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ABSTRACT

The long-context capability of the Large Language Models (LLM) has made
significant breakthroughs, but the maximum supported context length in length
extrapolation remains a critical bottleneck limiting their practical applications. The
constraint of context length in LLMs arises from the self-attention mechanism,
which cannot effectively and efficiently capture the semantic relationships within
infinitely long contexts via the limited pre-trained positional information and
attention scope. In this work, we propose ReAttention, a training-free approach
enabling LLM based on the self-attention mechanism to support an infinite context
with a finite attention scope under sufficient memory resources. ReAttention
performs the position-agnostic top-k attention before the ordinary position-aware
self-attention, freeing LLMs from the length extrapolation issue. We validate the
performance of ReAttention on the LongBench, L-Eval, and InfiniteBench and
demonstrate that it is on par with traditional methods. Furthermore, we also apply
ReAttention on mainstream LLMs, including LLaMA3.1-8B and Mistral-v0.3-7B,
enabling them to support context lengths of at least 1M and even expanding the
context length of LLaMA3.2-3B-chat by 128× to 4M without any further training
in Needle-In-A-Haystack tests. We also improve the efficiency of ReAttention with
Triton and achieve an efficient extrapolation without additional overhead. The code
is available at https://github.com/OpenMOSS/ReAttention.

1 INTRODUCTION

Large Language Models (LLM) based on Transformer (Vaswani et al., 2017; OpenAI, 2023; Reid
et al., 2024; Sun et al., 2024) has made great progress in the applications of Natural Language
Processing (NLP). Particularly, in long context modeling, a considerable amount of research has been
dedicated to extending the length capabilities of LLMs (Chen et al., 2023; Peng et al., 2023; Liu
et al., 2023; Xiong et al., 2023), increasing the maximum supported context length from the initial
2K (Touvron et al., 2023) to 2M (Ding et al., 2024) in open-source LLMs. However, the maximum
context length in length extrapolation remains a bottleneck that limits the practical applications of
LLMs (Press et al., 2022; Chen et al., 2023). To achieve infinite context length under sufficient
memory for Transformer-based LLMs, the following three conditions must be satisfied:

a The position information in the inference phase should not be out-of-distribution (OOD)
compared to the training phase; (Han et al., 2023; Liu et al., 2023)

b The self-attention entropy in the inference phase should not increase with the length of the
input; (Han et al., 2023; Xiao et al., 2023)

c LLM should keep effectively aware of critical contextual information at each inference
step. (Dong et al., 2024; Zhang et al., 2024a)

Early works in extrapolation focus on the first point, primarily by interpolating the position em-
bedding (Chen et al., 2023; bloc97, 2023b;a; Xiong et al., 2023) or limiting the relative position
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within the pre-training context length (Su, 2023; Jin et al., 2024; An et al., 2024). However, later
studies have shown that even if positional information is not OOD, the attention entropy tends to
increase logarithmically with the length of the self-attention window (Han et al., 2023). Specifically,
the self-attention distribution becomes increasingly diffuse as inference length expands, making
it difficult to effectively gather information from the context, which leads to unstable model out-
puts (Peng et al., 2023; Han et al., 2023). In response, methods like LM-Infinite (Han et al., 2023)
and StreamingLLM (Xiao et al., 2023) have been proposed, which retain the starting and ending
parts of the input, allowing LLMs to maintain stable outputs as input length increases. However, they
compromise the global awareness of contextual information, harming the downstream performance.

For human beings, although we have long-term memory, we only need a small amount of information
to think and act in real-time. Similarly, while an LLM requires the full context to complete the
inference process, it only needs limited contextual information at each inference step. This fact has
inspired research like InfLLM (Xiao et al., 2024a) and LongHeads (Lu et al., 2024) to perceive and
extract critical information from the context before performing self-attention. However, LongHeads
still face upper limits on positional information due to the use of NTK or PI for prefill (Lu et al., 2024),
while InfLLM suffers from bias in representing contextual information, raised from the chunk-wise
representation and ReRoPE-style position embedding when extracting key information.

In this work, we introduce ReAttention, a training-free method that extends LLMs with finite context
lengths to process infinite contexts. ReAttention regards extracting critical contextual information
as an additional attention process preceding traditional self-attention, akin to ”thinking before you
act.” At each reasoning step, ReAttention selects the most critical finite segments from the KV
cache without position information, concatenates them, applies positional embedding, and performs
self-attention. By controlling the length of the selected KV cache segments, ReAttention can achieve
infinite context length with a finite attention scope, while ensuring the position information and atten-
tion entropy are not out-of-distribution (Han et al., 2023). Furthermore, inspired by the optimization
techniques used in self-attention, particularly FlashAttention (Dao et al., 2022; Dao, 2023), we use
Triton (Tillet et al., 2019), a GPU programming language, to minimize read and write overheads in
top-k attention. With our custom Triton kernel, ReAttention avoids the extra computational overhead
and reduces memory usage for long contexts. Our contributions are summarized as follows:

• We outline three requirements for infinite context in Transformer-based LLMs, position
embedding not OOD, stable attention entropy, and effective contextual awareness. We also
find that the last one can be satisfied via the attention score without positional embedding.

• Based on this observation, we propose a training-free method, ReAttention, satisfying the
aforementioned three conditions, thus extrapolating the context length of LLMs to infinity
with a finite attention scope, and making LLMs free from the issue of length extrapolation.

• We validate that ReAttention matches the performance of traditional self-attention in long
contexts with no computational overhead and less memory usage. Specifically, ReAttention
extends the context length of leading LLMs, such as LLaMA3.1-8B-128K, to at least 1
million tokens. For smaller models like LLaMA3.2-3B-chat, the context length can be
increased by 128×, reaching up to 4 million tokens, without additional training.

2 METHOD

The overall structure of ReAttention is illustrated in Figure 1, which consists of a position-agnostic top-
k attention responsible for full-context cache selection and a traditional self-attention transform with
position embedding. ReAttention achieves a training-free integration between the two components.

2.1 FULL-CONTEXT CACHE SELECTION

While LLMs require a complete long context to perform the entire inference process, only a limited
context segment is needed at each inference step (Xiao et al., 2023; 2024a; Lu et al., 2024). Consider-
ing the beginning and end of the input context correspond to globally important prompts and local
information for inference (Xiao et al., 2023), ReAttention retains both the global and local segments
of the KV cache for inclusion in the self-attention process.

Kcache = [Kglobal,Kmiddle,Klocal] , Vcache = [Vglobal,Vmiddle,V local] . (1)

2



Published as a conference paper at ICLR 2025

Embedding

Self-Attention
with PE

Feed Forward

Output

TopK-Attention
without PE

𝑳-Layer

𝑸

𝑲

𝑽

𝑲′

𝑽′

𝑸

𝑶

Long-Term Memory
(KV Cache)

Short-Term Memory

Figure 1: Overview of ReAttention.

Then, ReAttention uses the query vector of the
current step to perform a top-k selection on the
middle part of the KV cache (Ribar et al., 2023),
to identify the most important cache segments
for the current step as shown in Figure 1.

Indices = top-k
(
qtKT

middle

)
,

Kselect = Kmiddle[Indices],
V select = Vmiddle[Indices].

