
Controller Synthesis from Deep Reinforcement Learning Policies

Florent Delgrangea, b, Guy Avnic, Anna Lukinad,
Christian Schillinge, Ann Nowéa and Guillermo A. Pérezb, f

aVrije Universiteit Brussel, BE bUAntwerpen, BE cUniversity of Haifa, IL dTU Delft, NL
eAalborg University, DK fFlanders Make, BE

Abstract

We propose a novel framework to controller design in environments with a two-
level structure: a high-level graph in which each vertex is populated by a Markov
decision process, called a “room”. We proceed as follows. First, we apply deep
reinforcement learning (DRL) to obtain low-level policies for each room and ob-
jective. Second, we apply reactive synthesis to obtain a planner that selects which
low-level policy to apply in each room. Reactive synthesis refers to constructing a
planner for a given model of the environment that satisfies a given objective (typi-
cally specified as a temporal logic formula) by design. The main advantage of the
framework is formal guarantees. In addition, the framework enables a “separation
of concerns”: low-level tasks are addressed using DRL, which enables scaling
to large rooms of unknown dynamics, reward engineering is only done locally,
and policies can be reused, whereas users can specify high-level tasks intuitively
and naturally. The central challenge in synthesis is the need for a model of the
rooms. We address this challenge by developing a DRL procedure to train concise
“latent” policies together with latent abstract rooms, both paired with PAC guar-
antees on performance and abstraction quality. Unlike previous approaches, this
circumvents a model distillation step. We demonstrate feasibility in a case study
involving agent navigation in an environment with moving obstacles.

1 Introduction

We consider the fundamental problem of constructing control policies for environments modeled as
Markov decision processes (MDPs) with formal guarantees. We suggest a framework that combines
two techniques with complementary benefits and drawbacks, which we describe next.

The first technique is reinforcement learning (RL) in which the designer chooses how rewards are is-
sued, and control policies are trained to optimize rewards. In particular, deep RL (DRL, e.g., [42]) is
successful in domains of high-dimensional feature spaces with unknown dynamics, often surpassing
human capabilities. On the downside, designing a reward function is a challenging engineering task
in which the designer needs to both train the agent to exhibit desired behavior and train it efficiently.
Specifically, for long-term objectives, one needs to deal with the notorious problem of sparse re-
wards [37] by guiding the agent to the intended behavior [40]. This in turn, adds more problems as
the “desired behavior” is specified via rewards, and reward engineering leads to behavior that may
not align with the user’s intentions.

The second technique is reactive synthesis [47], which constructs an optimal policy based on a model
of the environment and objectives specified as a logical formula. In contrast to DRL, synthesis pro-
vides guarantees that the policy satisfies the specification and allows users an intuitive and natural
specification languages. The reliance on an explicit environment model is its key disadvantage; the
technique struggles with scalability and domains in which dynamics are partially known.

17th European Workshop on Reinforcement Learning (EWRL 2024).

We propose a framework that aims to gain the best of both worlds. We require little prior knowledge
of the structure of the environment: the input is a map given as a graph, where each vertex embeds

Latent AbstractionReinforcement Learning

Latent
Model

action

next latent

observation

+

π
Latent
Policy

state

abstraction

Room

Figure 1: The agent is trained to exit each room,
in every possible direction. The training is done
through parallel simulations where an abstraction
of the environment is learned via NNs, yielding
a latent model for each room. Simultaneously, a
policy is learned via DRL on the learned latent
representation, which guarantees the agent’s low-
level behavior conformity through PAC bounds.
More details in Sect. 4.

an (unknown) room, modeled as an MDP. We
argue this is a natural requirement in many
domains. Think of a robot that need deliver
a package in a warehouse divided into rooms
amid moving obstacles (e.g., forklifts, workers,
or other robots). While it is infeasible to pro-
vide a model describing all the possible interac-
tions the agent may have within the warehouse
and the dynamics of the moving obstacles, one
can reasonably assume a map is provided.

Our framework proceeds as follows. We first
train DRL policies to achieve short-horizon,
low-level objectives in the rooms, e.g., act
safely and exit a room via a designated target
(Fig. 1). We then construct a high-level
planner that chooses which policy acts in a
room: based on the low-level policies and the
given map, we apply synthesis to achieve a
long-horizon objective, e.g., reach the target
location (Fig. 2). A key challenge is obtaining
an environment model for synthesis, i.e.,
a model of the operation of the low-level
policies. We develop a novel DRL procedure
that learns a latent model of each room where
the satisfaction of the low-level objective can
be formally verified.

High-level Synthesis

construct a
that satisfies the specification

Specification

models/policies

high-level controller

Low-level latent

model (map)

Figure 2: Given (i) a high-level description of the en-
vironment, (ii) a collection of low-level models and
policies for each room, and (iii) the specifications,
synthesis outputs a high-level controller guaranteed
to satisfy the specifications. The challenge resides
in the way the low-level components are merged to
apply synthesis while maintaining their guarantees.
More details on this nontrivial problem in Sect. 5.

Contributions. To summarize, we present
a novel framework that incorporates DRL
into the synthesis process, which offers the
following key advantages. First and fore-
most, it provides guarantees on the opera-
tion of the controller. As mentioned, it en-
joys the best of both worlds: it enables syn-
thesis with theoretical guarantees in large
partially-known environments. It allows a
“separation of concerns”: reward engineer-
ing is only done locally while high-level
tasks are given in an intuitive specification
language. In addition, it offers a remedy for
the notorious challenges of sparse rewards in
RL. Interestingly, it also enables reusability:
the policies in rooms and their guarantees
are reusable across similar rooms and when
the high-level task or structure change.

We stress that, while our approach naturally fits the given example, it is not limited to such navigation
scenarios. Others include probabilistic programs (e.g., network protocols and job scheduling, [33]),
systems that can be formalized as string diagrams (e.g., dice games, [61]), and more general software
systems relying on libraries of reusable components such as drivers in an operating system [53].
Notably, our approach can be seen as post-hoc to hierarchical RL [10], where the high-level structure
is eventually learned and fixed, but not yet the low-level components.

We complement our theoretical results with a case study which illustrates the feasibility of the ap-
proach. We consider a domain of parameterizable size in which an agent needs to reach a distant
location while avoiding moving adversarial obstacles with stochastic dynamics. We show that DQN
struggles to find a policy in our domain, even with reward shaping. In the rooms, we demonstrate our

2

novel procedure for training concise latent policies directly. We synthesize a planner based on the
latent policies and show the following results. First, our high-level controller achieves high success
probability, demonstrating that our approach overcomes the challenge of sparse rewards. Second,
the values predicted in the latent model are close to those observed, demonstrating the quality of
our automatically constructed model. Third, we complement the latter with probably approximately
correct (PAC) bounds on the abstraction quality.

Related work. We compare with other approaches to obtain high-level controllers. In hierarchical
RL or the options framework [57], the high-level component learns a policy over subgoals and a low-
level component learns to achieve them. Both are learned concurrently, while for us the map is given
— our problem is post-hoc to learning the high-level component. Furthermore, the reusability of
our low-level components and the fact that the choice of the low-level policy cannot be resolved in a
Markovian fashion (i.e., without memory; details are in Sect. 5) is a distinction from option-inspired
approaches. Another recent approach is the CLAPS algorithm [67] to learn low-level components
with correctness witnesses. However, CLAPS focuses on stochastic feedback loops, where both
the transition function and the controller are assumed Lipschitz continuous in the state space and
respectively restricted to re-parameterizable distributions and deterministic, stationary policies. In
contrast, we consider MDPs with (intractable) finite spaces and general policies. Moreover, the low-
level components of CLAPS are not related to the high-level structure of the environment but rather
to the considered logical specification.

