variables xi in M,
at least one of its associated parameters —whether the objective coefficient or any of the constraint
coefficients —can be arbitrarily chosen from its parameter set, which is expected to be sufficiently
large. A formal definition of flexible model is as follows:

Definition A.7 (Flexible Model) We say a model M is flexible if the following condition holds:

8 variables xi, i = 1, · · ·n, 9 element p 2 [AT
:,i, ci] s.t. p can be arbitrarily chosen from some

uncountable set S(p) ⇢ R. In other words, for given model M, for any variables xi in M, at
least one of its associated parameters —whether the objective coefficient or any of the constraint
coefficients —can be arbitrarily chosen from a sufficiently large space.

Theorem A.2 (Efficient Sampling) For a flexible model M with parameter set Sm,n(M), ran-
domly sample in its parameter set under any continuous distribution may get a WL-determinable
instance in probability 1.

We present the proof for Theorem A.2 in Appendix A.10.

A.10 PROOF OF THEOREM A.2

Proof: Claim 1: P ([AT
:,i, ci] = A

T
:,j , cj ]) = 0 as long as i 6= j.

Suppose M is a flexible model. By the definition of the flexible model, for each variable xi, there
exists at least one element p 2 [AT

:,i, ci] that can be randomly chosen from an uncountable set
Sp ⇢ R. This implies that the parameters corresponding to different indices i and j can vary
independently within their respective uncountable set. Sampling from a continuous distribution over
the parameter space Sm,n(M) involves independently sampling [AT

:,i, ci] from some continuous
distribution for each i. Now, by the property of continuous sampling and independence of [AT

:,i, ci]

and [AT
:,j , cj ], we have

P ([AT
:,i, ci] = A

T
:,j , cj ]) = 0,

i.e.
P ([AT

:,i, ci] 6= A
T
:,j , cj ]) = 1.

Claim 2: Suppose a modeling instance M(s) has[AT
:,i, ci] 6= [AT

:,j , cj ], 8i 6= j, then this instance is
WL-determinable.

Denote the index set that ei = [AT
:,i, ci] and ej = [AT

:,j , cj ] differs by K, with 8k 2 K, eik 6= ejk,
eik is the k-th element in vector ei.

It suffices to show that 8j 6= j
0, the joint probability of the following events is 1:
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1. Event A: cj 6= cj0 ;

2. Event B:
P

i2I aij 6=
P

i2I aij0 for some I;

3. Event C:
P

q2J ai0q 6=
P

q2J aiq for some J containing index j or j0 and some i 6= i
0 2 I ,

where I, J elements in stable partition sets I, J .

Formally speaking, we want to show P (A [ B [ C) = 1. Now, consider two cases when j 6= j
0 =

1, · · · , n.

Case 1: ejk = cj , ej0k = cj0 for some k 2 K. Apparently, we have cj 6= cj0 .

Case 2: ejk = aij , ej0k = aij0 for some k 2 K and some i = 1, · · · ,m. We have aij 6= aij0 for
some i = 1, · · · ,m. We want to show P (B [ C|Case 2) = 1.

Consider I containing i, at least one element i0 2 I can be arbitrarily chosen from sufficiently
large support and makes ai0j 6= ai0j0 . WLOG, suppose Î ⇢ I is a set containing all i’s such that
aij 6= aij0 , and for the remaining i’s, we have

P
i2I/Î(aij � aij0) = c, for some constant c.

P

 
X

i2I

aij 6=
X

i2I

aij0

!
= P

0

@
X

i2Î

aij 6=
X

i2Î

aij0

1

A

= 1� P

0

@
X

i2Î

aij �
X

i2Î

aij0 = �c

1

A

= 1

The last equality holds since
P

i2Î aij0 and
P

i2Î aij are independent and can be sampled from
some continuous distribution.

P (A [B [ C) = P (A [B [ C|Case 1 [ Case2)
= P (Case 1)P (A [B [ C|Case 1) + P (Case 2)P (A [B [ C|Case2)
= P (Case 1) + P (Case 2)
= 1

By theorem 2, we may get a WL-determinable instance in probability 1.

A.11 EXAMPLES

Example A.1 (Model Parameter Set for Blending Problem) For example, a blending problem
can be formulated as:

min
x

nX

i=1

cixi

s.t.
nX

i=1

ajixi � pj , 8j = 1, · · · ,m.

xi  ui, 8i = 1, · · · , n.

The corresponding parameter set Sm,n(Mblend) can be defined as

Sm,n(Mblend) =
n
(A, c,b, �)

���A = [ÂT
, In]

T
, where Â 2 Rm⇥n and In is an n⇥ n

identity matrix; c = [c1, · · · , cn]T 2 Rn;b = [�p1, · · · ,�pJ ,�u1, · · · ,�un]
n 2 Rm+n;

� = [�, · · · ,�,, · · · , · · · ,]T1⇥(m+n)

o
.

The parameter set associated with xi is Sm,n(Mblend, i) =
�
[AT

:,i, ci]
 
= Rm+1.
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Example A.2 (Undesirable Symmetry) Discriminating problem instances involving symmetry in
their decision variables or constraints can be tricky. Because some non-isomorphic bipartite graphs
cannot be distinguished by WL-test due to their automorphic structure in the graph. For example,
Chen et al. (2022b) illustrates one case in which two MILP graphs are non-isomorphic while WL-
test outputs the same multiset.

Figure 9: Two non-isomorphic MILP graphs that cannot be distinguished by WL test

Decomposable Symmetry Problem For decomposable symmetric problems, their correspond-
ing bipartite graph can be divided into several symmetric sub-graphs, with each isomorphic and
disconnected from others. For example, a instance on bin-packing with heterogeneous vehicles is
formulated as

min
x2{0,1}q,y2{0,1}p

pX

j=1

yj

s.t.
X

i

sixij  byj , 8j = 1, · · · , p.

pX

j=1

xij = 1, 8i = 1, · · · , q

For the bin-packing problem with p = 3 and q = 2, a corresponding bipartite is illustrated in figure
10, where the red node represents decision variables and the blue nodes represent constraints.

Figure 10: Bipartite for a bin-packing problem. Different colors indicate that the nodes are colored
using the WL test.
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This figure illustrates the representation of a symmetric decomposable graph. There are four groups
of nodes with the same colors in each group, and two nodes with distinct colors. In addition, a node
in any group, for example, the lightest red group, only connects with one node in other groups.

Such graphs are quite special since by excluding uniquely colored nodes and their connecting edges,
the remaining symmetric nodes (nodes labeled in the same color via the WL test) can combined to
form several isomorphic, disconnected, and WL-determinable graphs, as the dashed line highlights
in Figure 11.

Figure 11: Decompose a decomposable symmetric graph

A.12 ERROR ANALYSIS

We analyzed the source of the errors and observed that for most problems, the compilation errors in
the generated code are relatively smaller than the modeling errors. This indicates that, in most cases,
our benchmark assesses modeling capabilities rather than the LLMs’ ability to generate solver code.
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Figure 12: Modeling Error and Compiling Error for Different Problem Classes
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