(2)

ReAttention performs a full-context selection
on the KV cache in each layer, allowing differ-
ent layers to choose different KV caches for the
calculation. Furthermore, since each attention
layer has multiple attention heads and ReAtten-
tion adopts chunked streaming input during the
prefilling stage, multiple query vectors may ex-
ist simultaneously. In this case, ReAttention
votes based on the top-k selections from different heads and query vectors to identify the top-k′ KV
caches. Additionally, to ensure semantic coherence, ReAttention not only retains the top-k′ elements
themselves but also extracts m neighboring entries as a whole. Overlapping parts are deduplicated.

Unlike chunk-based selection in previous works (Lu et al., 2024; Xiao et al., 2024a), ReAttention
extracts critical contextual information with the dot-product between qt and Kcache, rather than a
chunk-wise representation of Kcache. This method offers strong adaptability and avoids the semantic
fragmentation caused by fixed chunking (Luo et al., 2024). Moreover, since the intermediate result
of qtKT

middle is too large for long-context scenarios, and would incur huge read and write overhead,
we follow the approach of FlashAttention (Dao et al., 2022; Dao, 2023), fusing the whole process
into one kernel using Triton (Tillet et al., 2019), as detailed in Section 3.4.

2.2 TRAINING-FREE INTEGRATION

ReAttention concatenates the selected KV cache segments between the global and local parts, applies
positional embedding sequentially, and preserves the relative order while ignoring the absolute
distance between the selected segments, as shown in Figure 1. Self-attention can then be applied to
the concatenated KV cache. The pseudocode of the whole process is detailed in Appendix A.

Kcache’ = [Kglobal,Kselect,Klocal] , Vcache’ = [Vglobal,V select,Vlocal] ,

q̃t, K̃cache’ = PE (qt,Kcache’) , ot = SelfAttn
(
q̃t, K̃cache’,Vcache’

)
.

(3)

It’s important to note that, unlike the conventional implementation in Huggingface Transformers (Wolf
et al., 2020), where the position embedding is applied before KV caching, in ReAttention, the position
embedding is separated from the KV cache and performed after the KV cache selection. That is to
say, the cached KV does not include the positional information. This design offers several advantages.
On the one hand, as mentioned in Section 4, the attention score without positional embedding is more
conducive to locating the key information in the context. On the other hand, since the concatenated
cache length remains within the pre-training context length or the extrapolation upper bound, the
position embedding will never be OOD (Han et al., 2023).

Furthermore, the unselected KV cache segments are unimportant in the current inference step, as
their self-attention scores are minimal (Zhang et al., 2024d). Therefore, this modification does not
harm the self-attention output and can eliminates interference from irrelevant information (Zhang
et al., 2024d; Ge et al., 2023). Compared with InfLLM (Xiao et al., 2024a), ReAttention’s position
embedding and attention transform within the pre-training window do not introduce the untrained
attention pattern, thereby preventing bias accumulation in the KV cache during the prefilling stage.
Thus, ReAttention can disregard position information, achieve an unlimited attention context with
a limited attention scope without any training, and remain compatible with the existing attention
acceleration methods (Dao et al., 2022; Dao, 2023).
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S-Doc M-Doc Sum ICL Syn. Code Avg.

LLaMA3-8B-8K 18.08 13.17 21.42 63.95 10.45 69.89 35.48
+ StreamingLLM 15.14 8.90 18.36 58.19 7.28 70.27 32.49
+ InfLLM 12.43 8.93 13.20 66.08 7.55 70.03 32.51
+ ReAttention (Ours) 19.08 11.33 20.69 63.40 8.95 70.38 35.03

LLaMA3.1-8B-128K 23.61 15.29 16.15 64.61 31.81 70.63 38.79
+ StreamingLLM 21.67 11.46 14.01 61.05 33.43 70.50 37.06
+ InfLLM 17.11 9.70 15.12 68.46 34.30 68.37 37.14
+ ReAttention (Ours) 23.97 15.22 15.66 64.54 31.20 70.48 38.63

LLaMA3.2-3B-128K 34.45 26.24 24.46 59.29 40.11 55.73 40.76
+ StreamingLLM 28.05 19.41 22.67 55.23 22.63 54.16 35.08
+ InfLLM 17.47 6.77 17.44 49.11 23.63 48.09 28.21
+ ReAttention (Ours) 32.53 24.39 24.13 58.13 37.39 55.17 39.43

Table 1: Results of LLaMA Series(Meta, 2024a; Dubey et al., 2024; Meta, 2024b) on LongBench(Bai
et al., 2023). ReAttention achieves a consistent superiority over StreamingLLM(Xiao et al., 2023)
and InfLLM(Xiao et al., 2024a) and shows comparable performance with LLMs with full attention.

32K 64K 128K Avg.
MC QA Sum MC QA Sum MC QA Sum

LLaMA3-8B-Instruct-8K 50.66 7.44 21.76 - - - - - - -
+ StreamingLLM 27.95 4.40 18.41 28.38 4.30 17.61 34.93 4.36 17.64 17.55
+ InfLLM 40.61 4.15 20.30 35.37 5.12 18.26 33.19 5.78 19.70 20.28
+ ReAttention (Ours) 46.29 5.33 21.76 44.54 5.25 20.15 49.78 5.98 20.36 24.38

LLaMA3.1-8B-Instruct-128K 37.12 18.85 1.60 31.88 23.32 1.39 21.83 25.43 1.40 18.09
+ StreamingLLM 34.50 6.82 19.61 34.93 6.83 20.82 35.81 6.71 20.10 20.68
+ InfLLM 32.31 5.48 21.00 34.50 7.56 19.82 39.30 8.92 19.27 20.91
+ ReAttention (Ours) 36.68 12.71 19.68 35.37 12.14 18.84 40.61 12.63 18.14 22.98

LLaMA3.2-3B-Instruct-128K 14.41 15.65 1.38 11.79 18.16 1.27 13.10 17.63 1.30 10.52
+ StreamingLLM 19.21 8.41 18.81 19.65 8.91 18.73 20.09 8.74 18.80 15.71
+ InfLLM 20.09 4.35 13.66 23.14 9.38 12.52 22.27 12.08 14.25 14.64
+ ReAttention (Ours) 19.21 11.80 16.75 17.47 11.82 15.06 20.09 11.91 14.13 15.36

Table 2: Results of LLaMA Series on InfiniteBench (Zhang et al., 2024b) in different context lengths.
”-” means LLM could not provide a stable output in a certain context length. ReAttention achieves
superiority over StreamingLLM (Xiao et al., 2023), InfLLM (Xiao et al., 2024a) and full attention.

3 EXPERIMENT

3.1 SETUP

We conduct experiments on LLaMA3-8B-8K (Meta, 2024a), LLaMA3.1-8B-128K (Dubey et al.,
2024), LLaMA3.1-70B-128K (Dubey et al., 2024), LLaMA3.2-3B-128K (Dubey et al., 2024), Mistral-
v0.3-7B-32K (mistralai, 2024), InternLM2.5-7B-1M (InternLM, 2024), Qwen2-7B-128K (Yang et al.,
2024a), Qwen2-72B-128K (Yang et al., 2024a), Qwen2-1B-32K (Yang et al., 2024a). For all models,
we set the length of Kglobal to 32, the length of Klocal to 4096, and selected span size to 32. Moreover,
we set k = 4, k′ = 127 in top-k attention. Importantly, the attention scope in each step remains
within the maximum attention window. For example, for the LLaMA3-8B-8K with ReAttention,
the maximum attention scope size is 32 + 4096 + 127×32, which exactly matches the maximum
supported attention window of 8192. We use OpenCompass (Contributors, 2023b) for validation. All
experiments are performed with FP16 precision and accelerated with FlashAttention2 (Dao, 2023).