The key challenge in planner synthesis is to obtain a ranking criterion, i.e., an estimate on the
policy’s success probability. DRL outputs a neural network (NN), which is too large to incorporate
in a synthesis procedure ([34]), and we assume no knowledge of transition probabilities in rooms
(rather, only simulator access). Our approach draws from the common framework of training an
NN, distilling [30] a concise latent model, and applying formal reasoning to the latent model [18,
3, 16, 11]. Note that the latter only gives guarantees if distillation provides error bounds on the
abstraction induced by the latent model. In contrast, our method is of independent interest and trains
a latent policy directly, thereby circumventing the need for model distillation; it outputs a latent MDP
together with a mapping from concrete environment states to abstracted states, and PAC guarantees
on the latent policy value. We stress that the abstraction is learned, unlike in works of [52, 32].

This work involves reach-avoid objectives in RL. Such objectives can be specified in linear temporal
logic (LTL). While hierarchical RL is a notoriously difficult problem [36], LTL objectives add in-
tractability [64] and only allow for PAC guarantees if the MDP structure is known [21]. Besides [67],
high-level controllers are used in recent works such as combining a planner with a low-level learned
policy and a safety shield [63]; however, the ad-hoc integration of the learned component does not
provide guarantees. Moreover, [44] obtain low-level controllers via reactive synthesis, which does
not scale to complex scenarios. Regarding safety objectives, RL remains intractable [6]. For guaran-
teed safety, one can synthesize a shield that blocks unsafe actions [5, 35]. In our setting, we would
need shields for the low-level policies; constructing them would require full access to the rooms’
models (which are too large). Approaches encouraging but not ensuring safety use constrained pol-
icy optimization [2], safe padding in small steps [27], time-bounded safety [24], safety-augmented
MDPs [56], differentiable probabilistic logic [65], or distribution sampling [7].

2 Preliminaries

MDPs. Let ∆(X) be the set of distributions on X . An MDP is a tuple M = ⟨S,A,P, I⟩ with
states S, actions A, transition function P : S × A → ∆(S), and initial distribution I ∈ ∆(S). A
policy π : S → ∆(A) gives rise to a distribution over paths of M, denoted by PrMπ . The proba-
bility of finite paths is defined inductively. Trivial paths s ∈ S have probability PrMπ (s) = I(s).
Paths ρ = s0, s1, . . . , sn have probability PrMπ (s0, s1, . . . , sn−1) · Ea∼π(·|sn−1)P(sn | sn−1, a).
Let ξnπ (s

′|s) = Pρ∼PrMπ [ρ ∈ {s0, . . . , sn|sn = s′} | s0 = s] denote the probability of visiting
s′ after n steps starting from s. Under policy π, C ⊆ S is a bottom strongly connected compo-
nent (BSCC) of M if (i) C is a maximal subset satisfying ξnπ (s

′ | s) > 0 for any s, s′ ∈ C and
some n ≥ 0 and (ii) Ea∼π(·|s)P(C | s, a) = 1 for all s ∈ S. MDP M is ergodic if, under any
stationary policy π, the reachable states {s ∈ S | ∃n ≥ 0,Es0∼I ξ

n
π (s | s0) > 0} consist of a unique

aperiodic BSCC. Then, for s ∈ S, ξπ = limn→∞ ξnπ (· | s) is the stationary distribution ofM under
π. We write s, a ∼ ξπ for the distribution obtained by drawing s from ξπ and then a from π(· | s).

3

Objectives and values. A qualitative objective is a set of infinite paths O ⊆ Sω . For B, T ⊆ S,
we consider reach-avoid objectives O(T,B) = {s0, s1, . . . | ∃i. si ∈ T and ∀j ≤ i, sj /∈ B} (or
just O if clear from context) where the goal is to reach a target in T while avoiding the bad
states B. Fix a discount factor γ ∈ (0, 1); in this work, we consider discounted value functions
[14]. The value of a state s ∈ S for policy π w.r.t. objective O is denoted by V π(s,O) and cor-
responds to the probability of satisfying O from state s as γ goes to one: limγ→1 V

π(s,O) =
Pρ∼PrMπ [ρ ∈ O | s0 = s]. Specifically, for the reach-avoid objective O(T,B), V π(s,O) corre-
sponds to the discounted probability of visiting T for the first time while avoiding B, i.e.,
V π(s,O) = Eρ∼PrMπ

[
supi≥0 γ

i · 1 {si ∈ T ∧ ∀j ≤ i, sj ̸∈ B} | s0 = s
]
, where si, sj are respec-

tively the ith, jth state of ρ. We are interested in the values obtained from the beginning of the
execution, written V π

I (O) = Es0∼I [V
π(s0,O)]. We may omit O and simply write V π and V π

I .

Reinforcement learning obtains a policy in a model-free way. Executing action ai in state si
and transitioning to si+1 incurs a reward ri = rew(si, ai, si+1), computed via a reward func-
tion rew : S × A × S → R. An RL agent’s goal is to learn a policy π∗ maximizing the return
Eρ∼PrM

π∗

[∑
i≥0 γ

iri

]
. The agent is trained by interacting with the environment in episodic simula-

tions, each ending in one of three ways: success, failure, or an eventual reset.

3 Problem Formulation

In this section, we formally model a two-level environment and state the problem of high-level
controller synthesis. The environment MDP is given by a high-level map: an undirected graph whose
vertices are associated with “low-level” MDPs called rooms (Fig. 3(a)). A high-level controller
consists of two components and operates as follows. In each room, we assume access to a set of low-
level policies, each optimizing a local (room) reach-avoid objective (Fig. 3(b)). When transitioning
to a new room, a high-level planner selects the next low-level policy.

Two-level model. A room R = ⟨SR,AR,PR, DR, IR,OR⟩ consists of SR, AR, PR as in an
MDP, a set of directions DR, an entrance function IR : DR → ∆(SR) taking a direction from
which the room is entered and producing an initial distribution over states, and an exit function
OR : DR → 2SR returning a set of exit states from the room in a given direction d ∈ DR. States are
assigned to at most one exit, i.e., if s ∈ OR(d) and s ∈ OR(d

′), then d′ = d.
Example 1 (Room). Consider the grid world of the left figure as a room R populated by an adversary

IR(· |→)

OR(→)

whose position is encoded in SR and behavior in PR.
The position of depends on the direction from which the
agent enters R. The agent enters from the left in direction
→ to the states of R distributed according to the entrance
function IR(· | d =→) (the tiling patterns highlight its sup-
port). Precisely, while the agent is sent (in a determin-
istic way) to the leftmost cell (yellow tiling), IR allows to
(probabilistically) model the possible positions of when
entering the room (red tiling) from direction d =→. When

reaching the green area, depicting states from OR(→), exits R by the right direction→.