3.2 LONG-CONTEXT BENCHMARK EVALUATION

We first evaluate all 9 LLMs on the commonly used long-context benchmark LongBench (Bai et al.,
2023) and L-Eval (An et al., 2023), with a default context length of 32K and a middle truncation.
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(a) LLaMA3.1-8B-128K
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(b) LLaMA3.2-3B-128K
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(c) Mistral-v0.3-7B-32K
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(d) InternLM2.5-7B-1M
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(e) Qwen2-7B-128K
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(f) Qwen2-1B-32K

Figure 2: Results of ReAttention-enhanced existing mainstream LLMs, including LLaMA3-8B-
8K and Mistral-v0.3-7B-32K, on Needle-In-A-Haystack (Contributors, 2023a) implemented in
OpenCompass (Contributors, 2023b).

For LLaMA3-8B-8K, which has a context length of less than 32K, we report its performance with
Dynamic NTK (bloc97, 2023a). For the Dynamic NTK implementation, we use the default settings
from the Huggingface Transformers (Wolf et al., 2020), setting the scaling factor to 4. Additionally,
we compare the performance of all 9 LLMs with StreamingLLM (Xiao et al., 2023) as an ablation
study, using the same global and local segment lengths as the ReAttention settings.

As shown in Table 1 and supplemented in Table 5 in Appendix B, ReAttention outperforms
StreamingLLM across all 9 models, indicating that the full-context selection acquires useful in-
formation for long-context inference. Furthermore, ReAttention performs on par with full attention
and even surpasses it in some cases, such as LLaMA3.1-70B-128K (Meta, 2024a) and Qwen2-1B-
32K (Yang et al., 2024a). This demonstrates that ReAttention can be applied to LLMs of various
sizes and achieve performance close to full attention on downstream tasks (Jiang et al., 2024).

To further demonstrate the superiority and extrapolation capability of ReAttention, we validate our
method on InfiniteBench (Zhang et al., 2024c), a more challenging benchmark with a longer context
length. We choose 3 commonly tested subtasks, En.MC, En.QA and En.Sum, evaluate models
with varying context lengths, and compare ReAttention with DynamicNTK (bloc97, 2023a) and
InfLLM (Xiao et al., 2024a) with the same selection config. The results1 are shown in Table 2.
Remarkably, ReAttention consistently outperforms full-attention and InfLLM at the 128K context
length and in the average score. While DynamicNTK performs well at 32k, it encounters a clear upper
bound on extrapolation, beyond which the model fails to produce stable outputs. Moreover, while
InfLLM can extend context length indefinitely (Xiao et al., 2024a), it still lags behind ReAttention
in downstream tasks due to inaccurate extraction of critical information and differences in position
embedding format compared to the pre-training phase.

3.3 NEEDLE-IN-A-HAYSTACK EVALUATION

Building upon the long-context benchmark evaluation, we use models with strong retrieval capabilities
within their training context lengths and conduct the Needle-In-A-Haystack (NIAH) evaluation
(Contributors, 2023a;b). We perform experiments on 8 A100 GPUs and extend the context lengths
of LLMs with ReAttention to at least 1M tokens. As shown in Figure 2, LLMs with ReAttention
maintain remarkably high retrieval accuracy across the entire range of context lengths they could
support, regardless of their original attention windows. Importantly, we also extend the context of
mainstream LLMs like LLaMA3-8B-8K (Meta, 2024a) and Mistral-v0.3-7B-32K (mistralai, 2024) to
at least 1M, providing the community with an effective solution for deploying long-context LLMs.

1Due to the extensive evaluation for all 9 models, and considering that InfLLM has limited support for larger
models such as LLaMA3.1-70B-chat and other series like InternLM2.5 and Qwen2, we only report results of the
LLaMA series models at the 8B and 3B scales.
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(a) Multi NIAH of LLaMA3.1-8B-
Instruct-128K
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(b) Single NIAH of LLaMA3.2-3B-
Instruct-128K in 2M Context
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(c) Single NIAH of Qwen2-1B-
Instruct-32K in 4M Context

Figure 3: Results of Multi-Needle-In-A-Haystack (Reid et al., 2024) and Single NIAH in a longer
context length implemented in OpenCompass (Contributors, 2023b).

Building on this, we increase the difficulty of the evaluation by conducting experiments on multi-
NIAH and single-NIAH in longer contexts, with results shown in Figure 3. Given the increased diffi-
culty, we employ the corresponding instruct versions of the models. On the mainstream LLaMA3.1-
8B-Instruct-128K (Dubey et al., 2024), we achieve a context length of 1M in the multi-NIAH task.
For smaller models, such as LLaMA3.2-3B-chat-128K (Meta, 2024b), we extend the context length
to at least 2M. Notably, for Qwen2-1B-Instruct-32k (Yang et al., 2024a), we extend the context length
to 4M on 4 A100 GPUs, achieving a training-free context expansion of 128×. To the best of our
knowledge, it is the largest amplification of context length for LLMs achieved without additional
training. This demonstrates that ReAttention can extend the context length while disregarding the
position information, using a finite attention window to achieve an infinite attention context.

3.4 EFFICIENCY ANALYSIS

Figure 4: Overview of the kernel
fusion in our customized top-k at-
tention kernel. The performance
measurements reflect the execution
time of the corresponding kernel
functions, with the input length 8K
for Llama3.1-8B inference tasks.

In the PyTorch framework, operators execute independently,
requiring frequent I/O to the GPU memory, which introduces
unnecessary overhead and latency. Inspired by FlashAtten-
tion (Dao et al., 2022; Dao, 2023), we develop a GPU kernel
function for the top-k attention described in Section 2.1 using
Triton. As shown in Figure 4, our kernel fuses operators for
attention score computation and top-k calculation, enabling the
entire process to run within the GPU cache. Thus GPU mem-
ory I/O is significantly reduced, improving both GPU memory
usage and runtime. We added top-k attention that reduces the
time for the self-attention, and our kernel keeps top-k atten-
tion’s overhead minimal, leaving overall latency unchanged.

We analyze our kernel’s efficiency in terms of GPU execution
time and memory usage, showing that using Triton rather than
PyTorch for the top-k attention greatly enhances GPU perfor-
mance while reducing GPU memory consumption. Addition-
ally, we compare ReAttention with the standard implementation
in the HuggingFace Transformers (Dai et al., 2019), measuring
time to first token (TTFT) and memory cost in context lengths
32k to 256k. The TTFT and throughput comparison results are
detailed in Appendix C. All experiments were conducted on a
system with a 48-core CPU, 256GB RAM, and an A800-80GB GPU.

Triton Operator Efficiency We tested our Triton operator using real inference inputs (e.g., Q and
K matrices extracted from real-world inference tasks) to measure execution time and device memory
usage. As shown in Figure 5a, the standard PyTorch implementation exceeds 80GB of memory for
sequences over 64k, while our Triton operator minimizes memory usage, limited to input and output
matrices. It also achieves hundreds of times faster performance at 64k sequence lengths and scales
efficiently as length increases (Figure 5b).

Memory Usage in Prefilling Stage Memory overhead limits the prefilling for longer sequences.
Figure 6 shows that our method surpasses the standard implementation in HuggingFace Transformers

6



Published as a conference paper at ICLR 2025

4k 32k 64k 128k 256k
Context Length

   0

   20

   40

   60

G
PU

 M
em

or
y 

C
os

t (
G

B)

PyTorch
Triton

04k 16k 32k 64k
0

5

10

15

(a) GPU memory cost across different context lengths.

4k 32k 64k 128k 256k
Context Length

0

200

400

600

800

1000

1200

Ti
m

e 
(m

s)

PyTorch
Triton

0 4k 16k 32k 64k
0

50

100

150

200

(b) Latency across different context lengths.

Figure 5: The efficiency cooperation between our Triton kernel and its PyTorch version. Our fused
top-k attention kernel performs better than PyTorch implementation across all context lengths.
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Figure 6: First token latency(FTL) and GPU memory consumption in the prefilling stage. FullAttn
refers to the official HuggingFace Transformers implementation of Llama3.1-8B-Base, which runs
out of memory after 192k.

En. Zh. Code Avg.

StreamingLLM 29.48 13.22 70.27 32.49
ReAttention 33.42 18.74 70.38 35.03

+ chunk size = 1024 25.50 18.07 70.32 34.75
+ chunk size = 2048 25.39 18.07 70.30 34.72

+ span size = 8 13.02 8.74 58.54 22.96
+ span size = 16 14.13 9.43 60.92 24.29
+ span size = 64 25.27 17.98 70.83 34.69
+ span size = 128 25.23 16.97 70.54 34.57

+ top-k = 1 25.04 16.57 70.75 34.45
+ top-k = 8 25.40 17.51 70.64 34.70

+ local size = 2048 24.51 16.77 70.39 34.08
+ local size = 1024 22.31 13.64 69.48 32.23

Table 3: Analysis of ReAttention hyper-parameters
on LLaMA3-8B-8K and LongBench, by default
chunk size 512, span size 32 as well as global size,
local size 4096, and top-k Selection.

as context length grows, continuing to work
when the standard implementation runs out of
memory. We also record first-token latency,
which remains comparable to the standard im-
plementation in Huggingface Transformers.

4 DISCUSSION

4.1 ANALYSIS ON HYPER-PARAMETER

We first discuss the selection of hyper-
parameters. We evaluate the performance of
the LLaMA3-8B-8K (Meta, 2024a) on the
LongBench benchmark (Bai et al., 2023), com-
paring hyper-parameters including chunk size,
span size, local size, and top-k values. Since
the prefilling chunk is always contained within
the local part in self-attention, the chunk size
must be smaller than the local size. Addition-
ally, to ensure fairness in our comparisons, we
maintain a consistent maximum attention window size across different settings, specifically keeping
the summation of global size, span size times k′, and local size equal to 8192. To achieve this, we
set global size equal to span size, retaining the earliest portion as the first selection segment. As
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(a) Attention distribution
of a correct case with posi-
tion embedding.
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(b) Attention distribution
of a correct case without
position embedding.
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(c) Attention distribution
of a wrong case with po-
sition embedding.
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(d) Attention distribution
of a wrong case without
position embedding.

Figure 7: Visualization of the attention distributions for InternLM2-7B-200K (Cai et al., 2024b) eval-
uated on Needle-In-A-Haystack (Contributors, 2023a;b) in 32K context length. In each sub-figure,
each heatmap represents the attention distribution of a single layer, with the y-axis corresponding to
the 32 attention heads and the x-axis corresponding to the 32K context length. The first 32 tokens,
the instruction part, and the last 6 tokens, the generated part, are not excluded. The values represent
the cumulative self-attention distributions for each token generation. The brighter the color, the
higher the cumulative attention. A pooling operation with a kernel size of 100 is applied sequentially
to show the pattern more clearly. The red box represents the position of the ”needle” in the context.

span size increased, we correspondingly reduced the k′ to limit the upper bound of cache selection.
Additionally, when local size decreases, k′ is increased. The final results are shown in Table 3.

We find that as the chunk size decreases from 2048 to 512, the performance gradually improves. The
prefilling stage becomes more precise in extracting critical information during each top-k attention
step. However, since prefilling takes more time as chunk size decreases, we select 512 as our default
value without further reduction. Next, we examine the impact of different span sizes. Among these
hyper-parameters, span size has the most significant effect on downstream performance. When
span size is relatively small, fragmented segments weaken coherence and may mislead the LLM’s
predictions, resulting in poorer performance compared to StreamingLLM. When the span size reaches
32, the performance on LongBench peaks. Beyond this point, due to the constraint of pre-trained
position embedding, the number of extracted segments decreases, hindering the effective capture
of critical contextual information. We also compare the influence of the top-k number and find
that top-4 yields the best results. A smaller top-k number makes it difficult for LLM to identify
critical information, while a larger top-k number may introduce irrelevant content that interferes with
judgment. Finally, we analyze the effect of local size. Smaller local size compromises LLM’s ability
to maintain semantic coherence, and excessive selection beyond the local context may skew the KV
cache during the prefilling stage. Therefore, we set the local size to half of the pre-training context
length for LLaMA3-8B-8K and apply this hyper-parameter configuration to other LLMs.

4.2 POSTION-AGNOSTIC CACHE SELECTION

In ReAttention, the full-context cache selection is based on the dot product between the query and key
vectors without position embedding. This may create a gap between the selection of the KV cache
and the self-attention distribution. Therefore, here raises the question of whether using semantic
vectors without position information can effectively locate the critical information in the context. To
analyze this, we select a correct case and a wrong case from the results of Needle-In-A-Haystack
evaluation (Contributors, 2023a;b) on InternLM2-7B-200K (Cai et al., 2024b) with full attention in
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32K context length. For each case, we calculate the attention distribution with position embedding,
i.e., the real self-attention distribution, and the attention distribution without position embedding.

The result is shown in Figure 7. For the correct case, the attention distributions, both with and
without position embedding, can locate the position of the ”needle” in the ”haystack”. However, the
attention distribution with position embedding appears more dispersed, and this effect becomes more
pronounced in the higher layers of the model. For the wrong case, the attention distribution with
position embedding is also very dispersed and highly influenced by a particular attention head misled
by irrelevant information from the lower layers. This ultimately results in the model’s failure.

Interestingly, when observing the attention distribution without position embedding, we find that
the model can identify the position of the ”needle” using the inner product of semantic vectors
and effectively filter out a large amount of irrelevant noise. Practically, the ReAttention-enhanced
InternLM2-7B-200K can successfully locate the ”needle” in this case. Therefore, the inner product
of semantic vectors in the cache selection is reasonable, and it proves to be more effective in finding
the relevant context compared with position-aware inner products. Additionally, due to the absence
of position embedding in the KV cache, ReAttention can achieve an effective context extension.