A map is a graph G = ⟨V, E⟩with vertices V and undirected edges E ⊆ V×V , the neighbors of v ∈
V are N(v) = {u ∈ V | ⟨u, v⟩ ∈ E} and the outgoing edges from v are out(v) = {e = ⟨v, u⟩ ∈ E}.
A two-level model H = ⟨G,R, ℓ, v0, ⟨d0, d1⟩⟩ consists of a map G = ⟨V, E⟩, a set of rooms R, a
labeling ℓ : V → R of each vertex v ∈ V with a room ℓ(v) and directions Dℓ(v) = out(v), an initial
room v0 ∈ V , and directions d0, d1 ∈ out(v0) in which v0 is respectively entered and must be exited.

Fix a two-level model H = ⟨G,R, ℓ, v0, ⟨d0, d1⟩⟩. The explicit MDP M corresponding to H is
obtained by, intuitively, “stitching” MDPs R ∈ R corresponding to neighboring rooms (Fig. 3(a)).
Formally, M = ⟨S,A,P, I⟩, where S =

{
⟨s, v⟩ : s ∈ Sℓ(v), v ∈ V

}
, A =

⋃
R∈RAR ∪ {aexit}.

The initial distribution I simulates starting in room ℓ(v0) from direction d0; thus, for each s ∈ Sℓ(v0),
I(⟨s, v0⟩) = Iℓ(v0)(s | d0). The transitions P coincide with PR for non-exit states. Let d =
⟨v, u⟩ ∈ E with v ∈ N(u);OR(d) are the exit states in room R associated with v in direction d, and
Iℓ(u)(· | d) is the entrance distribution in the room associated with u in direction d. The successor

4

s1,v0

s3,v0

s1, u s2, u

s0, u

d0 =→

R0 R1
aexit

M

win

aexit
s0,v0

s2,v0 s3, u

s0, u
′

v0 d1 = ⟨v0, u⟩
G

ℓ(v0) = R0

u
d2 = ⟨u, u′⟩ u′

(a) A two-level model of a simple grid world environment.

v3

u

π↓

π→

π→

π↑

Bℓ(u)

v2

Oℓ(u)(→)v1

s2

s1

s3

(b) A two-level model for which
an optimal planner requires memory,
here flattened in 2D.

Figure 3: (a) Top: The high-level graph G with two rooms R0 = ℓ(v0) and R1 = ℓ(u). Middle: Part
of the explicit MDP for the bottom layer; e.g., the MDP R0 contains 16 states. Traversing the edge
⟨⟨s2, v0⟩, ⟨s0, u⟩⟩ corresponds to exiting R0 and entering R1 from direction d1 = ⟨v0, u⟩. The goal
of is to reach u′ by exiting the room R1 from direction d2 = ⟨u, u′⟩ while avoiding the moving
adversaries . For i ∈ {0, 1}, the entrance function IRi

models the distribution from which the
initial location of in Ri is drawn. (b) A room with four policies for a planner to choose from; e.g.,
π→(· | s1) leads to Bℓ(u) and π↑(· | s1) leads to s3.

state of s ∈ OR(d) follows Iℓ(u)(· | d) when aexit is chosen. Each path ρ inM corresponds to a
unique path(ρ) in G traversing the rooms.

High-level reach and low-level reach-avoid objectives. The high-level reachability objective we
consider is ♢T , where T ⊆ V is a subset of vertices in the graph of H. A path ρ inM satisfies ♢T
iff path(ρ) visits a vertex v in T . The low-level safety objective is defined over states of the rooms
in R. For each room R, let BR ⊆ SR be a set of “bad” states. For room R and direction d ∈ DR,
define the reach-avoid objective Od

R ∈ S∗R as {s0, . . . , sn | sn ∈ OR(d) and si /∈ BR for all i ≤ n},
i.e., exit R via d avoiding BR.

High-level control. We define a planner τ : V∗ → E and a set of low-level policies Π such that, for
each room R ∈ R and a direction d ∈ DR, Π contains a policy πR,d for the objective Od

R. The
pair π = ⟨τ,Π⟩ is a high-level controller for H, defined inductively as follows. Consider the initial
vertex v0 ∈ V (Fig. 3(a)). Let d0 = τ(ϵ) ∈ out(v0) (ϵ being the empty sequence). Control in ℓ(v0)
proceeds according to πℓ(v0),d1

. Let ρ be a path in H ending in s ∈ SR, for some room R = ℓ(v).
If s is not an exit state of R, then control proceeds according to a policy πR,d with d = ⟨v, u⟩
and u ∈ N(v). If s is an exit state in direction d and path(ρ) ends in v, i.e., s ∈ OR(d), then aexit is
taken in s and the next state is an initial state in R′ = ℓ(u) drawn from IR′(d). The planner chooses
a direction d′ = τ(path(ρ) · u) ∈ out(u) to exit R′. Control of R′ proceeds with the low-level
policy πR′,d′ . Note that π is a policy in the explicit MDPM.

Problem 1. Given a two-level model H = ⟨G,R, ℓ, v0, ⟨d0, d1⟩⟩, discount factor γ ∈ (0, 1), high-
level objective ♢T , and low-level reach-avoid objectives {Od

R | R ∈ R, d ∈ DR}, construct a
high-level controller π = ⟨τ,Π⟩ maximizing the probability of satisfying the objectives.

4 Obtaining Low-Level Policies via DRL

There are fundamental challenges in reasoning about policies obtained by DRL, which are typically
represented by large NNs. We develop a novel unified DRL procedure which outputs a latent model
together with a concise policy accompanied by probably approximately correct (PAC) guarantees.
We first focus on those guarantees. Proofs of our claims are in Appendix C.

4.1 Quantifying the quality of the abstraction

Throughout this section, we fix an MDP environmentM = ⟨S,A,P, I⟩. A latent model abstracts
a concrete MDP and is itself an MDP M = ⟨S,A,P, I⟩ whose state space is linked to M via a
state-embedding function ϕ : S → S . We focus on latent MDPs with a finite state space.

5

s s

a a

s′ s2s1

M Mϕ

π

P P
ϕ

Figure 4: To run π in the orig-
inal environment M, (i) map
s to ϕ(s) = s, (ii) draw a ∼
π(· | s). LP measures the gap
(in red) between latent states
produced via s1 = ϕ(s′) with
s′ ∼ P(· | s, a) (shortened as
s1 ∼ ϕP(· | s, a)) and those
produced directly in the latent
space: s2 ∼ P(· | s, a).

Let π be a policy inM, called a latent policy. The key feature is
that ϕ allows to controlM using π: for each state s ∈ S, let π(· | s)
inM follow the distribution π(· | ϕ(s)) inM. Abusing notation,
we refer to π as a policy inM. We write V π for the value function
ofM operating under π.

GivenM and π, we bound the difference between V π and V π; the
smaller the difference, the more accuratelyM abstractsM. Com-
puting V π is intractable. To overcome this, in the same spirit as
[22, 16], we define a local measure on the transitions of M and
M to bound the difference between the values obtained under π
(cf. Fig. 4). We define the transition loss Lπ

P w.r.t. a distance metric
D on distributions over S. We focus on the total variation distance
(TV) D(P, P ′) = 1/2 ∥P − P ′∥1 for P, P ′ ∈ ∆

(
S
)
. We com-

pute Lπ
P by taking the expectation according to the stationary dis-

tribution ξπ: Lπ
P
= Es∼ξπ,a∼π(·|s) D

(
ϕP(· | s, a),P(· | ϕ(s), a)

)
.