4.3 OBSERVATIONS ON SYNTHETIC TASKS

The above analysis has demonstrated ReAttention’s good performance in various long-context scenar-
ios, suggesting that it can extrapolate to infinite context lengths. However, these evaluations primarily
focus on common natural contexts and lack currently widely-discussed benchmarks (Kuratov et al.,
2024; Li et al., 2024), such as RULER (Hsieh et al., 2024). Unfortunately, ReAttention performs
poorly on the RULER benchmark. In fact, the extrapolation methods not based on full attention,
including ReAttention and InfLLM, fail to pass the RULER benchmark. For instance, using the
LLaMA3-8B-8K (Meta, 2024a), we compare Dynamic NTK extrapolation with InfLLM (Xiao et al.,
2024a) and ReAttention at 8K and 16K context lengths. The results are shown in Table 4. Only
Dynamic NTK achieves effective extrapolation, while both ReAttention and InfLLM exhibit more
pronounced performance degradation as the context length increases. Specifically, We focus on
reporting the results of two subtasks from RULER: NIAH-Single3 and NIAH-MultiKey3 (Hsieh
et al., 2024). Both tasks involve extracting key information from a context that contains misleading
items. The difference is that the context for Single3 consists of natural text, where the key information
is a string of random alphanumeric characters, whereas MultiKey3 features a stack of key-value pairs
composed of those strings. We find that while all three methods can succeed in the Single3 test, only
full-attention-based Dynamic NTK can effectively handle MultiKey3.

To uncover the mechanisms behind the observation, we perform a t-SNE visualization (Van der
Maaten & Hinton, 2008) of the K cache in LLaMA3-8B-8K using Dynamic NTK for both Single3
and MultiKey3, using the K cache in the last layer as an example. The results are shown in Figure 8.
For Single3, which primarily consists of natural text, the reduced K cache exhibits a single manifold

S3 MK3 All
8K Context Length
DynamicNTK 100.00 98.00 91.47
InfLLM 45.00 38.00 44.91
ReAttention 95.00 78.00 90.10
16K Context Length
DynamicNTK 91.00 95.00 88.13
InfLLM 18.00 17.00 29.61
ReAttention 94.00 15.00 66.57

Table 4: The performance of Dynamic NTK,
InfLLM, and ReAttention on RULER bench-
mark in 8K and 16K context length. S3 and
MK3 are the short forms of NIAH-Single3
and NIAH-Multikey3 respectively.

Figure 8: Visualization of the K Cache from the final
layer of LLaMA3-8B-8K with Dynamic NTK extrapo-
lation after inputs randomly sampled from the Single3
and MultiKey3 subsets in RULER. The visualization
uses a 2D t-SNE projection, with each token repre-
sented as a point in the image and the input index
shown via the color changing.
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with a local cluster and an overall coherent feature as the input length increases. In contrast, for
MultiKey3, which is dominated by chaotic text (Lv et al., 2024), the reduced K cache reveals multiple
overlapping manifolds rather than an extension along a single curve. This results in the fact that
during the K cache selection in MultiKey3, regardless of whether we use the same index encoding or
direct sequential encoding for the selected segments, the subsequent self-attention fails to identify
which manifold branch the segments belong to. Only by encoding all K caches according to their
original position indices can LLM implicitly recognize (Chi et al., 2023; Kazemnejad et al., 2024)
which manifold branch it resides on. This is why only full attention can effectively handle such tasks.

Nevertheless, the synthetic chaotic long texts are quite rare in practical scenarios (Lv et al., 2024). In
the common natural long text benchmarks we have tested, ReAttention consistently demonstrates
strong performance. Therefore, ReAttention still remains competitive for application in extending the
context length of LLMs to infinity. We provide an in-depth discussion of the characteristics reflected
in the QK sequence extension patterns between synthetic and natural texts in Appendix E.

5 RELATED WORK

Length extrapolation is an important issue for LLMs (Press et al., 2022), namely training in a short
context, and maintaining good performance in a longer context. The mainstream extrapolation
research mainly focuses on adjusting the Rotary Position Embedding (RoPE) (Su et al., 2021). For
example, Linear PI (Chen et al., 2023) first achieves the length extrapolation in LLMs by scaling the
position indices to the pre-training range with little fine-tuning. The NTK method (bloc97, 2023b;a;
Peng et al., 2023) then adjusts the rotary base in RoPE (Su et al., 2021) to achieve plug-and-play
length extrapolation. Subsequently, amplifying the rotary base and training on longer lengths has
become the dominant approach for length extrapolation (Rozière et al., 2023; Xiong et al., 2023; Liu
et al., 2023; Ding et al., 2024), but these methods all have an explicit extrapolation upper bound. In
addition, ReRoPE (Su, 2023), Self-Extend (Jin et al., 2024), and ChunkLLaMA (An et al., 2024)
also achieve plug-and-play extrapolation by limiting the relative position. However, all of the above
methods are based on full attention, facing the problem of attention entropy soaring with input length,
and thus fail to achieve infinite context length (Han et al., 2023; Wang et al., 2024).

In contrast, another line of research has tried to extend the context length of models through sparse
attention. Considering the self-attention distribution tends to focus on the global and local context,
StreamingLLM and LM-Infinite proposed the Λ-shaped attention window to achieve almost unlimited
input length (Xiao et al., 2023; Han et al., 2023). However, since the input is accompanied by
discarding the previous context, it still fails to extend the context length (Dong et al., 2024). Based
on StreamingLLM, InfLLM (Xiao et al., 2024a) and LongHeads (Lu et al., 2024) attempt to extend
context through chunkwise retrieval from the middle cache, but the semantic fragmentation and
block representation issues also affect downstream task performance (Luo et al., 2024). Recently,
MInference (Jiang et al., 2024) and RetrievalAttentionLiu et al. (2024a) utilize a dynamic cache
selection to achieve significant speedup, but not attempt context extrapolation. In contrast, we
propose ReAttention, which regards the cache selection as the preceding attention before the ordinary
self-attention and achieves an infinite context with a finite attention scope, making LLMs free
from the challenge of length extrapolation. We also minimize the top-k attention kernel-wise like
FlashAttention in self-attention (Dao et al., 2022; Dao, 2023). Additionally, since ReAttention is
conducted based on cache selection, we also expand our discussion on cache optimization, especially
on token eviction methods like H2O (Zhang et al., 2024d) and SnapKV, in Appendix D

6 CONCLUSION

In this paper, we introduce ReAttention, using a finite attention window to realize an infinite context
length in each inference step. We evaluate ReAttention is on par with full attention in performance
with LongBench, L-Eval, and InfiniteBench. Furthermore, ReAttention has been shown to success-
fully extend the context of mainstream LLMs, including the LLaMA series and Mistral, to up to 1M
tokens and even expand the context length of LLaMA3.2-3B-chat by 128× to 4M without any further
training in Needle-In-A-Haystack tests. We also improve the efficiency of ReAttention with Triton
and achieve an efficient extrapolation without additional overhead.

10



Published as a conference paper at ICLR 2025

ACKNOWLEDGEMENT

This work is supported by the National Key Research and Development Program of China (No.
U24B20181). We also appreciate the constructive comments from reviewers in the rebuttal and add
discussion on methodology, effectiveness, efficiency, and related work in Appendix A to Appendix D.

REFERENCES

Chenxin An, Shansan Gong, Ming Zhong, Mukai Li, Jun Zhang, Lingpeng Kong, and Xipeng Qiu. L-
eval: Instituting standardized evaluation for long context language models. CoRR, abs/2307.11088,
2023. doi: 10.48550/ARXIV.2307.11088. URL https://doi.org/10.48550/arXiv.
2307.11088.

Chenxin An, Fei Huang, Jun Zhang, Shansan Gong, Xipeng Qiu, Chang Zhou, and Lingpeng Kong.
Training-free long-context scaling of large language models. arXiv preprint arXiv:2402.17463,
2024.