The superscript is omitted when clear from the context. Efficiently
sampling from the stationary distribution can be done via random-
ized algorithms, even for unknown probabilities [41, 48]. Re-
call that RL is episodic, terminating when the objective is satis-
fied/violated or via a reset. We thus restrictM to an episodic pro-
cess, which implies ergodicity of bothM andM under mild conditions (cf. [31] for a discussion).

Assumption 1 (Episodic process). The environment M has a reset state sreset such that (i) sreset
is almost surely visited under any policy, and (ii) M follows the initial distribution once reset:
P(· | sreset, a) = I for any a ∈ A. The latent modelM is also episodic with reset state ϕ(sreset).

Assumption 2. The abstraction does not lose information regarding the objectives. Formally, let
⟨T, T ⟩, ⟨B,B⟩ ⊆ S ×S be sets of target and bad states, respectively. Then, for X ∈ {T,B}, s ∈ X
iff ϕ(s) ∈ X .1 We consider the objective O(T,B) inM and O

(
T ,B

)
inM.

The following lemma establishes a bound on the difference in values based on LP. Notably, as LP

goes to zero, the two models almost surely have the same values from every state.

Lemma 1 ([16]). Let π be a latent policy and ξπ be the unique stationary measure ofM, then the
average value difference is bounded by LP: Es∼ξπ

∣∣V π(s)− V π(ϕ(s))
∣∣ ≤ γLP

1−γ .

The next theorem provides a more transparent bound applicable to the initial distribution, removing
the need of the expectation in Lem. 1. The proof follows from plugging the stationary distribution
in sreset into Lem. 1 and observing that 1/ξπ(sreset) is the average episode length [55].

Theorem 1. The initial value difference is bounded by LP:
∣∣∣V π

I − V π
I

∣∣∣ ≤ LP

ξπ(sreset)(1−γ) .

4.2 PAC estimates of the abstraction quality

Thm. 1 establishes a bound on the quality of the abstraction based on LP and ξπ(sreset). Computing
these quantities, however, is not possible in practice since the transition probabilities of M are
unknown, and even if they were known, the expectation over S deems the computation infeasible.

Instead, we obtain PAC bounds on ξπ(sreset) and LP by simulatingM. The estimate of ξπ(sreset)
is obtained by taking the portion of visits to sreset in a simulation and Hoeffding’s inequality. The
estimate of LP is obtained as follows. When the simulation goes from s to s′ following action a, we
add a “reward” of P(ϕ(s′) | ϕ(s), a). Since LP is a loss, we subtract the average reward from 1.

Lemma 2. Let {⟨st, at, s′t⟩ : 1 ≤ t ≤ T } be a set of T transitions drawn from ξπ by simulating
Mπ . Let L̂P = 1− 1/T

∑T
t=1 P(ϕ(s′t) | ϕ(st), at) and ξ̂reset = 1/T

∑T
t=0 1 {st = sreset} . Then, for

all ε, δ > 0 and T ≥ ⌈− log(ζ)/2ε2⌉, with at least probability 1− δ we have that

(i) if ζ ≤ δ, L̂P + ε > LP, (ii) if ζ ≤ δ/2, L̂P + ε > LP and ξπ(sreset) > ξ̂reset − ε.

1This is easily met by labeling states with atomic propositions, as standard practice in model checking [16].

6

H
τ : V∗ → D

M
Two-level model Explicit MDP

τ : V × V → D

⟨s, v⟩
State space features: state s in room R = ℓ(v);

MΠ

MDP Plan

⟨s, v, u⟩
state s, room R = ℓ(v), target d = ⟨v, u⟩;

τ : V × V → D
MG

Π

Succinct Model

⟨v, u⟩

Theorem 4fix Π⇝ Theorem 3

R = ℓ(u) entered from d = ⟨v, u⟩.

Figure 5: Chain of reductions for synthesizing a planner τ in a two-level model H. H can be
formulated as an explicit MDPM. Once the low-level policies Π are learned (Fig. 1), the synthesis
problem reduces to constructing a stationary policy in an MDP planMΠ where Π is fixed and the
state space ofMΠ encodes the directions chosen in each room. From this policy, one can derive a
|V|-memory planner τ for H (Thm. 3). Finally, finding a policy inMΠ is equivalent to finding a
policy in a succinct modelMG

Π where (i) the state space corresponds to the directions from which
rooms are entered, (ii) the actions to the choices of the planner, and (iii) the transition probabilities
to the values achieved by the latent policy chosen (Thm. 4).

The following theorem has two key implications: (i) it establishes a lower bound on the minimum
number of samples necessary to calculate the PAC upper bound for the average value difference;
(ii) it suggests an online algorithm with a termination criterion for the value difference bound.
Theorem 2. Let {⟨st, at, s′t⟩ : 1 ≤ t ≤ T } be T transitions drawn from ξπ by simulatingM under
π. Then, for any ε, δ > 0, T ≥

⌈
−γ′ log(δ′)
2ε2(1−γ)2ζ

⌉
, with at least probability 1− δ, we have that

(i) Es∼ξπ

∣∣V π(s)− V π(ϕ(s))
∣∣ ≤ γL̂P

1−γ + ε with δ′ = δ, γ′ = γ2, ζ = 1, and

(ii)
∣∣∣V π

I − V π
I

∣∣∣ ≤ L̂P

ξ̂reset (1−γ)
+ ε with δ′ = δ/2, γ′ = (L̂P + ξ̂reset(1 + ε(1− γ)))2, ζ = ξ̂ 4

reset.

Unlike (i), which enables precomputing the required number of samples to estimate the bound, (ii)
allows estimating it with a probabilistic algorithm, almost surely terminating but without predeter-
mined endpoint since T relies in that case on the current approximations of LP and ξπ .

4.3 Obtaining latent policies during training

We introduce a DRL procedure that trains a latent MDP and policy simultaneously. Previous ap-
proaches followed a two-step process: first train a policy π in M, then distill π. In contrast, our
approach is a one-step process that alternates in a round robin fashion between optimizing a latent
policy π via DQN [43] and representation learning via Wasserstein auto-encoded MDPs (WAE-
MDPs, [17]). WAE-MDPs is a technique that learnsM and ϕ via NNs by distilling a DRL policy
into a latent policy π and minimizing LP, thus enjoying the guarantees developed in this section.
Our approach bypasses the distillation step by directly learning π via DQN, which is optimized on
the latent space learned (cf. Fig. 1). We call the resulting procedure WAE-DQN. The combination of
the techniques is nontrivial and need be carefully addressed to avoid stability issues; details are in
Appendix D. To summarize, we point to properties of WAE-DQN: (i) ϕ is ensured to group states
with close values, easing the learning of π; (ii) π prescribes the same actions for states with close
behaviors, thus enhancing its robustness and enabling the use of the same latent space for different
rooms with similar structure.

5 Obtaining a Planner

Fix Π as a collection of low-level, latent policies. In this section, we show that synthesizing a planner
reduces to constructing a policy in a succinct model, where the action space coincides with the edges
of the map G (i.e., the choices of the planner). In the following, we describe the chain of reductions
leading to this result. An overview is given in Fig. 5. We further discuss the memory requirements
of the planner. Precisely, we study the following problem:
Problem 2. Given a two-level model H, a collection of latent policies Π, and an objective O,
construct a planner τ such that the controller ⟨τ,Π⟩ is optimal for O inH.