Sotiris Anagnostidis, Dario Pavllo, Luca Biggio, Lorenzo Noci, Aurelien Lucchi, and Thomas
Hofmann. Dynamic context pruning for efficient and interpretable autoregressive transformers.
Advances in Neural Information Processing Systems, 36, 2024.

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du, Xiao
Liu, Aohan Zeng, Lei Hou, et al. Longbench: A bilingual, multitask benchmark for long context
understanding. arXiv preprint arXiv:2308.14508, 2023.

bloc97. Dynamically scaled rope further increases performance of long context llama with zero
fine-tuning, July 2023a. URL https://www.reddit.com/r/LocalLLaMA/comments/
14mrgpr/dynamically_scaled_rope_further_increases/.

bloc97. Ntk-aware scaled rope allows llama models to have extended (8k+) context
size without any fine-tuning and minimal perplexity degradation., June 2023b. URL
https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_
scaled_rope_allows_llama_models_to_have/.

Zefan Cai, Yichi Zhang, Bofei Gao, Yuliang Liu, Tianyu Liu, Keming Lu, Wayne Xiong, Yue Dong,
Baobao Chang, Junjie Hu, et al. Pyramidkv: Dynamic kv cache compression based on pyramidal
information funneling. arXiv preprint arXiv:2406.02069, 2024a.

Zheng Cai, Maosong Cao, Haojiong Chen, Kai Chen, Keyu Chen, Xin Chen, Xun Chen, Zehui
Chen, Zhi Chen, Pei Chu, Xiaoyi Dong, Haodong Duan, Qi Fan, Zhaoye Fei, Yang Gao, Jiaye
Ge, Chenya Gu, Yuzhe Gu, Tao Gui, Aijia Guo, Qipeng Guo, Conghui He, Yingfan Hu, Ting
Huang, Tao Jiang, Penglong Jiao, Zhenjiang Jin, Zhikai Lei, Jiaxing Li, Jingwen Li, Linyang Li,
Shuaibin Li, Wei Li, Yining Li, Hongwei Liu, Jiangning Liu, Jiawei Hong, Kaiwen Liu, Kuikun
Liu, Xiaoran Liu, Chengqi Lv, Haijun Lv, Kai Lv, Li Ma, Runyuan Ma, Zerun Ma, Wenchang
Ning, Linke Ouyang, Jiantao Qiu, Yuan Qu, Fukai Shang, Yunfan Shao, Demin Song, Zifan Song,
Zhihao Sui, Peng Sun, Yu Sun, Huanze Tang, Bin Wang, Guoteng Wang, Jiaqi Wang, Jiayu Wang,
Rui Wang, Yudong Wang, Ziyi Wang, Xingjian Wei, Qizhen Weng, Fan Wu, Yingtong Xiong,
Chao Xu, Ruiliang Xu, Hang Yan, Yirong Yan, Xiaogui Yang, Haochen Ye, Huaiyuan Ying, Jia
Yu, Jing Yu, Yuhang Zang, Chuyu Zhang, Li Zhang, Pan Zhang, Peng Zhang, Ruijie Zhang, Shuo
Zhang, Songyang Zhang, Wenjian Zhang, Wenwei Zhang, Xingcheng Zhang, Xinyue Zhang, Hui
Zhao, Qian Zhao, Xiaomeng Zhao, Fengzhe Zhou, Zaida Zhou, Jingming Zhuo, Yicheng Zou,
Xipeng Qiu, Yu Qiao, and Dahua Lin. Internlm2 technical report, 2024b.

Shouyuan Chen, Sherman Wong, Liangjian Chen, and Yuandong Tian. Extending context window of
large language models via positional interpolation. CoRR, abs/2306.15595, 2023. doi: 10.48550/
ARXIV.2306.15595. URL https://doi.org/10.48550/arXiv.2306.15595.

Ta-Chung Chi, Ting-Han Fan, Li-Wei Chen, Alexander I Rudnicky, and Peter J Ramadge. Latent
positional information is in the self-attention variance of transformer language models without
positional embeddings. arXiv preprint arXiv:2305.13571, 2023.

11

https://doi.org/10.48550/arXiv.2307.11088
https://doi.org/10.48550/arXiv.2307.11088
https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/
https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/
https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
https://doi.org/10.48550/arXiv.2306.15595


Published as a conference paper at ICLR 2025

Contributors. Needle in a haystack - pressure testing llms. https://github.com/gkamradt/
LLMTest_NeedleInAHaystack, 2023a.

OpenCompass Contributors. Opencompass: A universal evaluation platform for foundation models.
https://github.com/open-compass/opencompass, 2023b.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime G Carbonell, Quoc Le, and Ruslan Salakhutdinov.
Transformer-xl: Attentive language models beyond a fixed-length context. In Proceedings of the
57th Annual Meeting of the Association for Computational Linguistics, pp. 2978–2988, 2019.

Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. CoRR,
abs/2307.08691, 2023. doi: 10.48550/ARXIV.2307.08691. URL https://doi.org/10.
48550/arXiv.2307.08691.

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention:
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A PSEUDOCODE OF REATTENTION

In this section, we present the pseudocode for ReAttention’s prefilling and decoding phases. Our
approach uses position-agnostic cache selection at each generation step, as shown in Section 2.1.

B MORE VALIDATION ON EFFECTIVENESS

Table 5 includes a detailed comparison of various LLMs including LLaMA (Meta, 2024a; Dubey
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and Qwen (Yang et al., 2024a) series in LongBench (Bai et al., 2023) and L-Eval (An et al., 2023).
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Algorithm 1: Prefilling Phase
Input: The input token indices input ids, number of tokens L, the number of starting tokens

lglobal, the number of ending tokens llocal, size of prefilling chunk lchunk.
1 Initialize: s = 0, e = lglobal + llocal, past key values = None
2 while s < L do
3 ▷ Process next chunk
4 past key values = None
5 input chunk = input ids[:, s:min(e, L)]
6 hidden states = embedding(input chunk)
7 ▷ Forward through each transformer layer
8 for i← 0 to Nlayer − 1 do
9 ▷ Project to Q, K, V

10 query = q proj(hidden states)
11 key = k proj(hidden states)
12 value = v proj(hidden states)
13 ▷ Update KV cache for this layer
14 if past key values then
15 key = concat(past key values[i].key, key)
16 value = concat(past key values[i].value, value)
17 past key values[i] = (key, value)
18 ▷ Position-agnostic cache selection
19 score = query @ key[lglobal:-llocal]T
20 idx recall = topk(score, dim=0, k=k)
21 key recall = concat(
22 past key values[i].key[lglobal:],
23 past key values[i].key[idx recall],
24 past key values[i].key[:-llocal]
25 )
26 value recall = concat(
27 past key values[i].value[lglobal:],
28 past key values[i].value[idx recall],
29 past key values[i].value[:-llocal]
30 )
31 ▷ Compute self-attention with position embedding
32 attention output = rope attention(query, key recall, value recall)
33 hidden states = ffn(attention output)
34 ▷ Move to the next chunk
35 s = e
36 e = e+ lchunk

37 return hidden states, past key values

C MORE COMPARISON ON EFFICIENCY

Regarding the comparison between full attention and ReAttention in efficiency, the throughput and
TTFT (Time To First Token) are two different measuring dimensions. TTFT measures performance
under identical conditions (same batch size and context length). As shown in Table 6, our TTFT
results demonstrate that ReAttention achieves latency on par with full attention equipped with
FlashAttention2 under these controlled conditions. Using a single A800 GPU, we test our ReAttention
approach and the standard implementation of Hugging Face’s Llama3-8B (Meta, 2024b) modeling
with FlashAttention2 (Dao, 2023). We keep all the settings unchanged and set the batch size to 1.