Memory bounds. First, observe that planners require memory:
Example 2. Consider again Fig. 3(b). To reach v3 and avoid Bℓ(u) from u, τ must remember from
where the room ℓ(u) is entered: τ must choose ↑ from v1, and→ from v2.

7

Next, we establish a bound on the memory required by an optimal planner. Recall that upon entering
a room R ∈ R, the planner needs to choose a direction d ∈ E, implying that the policy that operates
in R is πR,d ∈ Π, which optimizes for the objective Od

R of exiting R via d. We construct an
MDP planMΠ = ⟨SΠ,AΠ,PΠ, IΠ⟩ that simulates this interaction. A state in SΠ is s∗ = ⟨s, v, u⟩
meaning that H is in vertex v, the state in the room R = ℓ(v) is s, and the policy that operates in
R is πR,d=⟨v,u⟩. For non-exit states s, the transition function PΠ(· | s∗) follows PR(· | s, a), where
a ∼ πR,d(· | s); for exit states s, the planner chooses a direction d′ ∈ DR′ for the next room R′ =
ℓ(u) and PΠ(· | s∗, d′) follows the entrance function IR′(· | d) of R′ from direction d = ⟨v, u⟩.
Construction details are in Appendix E. An optimal stationary policy is known to exist forMΠ [49],
which can be implemented as a planner memorizing the entry direction of a room. This requires
memory of size |V|, as decisions rely on the possible |V| preceding vertices.

Theorem 3. Given low-level policies Π, there is a |V|-memory planner τ maximizing O in H iff
there is a deterministic stationary policy π⋆ maximizing O inMΠ.

Planner synthesis. As a first step, we construct a succinct MDP MG
Π that preserves the value

ofMΠ. States ofMG
Π are pairs ⟨v, u⟩ indicating room R = ℓ(u) is entered via direction d = ⟨v, u⟩.

As inMΠ, a planner selects an exit direction d′ = ⟨u, v′⟩ for R. We use the following trick. Recall
that we consider discounted properties; when R is exited via direction d′ after j steps, the utility
is γj . InMG

Π, we set the probability of transitioning to v′ upon choosing d′ to the expected value
achieved by policy πR,d′ in R. The following example illustrates how setting probabilities to be
expected values maintains the values between the models.
Example 3. Consider a path ρ in Fig. 3(a) that enters R0, exits after i = 3 steps, enters R1, exits
after j = 3 steps, and reaches the target. Once in the target, the reward is 1; the discounted reward
of ρ is thus γi+j = γ6. In expectation, this corresponds to multiplying the values in the individual
rooms and, in turn, with the semantics ofMG

Π where probabilities are multiplied along a path.

Precisely, letMG
Π = ⟨S,A,P, I⟩ with S = E∪{⊥},A = E, I(d0) = 1, ⟨v, u⟩ ∈ E be an entrance

direction, and d = ⟨u, t⟩ ∈ Dℓ(u) be the target direction, we define P as

P(⟨u, t⟩|⟨v, u⟩, d) = Es∼Iℓ(u)(·|⟨v,u⟩)

[
V πℓ(u),d

(
s,Od

ℓ(u)

)]
(1)

and P(⊥ | ⟨v, u⟩, d) = 1−P(⟨u, t⟩ | ⟨v, u⟩, d), while P(⊥ | ⊥, d) = 1. The sink state ⊥ captures
when low-level policies fail to satisfy their objective.

Theorem 4. Let ⟨τ,Π⟩ be a |V |-memory controller forH and π be an equivalent policy inMΠ, the
values obtained under π for O inMΠ are equal to those under τ obtained inMG

Π for the reachability
objective to states V × T .

We are ready to describe the algorithm to synthesize a planner. Note that the values V πR,d nec-
essary to construct P are either unknown or computationally intractable. Instead, we leverage the
latent model to evaluate the latent value of each low-level objective using standard techniques for
discounted reachability objectives [14]. We thus constructMG

Π similar toMG
Π. We then obtain the

controller ⟨τ,Π⟩ by computing a planner τ optimizing the values ofMG
Π [49]. As the state spaces

ofMG
Π andMG

Π are identical, planners forMG
Π can thus be executed inMG

Π.

Lifting the guarantees. In the following, we lift the guarantees obtained for the low-level policies
to a planner operating on the two-level model. We need to overcome the following challenge. To
learn one latent model per room R and the low-level policies Π, we run WAE-DQN independently in
each room (Fig. 1). Viewing R as an MDP, we obtain a transition loss LR,d

P for direction d associated
with latent policy πR,d ∈ Π. Independent training leads to complications. Room R has its own
initial distribution IR, while, at synthesis time, the initial distribution depends on controller π =

⟨τ,Π⟩ and is a marginalization of IR(· | d) w.r.t. directions d chosen by τ . Recall that LR,d
P is the

TV between original and latent transition functions averaged according to ξπR,d
, i.e., states likely to

be produced under the policy π when using IR as entrance function, and not IR. As ξπR,d
could

be unrelated to the distribution over states visited under high-level controller π, LR,d
P (and thus the

guarantees from the latent model) could turn obsolete/non-reusable. Fig. 6 illustrates this issue.

8

IR(· | ↓)

IR(· | ↑)

IR
exit

Figure 6: Uniform
distribution IR (blue)
and entrance function
IR (red: ↓, green: ↑).

Assume τ chooses→ in R. At training time, as IR is uniform, each state
is included in the support of distribution of visited states ξπR,→ . Yet un-
der a high-level controller, R is entered w.r.t. IR(· | d ∈ {↓, ↑}). To exit
on the right, all states need not be visited under πR,→ so the distribution
over visited states may differ. A detailed analysis of this issue is given in
Appendix G.

Fortunately, when the initial distributions IR are well designed with suf-
ficient coverage of room R’s state space, we can learn a latent entrance
function IR to lift the room-associated guarantees:

Theorem 5. Let ⟨τ,Π⟩ be a |V|-memory controller for H and π be an
equivalent stationary policy inMΠ.

• (Entrance loss) Define IR : DR → ∆
(
S
)

and

LI = ER,d∼ξπ D
(
ϕIR(· | d), IR(· | d)

)
,

where ξπ is the stationary measure ofMΠ under π and

ϕIR(s | d) = Ps∼IR(·|d)[s = ϕR(s)] for all s ∈ S;

• (State coverage) Assume that for any training room R ∈ R and
direction d ∈ DR, the projection of the BSCC ofMΠ under π to
SR is included in the BSCC of R under πR,d;

Then, there exists a constant K ≥ 0 so that:

|V MΠ,π
I − V

MG
Π,τ

I
| ≤

LI +K · ER,d∼ξπ L
R,d
P

ξπ(sreset) · (1−γ)
,

where V MΠ,π
I denotes the values obtained from the initial distribution inMΠ when π is executed

and V
MG

Π,τ

I
those obtained inMG

Π when τ is executed.

Note that the right-hand side of the numerator, K · ER,d∼ξπ L
R,d
P , is the sole part

in the bound related to the low-level components. Accordingly, the lower the tran-
sition loss of rooms likely to be visited under the planner, the tighter is the bound.

Figure 7: Eval. of WAE-DQN (low-
level) and DQN (high-level) policies
respectively in each room/direction
and in a 9-room, 20×20 environment
(avg. over 30 rollouts).

This essentially implies that the low-level components, being
learned independently, are reusable when (i) the high-level
topology of the environment changes (e.g., removing edges
or expanding the map with similar rooms to those present in
the graph) or (ii) the high-level objective changes.

6 Experimental Evaluation

We highlight the feasibility of our approach in a case study
involving an agent navigating through a building of scalable
size amid moving adversaries. We aim to show the follow-
ing: (1) our method successfully trains latent policies in a
non-trivial setting; (2) the theoretical bounds are a good pre-
diction for the observed behavior; (3) our low-level poli-
cies are reusable, as the theory predict. Details are in Ap-
pendix H. A video of a synthesized controller is available
at https://youtu.be/crowN8-GaRg

The environments embed N rooms of m×n cells, each em-
bedding l possible items: walls, entries/exits, power-ups, and
A adversaries. The latter patrol moving between rooms with
varying stochastic behaviors (along wall, chase the agent, or
fully random). The rooms need not be identical. Each state

9

https://youtu.be/crowN8-GaRg

N LP A avg. return (γ = 1) latent values avg. values (original)
9 1 11 0.5467 ± 0.1017 0.1378 0.07506 ± 0.01664
9 3 11 0.7 ±0.09428 0.4343 0.01 ± 0.00163
25 3 23 0.4933 ±0.09832 0.1763 0.007833 ±0.002131
25 5 23 0.5667 ±0.07817 0.346 0.00832 ± 0.00288
49 7 47 0.02667±0.01491 0.004229 5.565 · 10−6± 7 · 10−6

Table 1: Synthesis for γ = 0.99

d L̂d
P

→ 0.50412
← 0.77787
↑ 0.49631
↓ 0.48058

Table 2: PAC
bounds

features (i) a bitmap of rank 4 and shape [N, l,m, n] and (ii) step, power-up, and life-point (LP)
counters. Note that the resulting state space is massive and policies may require, e.g., convolutional
NNs to be able to process observations. Fig. 7 shows that DRL (here, DQN with SOTA extensions
and reward shaping [29, 45]) struggles to learn for 9 rooms/11 adversaries. We use WAE-DQN to
train low-level latent models and policies in the same environment: each time it resets, the agent is
placed in a random room. Leveraging the representation learning capabilities of WAE-MDPs, the
latent space generalizes over all rooms: we only train 4 policies (one for each direction). Fig. 7
shows the low-level policies are successfully learned for the reach-avoid objectives. PAC bounds on
the transition loss for each direction are reported in Tab. 2 (ε = 0.01, δ = 0.05). From those poli-
cies, we apply our synthesis procedure to construct a high-level controller. The results are shown in
Tab. 1. To highlight the reusability of the low-level components, we modify the environment by dras-
tically increasing the number of rooms and adversaries (up to 50 each) while keeping the same latent
models/policies. The predicted latent values are consistent with the observed ones and comprised
between the approximated return and values in the environment (averaged over 30 rollouts).

7 Conclusion

Our approach enables synthesis in environments where traditional formal synthesis does not scale.
Given a high-level map, we integrate DRL in the low-level rooms by training latent models, which
ensure PAC bounds on their value function. Composing with the latent models/policies allows to
construct a planner in a high-level MDP, where the guarantees can be lifted. Experiments show the
feasibility in scenarios that are even challenging for pure DRL.

While we believe the map is a mild requirement, future work involves its relaxation to “emulate”
synthesis with only the specification as input (“end-to-end”). In that sense, integrating skill discov-
ery [8], goal-oriented [40], or multi-objective [28] RL are promising directions. Another aspect is
to refine the conservative PAC bounds and obtain an estimate efficiently.

Acknowledgments and Disclosure of Funding

We thank Sterre Lutz and Willem Röpke for providing valuable feedback during the preparation of
this manuscript.

This research received support from the Belgian Flemish Government’s AI Research Pro-
gram and DESCARTES iBOF project, the Dutch Research Council (NWO) Talent Programme
(VI.Veni.222.119), Independent Research Fund Denmark (10.46540/3120-00041B), DIREC - Dig-
ital Research Centre Denmark (9142-0001B), Villum Investigator Grant S4OS (37819), and ISF
grant (1679/21).

References
[1] A. Abels, D. M. Roijers, T. Lenaerts, A. Nowé, and D. Steckelmacher. Dynamic weights in

multi-objective deep reinforcement learning. In K. Chaudhuri and R. Salakhutdinov, editors,
Proceedings of the 36th International Conference on Machine Learning, ICML 2019, 9-15
June 2019, Long Beach, California, USA, volume 97 of Proceedings of Machine Learning
Research, pages 11–20. PMLR, 2019.

[2] J. Achiam, D. Held, A. Tamar, and P. Abbeel. Constrained policy optimization. In ICML,
volume 70, pages 22–31. PMLR, 2017.

10

[3] P. A. Alamdari, G. Avni, T. A. Henzinger, and A. Lukina. Formal methods with a touch of
magic. In FMCAD, pages 138–147. IEEE, 2020.

[4] L. N. Alegre, A. L. C. Bazzan, D. M. Roijers, A. Nowé, and B. C. da Silva. Sample-efficient
multi-objective learning via generalized policy improvement prioritization. In AAMAS, pages
2003–2012. ACM, 2023.

[5] M. Alshiekh, R. Bloem, R. Ehlers, B. Könighofer, S. Niekum, and U. Topcu. Safe reinforce-
ment learning via shielding. In AAAI, pages 2669–2678. AAAI Press, 2018.

[6] R. Alur, S. Bansal, O. Bastani, and K. Jothimurugan. A framework for transforming specifica-
tions in reinforcement learning. In Principles of Systems Design - Essays Dedicated to Thomas
A. Henzinger on the Occasion of His 60th Birthday, volume 13660 of LNCS, pages 604–624.
Springer, 2022.

[7] T. S. Badings, L. Romao, A. Abate, D. Parker, H. A. Poonawala, M. Stoelinga, and N. Jansen.
Robust control for dynamical systems with non-Gaussian noise via formal abstractions. J.
Artif. Intell. Res., 76:341–391, 2023.

[8] A. Bagaria, J. K. Senthil, and G. Konidaris. Skill discovery for exploration and planning using
deep skill graphs. In M. Meila and T. Zhang, editors, Proceedings of the 38th International
Conference on Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event, volume 139 of
Proceedings of Machine Learning Research, pages 521–531. PMLR, 2021.

[9] C. Baier and J. Katoen. Principles of model checking. MIT Press, 2008.

[10] A. G. Barto and S. Mahadevan. Recent advances in hierarchical reinforcement learning. Dis-
cret. Event Dyn. Syst., 13(4):341–379, 2003.

[11] O. Bastani, Y. Pu, and A. Solar-Lezama. Verifiable reinforcement learning via policy extrac-
tion. In NeurIPS, pages 2499–2509, 2018.

[12] M. G. Bellemare, W. Dabney, and M. Rowland. Distributional Reinforcement Learning. MIT
Press, 2023.

[13] K. Chatterjee, R. Majumdar, and T. A. Henzinger. Markov decision processes with multiple
objectives. In B. Durand and W. Thomas, editors, STACS 2006, 23rd Annual Symposium on
Theoretical Aspects of Computer Science, Marseille, France, February 23-25, 2006, Proceed-
ings, volume 3884 of Lecture Notes in Computer Science, pages 325–336. Springer, 2006.