Throughput, on the other hand, evaluates maximum processing capacity when fully utilizing available
GPU memory. As shown in Table 7, ReAttention demonstrates higher efficiency by supporting larger
batch sizes while maintaining comparable or better token processing rates. Besides, beyond context
length 64K, full attention equipped with FlashAttention2 (Dao, 2023) encounters memory limitations,
while ReAttention continues working. Using a single A800 GPU, we test our ReAttention approach
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Algorithm 2: Decoding Phase
Input: KV cache past key values, the last token index last token, number of tokens L, the

number of starting tokens lglobal, the number of ending tokens llocal.
1 hidden states = embedding(last token)
2 ▷ Forward through each transformer layer
3 for i← 0 to Nlayer − 1 do
4 ▷ Project to Q, K, V
5 query = q proj(hidden states)
6 key = k proj(hidden states)
7 value = v proj(hidden states)
8 ▷ Update KV cache for this layer
9 key = concat(past key values[i].key, key)

10 value = concat(past key values[i].value, value)
11 past key values[i] = (key, value)
12 ▷ Position-agnostic cache selection
13 score = query @ key[lglobal:-llocal]T
14 idx recall = topk(score, dim=0, k=k)
15 key recall = concat(
16 past key values[i].key[lglobal:],
17 past key values[i].key[idx recall],
18 past key values[i].key[:-llocal]
19 )
20 value recall = concat(
21 past key values[i].value[lglobal:],
22 past key values[i].value[idx recall],
23 past key values[i].value[:-llocal]
24 )
25 ▷ Compute self-attention with position embedding
26 attention output = rope attention(query, key recall, value recall)
27 hidden states = ffn(attention output)
28 ▷ Get the next token prediction
29 logits = lm head(hidden states)
30 next token = argmax(logits)
31 return next token, past key values

and full attention with FlashAttention2 (Dao, 2023) with LLaMA3-8B (Meta, 2024b). We keep all
the settings unchanged. The generation length is 1024. This performance pattern indicates not a
trade-off where we sacrifice one capability for another. Rather, it represents extending context length
while maintaining competitive throughput and enabling larger batch sizes.

D MORE RELATED WORK

The evolution of token eviction techniques begins with DCP (Anagnostidis et al., 2024), Scis-
sorhands (Liu et al., 2024b), and H2O (Zhang et al., 2024d). These approaches demonstrate that re-
taining only a small subset of tokens with high attention scores could maintain near-equivalent perfor-
mance while significantly reducing memory and computational overhead. Then, StreamingLLM (Xiao
et al., 2023) advances this concept by identifying that critical tokens always occur in the beginning
and end part of the attention scope. By preserving only corresponding tokens, StreamingLLM enables
stable model outputs after infinite input lengths, dramatically reducing computational and memory
costs. However, this approach substantially compromised long-context performance (Li et al., 2025;
Xiao et al., 2024b). Subsequent researches explore mitigation strategies, such as head-adaptive meth-
ods like FastGen (Ge et al., 2023) and DuoAttention (Xiao et al., 2024b). Specifically, SnapKV (Li
et al., 2025) introduced a more nuanced approach to pruning previous KV caches by querying the
above context with later input segments, substantially enhancing long-context performance for token
eviction techniques. Building upon these foundations, researchers such as PyramidKV (Cai et al.,
2024a), PyramidInfer (Yang et al., 2024b), Gemfilter (Shi et al., 2024), and LongGen (Ge et al.,
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LongBench L-Eval

S-Doc M-Doc Sum ICL Syn. Code Avg. Close-
Ended

Open-
Ended Avg.

LLaMA3-8B-8K 18.08 13.17 21.42 63.95 10.45 69.89 35.48 46.11 2.79 17.23
+ StreamingLLM 15.14 8.90 18.36 58.19 7.28 70.27 32.49 36.52 1.36 13.08
+ ReAttention 19.08 11.33 20.69 63.40 8.95 70.38 35.03 44.94 2.43 16.60

LLaMA3.1-8B-128K 23.61 15.29 16.15 64.61 31.81 70.63 38.79 45.30 0.50 15.44
+ StreamingLLM 21.67 11.46 14.01 61.05 33.43 70.50 37.06 42.36 0.38 14.37
+ ReAttention 23.97 15.22 15.66 64.54 31.20 70.48 38.63 45.25 0.50 15.42

LLaMA3.2-3B-128K 34.45 26.24 24.46 59.29 40.11 55.73 40.76 55.75 20.63 32.33
+ StreamingLLM 28.05 19.41 22.67 55.23 22.63 54.16 35.08 43.27 18.66 26.87
+ ReAttention 32.53 24.39 24.13 58.13 37.39 55.17 39.43 53.09 20.12 31.11

LLaMA3.2-3B-128K 26.46 15.60 21.88 67.39 66.62 74.89 46.02 60.78 0.15 20.36
+ StreamingLLM 23.72 12.14 20.66 65.35 56.36 75.06 43.20 55.32 0.16 18.54
+ ReAttention 27.23 15.38 21.67 67.58 66.35 75.26 46.15 61.11 0.18 20.49

Mistral-v0.3-7B-32K 19.93 11.22 22.32 62.05 20.97 65.13 35.61 41.97 4.33 16.88
+ StreamingLLM 17.60 9.79 20.68 59.32 19.42 64.85 34.01 36.49 4.45 15.13
+ ReAttention 20.20 10.64 22.41 61.57 20.58 65.32 35.48 41.95 4.09 16.71

InternLM2.5-7B-1M 44.18 41.06 23.17 61.85 63.17 52.62 47.27 62.96 24.99 37.64
+ StreamingLLM 41.26 34.46 22.26 59.58 53.67 52.97 44.03 57.97 23.30 34.85
+ ReAttention 43.85 41.10 23.14 62.15 63.67 52.72 47.35 63.47 24.36 37.40

Qwen2-7B-128K 37.75 14.82 26.16 62.81 29.00 67.65 41.34 53.43 15.41 28.08
+ StreamingLLM 35.46 11.22 25.11 61.46 23.00 67.39 39.16 50.07 14.30 26.22
+ ReAttention 37.64 14.39 26.24 62.90 27.00 67.56 41.01 53.18 15.35 27.96

Qwen2-72B-128K 44.61 54.04 26.33 65.50 64.33 71.15 54.71 68.17 25.44 39.68
+ StreamingLLM 40.11 40.24 25.29 64.48 54.83 70.91 50.08 60.43 22.38 35.06
+ ReAttention 44.96 53.20 26.18 66.00 62.67 71.39 54.53 67.31 25.34 39.33

Qwen2-1B-32K 24.07 12.96 23.45 58.14 10.17 57.98 33.21 41.28 15.59 24.16
+ StreamingLLM 23.87 10.13 22.87 56.62 10.00 58.32 32.40 37.46 15.31 22.69
+ ReAttention 24.55 13.38 23.44 58.27 10.17 58.58 33.51 41.00 16.10 24.40

Table 5: Results of existing mainstream LLMs, including LLaMA Series and Mistral on LongBench
and L-Eval. ReAttention achieves a consistent superiority over StreamingLLM and shows comparable
performance with LLMs with full attention.