[14] L. de Alfaro, T. A. Henzinger, and R. Majumdar. Discounting the future in systems theory. In
ICALP, volume 2719 of LNCS, pages 1022–1037. Springer, 2003.

[15] F. Delgrange, J. Katoen, T. Quatmann, and M. Randour. Simple strategies in multi-objective
mdps. In A. Biere and D. Parker, editors, Tools and Algorithms for the Construction and Anal-
ysis of Systems - 26th International Conference, TACAS 2020, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2020, Dublin, Ireland, April
25-30, 2020, Proceedings, Part I, volume 12078 of Lecture Notes in Computer Science, pages
346–364. Springer, 2020.

[16] F. Delgrange, A. Nowé, and G. A. Pérez. Distillation of RL policies with formal guarantees
via variational abstraction of Markov decision processes. In AAAI, pages 6497–6505. AAAI
Press, 2022.

[17] F. Delgrange, A. Nowé, and G. A. Pérez. Wasserstein auto-encoded MDPs: Formal verification
of efficiently distilled RL policies with many-sided guarantees. In ICLR. OpenReview.net,
2023.

[18] D. Ernst, P. Geurts, and L. Wehenkel. Tree-based batch mode reinforcement learning. JMLR,
6(Apr):503–556, 2005.

[19] K. Etessami, M. Z. Kwiatkowska, M. Y. Vardi, and M. Yannakakis. Multi-objective model
checking of markov decision processes. Log. Methods Comput. Sci., 4(4), 2008.

11

[20] V. Forejt, M. Z. Kwiatkowska, and D. Parker. Pareto curves for probabilistic model check-
ing. In S. Chakraborty and M. Mukund, editors, Automated Technology for Verification and
Analysis - 10th International Symposium, ATVA 2012, Thiruvananthapuram, India, October
3-6, 2012. Proceedings, volume 7561 of Lecture Notes in Computer Science, pages 317–332.
Springer, 2012.

[21] J. Fu and U. Topcu. Probably approximately correct MDP learning and control with temporal
logic constraints. In Robotics: Science and Systems X, 2014.

[22] C. Gelada, S. Kumar, J. Buckman, O. Nachum, and M. G. Bellemare. DeepMDP: Learning
continuous latent space models for representation learning. In ICML, volume 97, pages 2170–
2179. PMLR, 2019.

[23] M. Germain, K. Gregor, I. Murray, and H. Larochelle. MADE: masked autoencoder for distri-
bution estimation. In ICML, volume 37, pages 881–889. JMLR.org, 2015.

[24] M. Giacobbe, M. Hasanbeig, D. Kroening, and H. Wijk. Shielding atari games with bounded
prescience. In AAMAS, pages 1507–1509. ACM, 2021.

[25] R. Givan, T. L. Dean, and M. Greig. Equivalence notions and model minimization in Markov
decision processes. Artif. Intell., 147(1-2):163–223, 2003.

[26] A. Hartmanns, S. Junges, J. Katoen, and T. Quatmann. Multi-cost bounded reachability in
MDP. In D. Beyer and M. Huisman, editors, Tools and Algorithms for the Construction and
Analysis of Systems - 24th International Conference, TACAS 2018, Held as Part of the Eu-
ropean Joint Conferences on Theory and Practice of Software, ETAPS 2018, Thessaloniki,
Greece, April 14-20, 2018, Proceedings, Part II, volume 10806 of Lecture Notes in Computer
Science, pages 320–339. Springer, 2018.

[27] M. Hasanbeig, A. Abate, and D. Kroening. Cautious reinforcement learning with logical con-
straints. In AAMAS, pages 483–491, 2020.

[28] C. F. Hayes, R. Radulescu, E. Bargiacchi, J. Källström, M. Macfarlane, M. Reymond, T. Ver-
straeten, L. M. Zintgraf, R. Dazeley, F. Heintz, E. Howley, A. A. Irissappane, P. Mannion,
A. Nowé, G. de Oliveira Ramos, M. Restelli, P. Vamplew, and D. M. Roijers. A practical
guide to multi-objective reinforcement learning and planning. Auton. Agents Multi Agent Syst.,
36(1):26, 2022.

[29] M. Hessel, J. Modayil, H. van Hasselt, T. Schaul, G. Ostrovski, W. Dabney, D. Horgan, B. Piot,
M. G. Azar, and D. Silver. Rainbow: Combining improvements in deep reinforcement learning.
In AAAI, pages 3215–3222. AAAI Press, 2018.

[30] G. E. Hinton, O. Vinyals, and J. Dean. Distilling the knowledge in a neural network. CoRR,
abs/1503.02531, 2015.

[31] B. Huang. Steady state analysis of episodic reinforcement learning. In NeurIPS, 2020.

[32] K. Jothimurugan, O. Bastani, and R. Alur. Abstract value iteration for hierarchical reinforce-
ment learning. In AISTATS, volume 130, pages 1162–1170. PMLR, 2021.

[33] S. Junges and M. T. J. Spaan. Abstraction-refinement for hierarchical probabilistic models. In
CAV, volume 13371 of LNCS, pages 102–123. Springer, 2022.

[34] Y. Kazak, C. W. Barrett, G. Katz, and M. Schapira. Verifying deep-RL-driven systems. In
NetAI@SIGCOMM, pages 83–89, 2019.

[35] B. Könighofer, R. Bloem, R. Ehlers, and C. Pek. Correct-by-construction runtime enforcement
in AI - A survey. In Principles of Systems Design - Essays Dedicated to Thomas A. Henzinger
on the Occasion of His 60th Birthday, volume 13660 of LNCS, pages 650–663. Springer, 2022.

[36] T. D. Kulkarni, K. Narasimhan, A. Saeedi, and J. Tenenbaum. Hierarchical deep reinforcement
learning: Integrating temporal abstraction and intrinsic motivation. In NeurIPS, pages 3675–
3683, 2016.

12

[37] P. Ladosz, L. Weng, M. Kim, and H. Oh. Exploration in deep reinforcement learning: A survey.
Inf. Fusion, 85:1–22, 2022.

[38] K. G. Larsen and A. Skou. Bisimulation through probabilistic testing. In POPL, pages 344–
352. ACM Press, 1989.

[39] Y. LeCun, B. E. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. E. Hubbard, and
L. D. Jackel. Backpropagation applied to handwritten zip code recognition. Neural Comput.,
1(4):541–551, 1989.

[40] M. Liu, M. Zhu, and W. Zhang. Goal-conditioned reinforcement learning: Problems and
solutions. In IJCAI, pages 5502–5511. ijcai.org, 2022.

[41] L. Lovász and P. Winkler. Exact mixing in an unknown markov chain. Electron. J. Comb., 2,
1995.

[42] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. A. Ried-
miller. Playing atari with deep reinforcement learning. CoRR, abs/1312.5602, 2013.

[43] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,
M. A. Riedmiller, A. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou,
H. King, D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis. Human-level control through
deep reinforcement learning. Nat., 518(7540):529–533, 2015.

[44] S. P. Nayak, L. N. Egidio, M. D. Rossa, A. Schmuck, and R. M. Jungers. Context-triggered
abstraction-based control design. IEEE Open Journal of Control Systems, 2:277–296, 2023.

[45] A. Y. Ng, D. Harada, and S. Russell. Policy invariance under reward transformations: Theory
and application to reward shaping. In ICML, pages 278–287. Morgan Kaufmann, 1999.