ReAttention
(ms)

Baseline
(ms)

32k 3984.66 3592.32
64k 10696.22 9823.82
96k 20139.42 18942.57
128k 32328.20 31953.82
192k 64832.10 64475.56
256k 108240.09 OOM

Table 6: Comparison on TTFT.

ReAttention Baseline

token/s batch token/s batch

32k 43.380 8 40.595 2
64k 24.383 5 20.399 1
96k 17.005 4 OOM
128k 11.683 2 OOM
192k 7.2813 1 OOM
256k 5.9680 1 OOM

Table 7: Comparison on Throughput.

2024) take layer-wise optimization, maintaining inference effectiveness while improving memory
efficiency further. Besides, works like VATP (Guo et al., 2024) and InfiniPot (Kim et al., 2024)
expand token pruning metrics beyond traditional QK dot product scoring. Our ReAttention draws
inspiration from these token eviction methods, specifically applying the principle of selecting KV
cache to context extrapolation, enabling comprehensive context perception throughout the inference
process while computationally addressing each attention calculation with a finite context, thereby
achieving algorithmically infinite context length.
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E ANALYSIS OF CACHE FEATURE

E.1 THE METHOD FOR OBTAINING T-SNE RESULTS

We begin by extracting a lengthy sample (approximately 16K tokens) of text and feeding it into
the LLaMA3-8B-8K (Meta, 2024a). Subsequently, we capture the Q,K states at each layer, both
before and after position embedding, allowing for a clearer understanding of the impact of position
embedding on data representation. Next, the captured matrices are reshaped to (seqlen, nhead *
headdim), and we apply t-SNE (Van der Maaten & Hinton, 2008) for dimension reduction, mapping
the high-dimensional data into two dimensions with a final shape of (seqlen, 2).

E.2 CACHE FEATURE OF LONG NATURAL LANGUAGE TEXTS

(a) t-SNE results of Q,K from a data sample from the
PG19 training set in the final layer of LLaMA3-8B-8K

(b) t-SNE results of Q,K from a data sample from the
PG19 training set in the 15th layer of LLaMA3-8B-8K

Figure 9: The 2-D reduction results of Q,K from the final/15th layer, both before and after position
embedding. Each figure is divided into four sections, representing four dimensionality reduction
results. The left side corresponds to Q, while the right side corresponds to K. The top displays
results before position embedding, and the bottom shows results after position embeddingg. Each
point represents a token. The colorbar indicates token indices(positions), with purple representing
the beginning of the sentence and yellow representing the end.

(a) t-SNE results of Q,K
from a data sample from
LongBench GovReport in
the 5th layer of LLaMA3-
8B-8K with NTK

(b) t-SNE results of Q,K
from a data sample from
LongBench GovReport in
the 15th layer of LLaMA3-
8B-8K with NTK

(c) t-SNE results of Q,K
from a data sample from
LongBench GovReport in
the 25th layer of LLaMA3-
8B-8K with NTK

(d) t-SNE results of Q,K
from a data sample from
LongBench GovReport in
the final layer of LLaMA3-
8B-8K with NTK

Figure 10: Given the smaller number of tokens of this sample, the clusters are distinctly separated by
the algorithm. Despite some dispersion in the intermediate layers, the data representation maintains
alignment along a linear manifold in the higher layers, indicating the robustness of the feature of
Global Coherence.
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The Q,K states of long natural language text preserves coherence, which can be visualized as a curve
extending through high-dimensional space, encompassing the entire text. When the model extracts
contextual information, it effectively accesses specific points along this line. The visualization in
Figure 9 and Figure 10 reveals several key features:

• Local Semantic Similarity: Locally, the semantic meaning of individual text segments is
preserved, forming small clusters. (Zandieh et al., 2024)

• Global Coherence: These local clusters, however, are not isolated but part of a larger linear
manifold representing the text’s global coherence. This coherence becomes more apparent
after position embedding is applied. (Zandieh et al., 2024)

• Out-of-Distribution Position Embedding: When the position embedding exceeds 8K,
Llama3-8B struggles to extract semantic information, as seen in the diminished clus-
tering. (Liu et al., 2023) Nonetheless, even when the position embedding is out-of-
distribution(OOD), the text representation continues to align with a linear manifold.

E.3 FROM NATURAL LANGUAGE TEXTS TO CHAOTIC TEXTS

In contrast, Ruler’s MultiKey3 subset contains unnaturally long texts that deviate from typical
linguistic patterns, lacking the structure and semantic coherence of natural language. Here in this
subset, the text length is artificially extended to 16k tokens, not by model generation but by repeating
specific patterns

One of the special magic UUIDs for A is: B.

like

One of the special magic UUIDs for eab8d5be-b62c-49bf-a4f7-3a3017a15a60
is: 960e9c1a-b4c0-4d18-a5cd-7fd162649ce8.

Moreover, large portions of these patterns consist of non-linguistic, non-logical elements like UUIDs.

When applying t-SNE to reduce the dimension of MultiKey3 data(Figure 11), the linear manifold
observed in natural language text vanishes, highlighting the impact of unnatural patterns on data
representation. Key observations include:

• Local Semantic Similarity: By examining Q after position embedding, we can clearly see
that the UUIDs and natural language components are completely separated, even in the deep
purple section at the start. In K after position embedding, adjacent tokens (i.e., data points
of similar colors) are dispersed across multiple lines, thus making the term ’local similarity’
questionable.

• Global Coherence: The assumption that the entire data representation lies on a linear
manifold no longer holds. Unnaturally extended texts, unlike typical natural language, fail
to maintain global structural dependencies.

The effectiveness of dynamic sparse methods in replacing the full attention mechanism hinges on
the collaboration between global and local information. However, when text coherence is lacking,
even adjacent tokens in the Q,K cache become dispersed, disrupting the required linear manifold
structure that LLM relies on. This suggests that LLM focuses its top-k attention on natural language
segments and successfully extracts critical information. Yet, when the top-k values are spread across
multiple manifolds, LLM fails to utilize this information efficiently. This contrasts sharply with the
typical feature of the Q,K cache in natural language, where the representation forms a continuous,
intertwined structure across the text in high-dimensional space. It is precisely the absence of this
characteristic feature that causes the cache generated during prefilling with ReAttention to be biased
when processing RULER Multikey3, leading to the output of non-existent UUIDs.
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(a) t-SNE results of Q,K from a sample in RULER
Multikey3 in the 15th layer of LLaMA3-8B-8K with
NTK

(b) t-SNE results of Q,K from a sample in RULER
Multikey3 in the final layer of LLaMA3-8B-8K with
NTK

(c) t-SNE results of Q,K from a sample in RULER
Multikey3 in the 15th layer of LLaMA3-8B-8K

(d) t-SNE results of Q,K from a sample in RULER
Multikey3 in the final layer of LLaMA3-8B-8K

(e) t-SNE results of Q,K from a sample in RULER
Multikey3 in the 15th layer of Qwen2-7B-128K

(f) t-SNE results of Q,K from a sample in RULER
Multikey3 in the final layer of Qwen2-7B-128K

Figure 11: t-SNE visualization results of different models under RULER Multikey3.
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