[46] C. A. O’Cinneide. Entrywise perturbation theory and error analysis for Markov chains. Nu-
merische Mathematik, 65(1):109–120, 1993.

[47] A. Pnueli and R. Rosner. On the synthesis of a reactive module. In POPL, pages 179–190.
ACM Press, 1989.

[48] J. G. Propp and D. B. Wilson. How to get a perfectly random sample from a generic markov
chain and generate a random spanning tree of a directed graph. J. Algorithms, 27(2):170–217,
1998.

[49] M. L. Puterman. Markov decision processes: Discrete stochastic dynamic programming. Wi-
ley, 1994.

[50] M. Reymond, E. Bargiacchi, and A. Nowé. Pareto conditioned networks. In P. Faliszewski,
V. Mascardi, C. Pelachaud, and M. E. Taylor, editors, 21st International Conference on Au-
tonomous Agents and Multiagent Systems, AAMAS 2022, Auckland, New Zealand, May 9-
13, 2022, pages 1110–1118. International Foundation for Autonomous Agents and Multiagent
Systems (IFAAMAS), 2022.

[51] M. Reymond and A. Nowé. Pareto-dqn: Approximating the pareto front in complex multi-
objective decision problems. In Proceedings of the adaptive and learning agents workshop
(ALA-19) at AAMAS, 2019.

[52] M. Roderick, C. Grimm, and S. Tellex. Deep abstract Q-networks. In AAMAS, pages 131–138,
2018.

[53] L. Ryzhyk, P. Chubb, I. Kuz, E. L. Sueur, and G. Heiser. Automatic device driver synthesis
with termite. In SOSP, pages 73–86. ACM, 2009.

[54] T. Schaul, J. Quan, I. Antonoglou, and D. Silver. Prioritized experience replay. In ICML, 2016.

[55] R. Serfozo. Basics of Applied Stochastic Processes. Probability and Its Applications. Springer
Berlin Heidelberg, 2009.

13

[56] A. Sootla, A. I. Cowen-Rivers, T. Jafferjee, Z. Wang, D. H. Mguni, J. Wang, and H. Ammar.
Sauté RL: Almost surely safe reinforcement learning using state augmentation. In ICML,
volume 162, pages 20423–20443. PMLR, 2022.

[57] R. S. Sutton, D. Precup, and S. Singh. Between MDPs and semi-MDPs: A framework for
temporal abstraction in reinforcement learning. Artif. Intell., 112(1-2):181–211, 1999.

[58] J. N. Tsitsiklis. Asynchronous stochastic approximation and Q-learning. Mach. Learn.,
16(3):185–202, 1994.

[59] J. N. Tsitsiklis and B. V. Roy. An analysis of temporal-difference learning with function ap-
proximation. IEEE Trans. Autom. Control., 42(5):674–690, 1997.

[60] H. van Hasselt, A. Guez, and D. Silver. Deep reinforcement learning with double Q-learning.
In AAAI, pages 2094–2100. AAAI Press, 2016.

[61] K. Watanabe, M. van der Vegt, I. Hasuo, J. Rot, and S. Junges. Pareto curves for composi-
tionally model checking string diagrams of mdps. In TACAS, volume 14571 of LNCS, pages
279–298. Springer, 2024.

[62] E. Wiewiora. Potential-based shaping and Q-value initialization are equivalent. J. Artif. Intell.
Res., 19:205–208, 2003.

[63] Z. Xiong, I. Agarwal, and S. Jagannathan. HiSaRL: A hierarchical framework for safe rein-
forcement learning. In SafeAI, volume 3087 of CEUR Workshop Proceedings. CEUR-WS.org,
2022.

[64] C. Yang, M. L. Littman, and M. Carbin. Reinforcement learning for general LTL objectives is
intractable. CoRR, abs/2111.12679, 2021.

[65] W. Yang, G. Marra, G. Rens, and L. D. Raedt. Safe reinforcement learning via probabilistic
logic shields. In IJCAI, pages 5739–5749. ijcai.org, 2023.

[66] A. Zhang, R. T. McAllister, R. Calandra, Y. Gal, and S. Levine. Learning invariant representa-
tions for reinforcement learning without reconstruction. In ICLR. OpenReview.net, 2021.

[67] D. Žikelić, M. Lechner, A. Verma, K. Chatterjee, and T. A. Henzinger. Compositional policy
learning in stochastic control systems with formal guarantees. In NeurIPS, 2023.

14

Appendix

A Other Related Work

Multi-objective reasoning. The framework introduced in this paper provides latent models and
policies that allow to formally reason about the behaviors of the agent. Real word systems are
complex and often involves multiple trade-offs between (possibly conflicting) constraints, costs,
rewards, and specifications. In fact, the willingness to achieve sub-goals at the lower level of the
environment while ensuring that a set of safety requirements are met is a typical example of a multi-
objective problem. In essence, then, our problem involves multiple objectives, not just at the same
decision level, but in a multi-level classification of decisions.

Our framework tackles one aspect of multi-objective decision making, which we note is not standard:
traditional methods [51, 1, 50, 28, 4, 13, 19, 20, 26, 15] involves the ability to reason about the multi-
ple trade-offs by conducting multi-objective analyses (e.g., generating the Pareto curve/set/frontier,
embedding all the compromises). In contrast, we focus on dealing and composing with the different
objectives in order to satisfy the high-level specification.

We note that [61] consider multi-level environments while approximating Pareto curves to deal with
the compromises incurred by the low-level tasks. However, the approach relies on a model and thus
exhibits tractability issues while being inapplicable when the dynamics are not fully known. Fur-
thermore, the formalization of our multi-level environment is more permissive and allows to encode
information from neighboring rooms (e.g., obstacles or adversaries moving between rooms), which
also requires memory for the planner (see Sect. 5 for more information on memory requirements).

B Remark about Episodic Processes and Ergodicity

Assumption 1 implies ergodicity of bothM andM under mild conditions [31]. In ergodic MDPs,
each state is almost surely visited infinitely often [9]. Thus, for unconstrained reachability goals
(B = ∅), while a discount factor still provides insights into how quickly the objective is achieved, op-
timizing the values associated with reaching the target T before the episode concludes (B = {sreset})
is often more appealing. This involves finding a policy π maximizing V π

I (O(T,B = {sreset})). In
essence, this is how an RL agent is trained: learning to fulfill the low-level objective before the
episode concludes.

C Proofs from Sect. 4

Proof of Thm. 1. Note that∣∣V π(s,O)− V π(ϕ(s),O)
∣∣ ≤ 1

ξπ(s)
Es′∼ξπ

∣∣V π(s′,O)− V π(ϕ(s′),O)
∣∣

for any s ∈ S. Since sreset is almost surely visited episodically, restarting the MDP (i.e., visiting
sreset) is a measurable event, meaning that sreset has a non-zero probability ξπ(sreset) ∈ (0, 1). This
gives us: ∣∣V π

I (O)− V π
I
(O)
∣∣

=
∣∣Es∼I V

π(s,O)− Es∼I V
π(s,O)

∣∣
=
1

γ

∣∣Es∼I

[
γ · V π(s,O)

]
− Es∼I

[
γ · V π(s,O)

]∣∣
=
1

γ

∣∣V π(sreset,O)− V π(ϕ(sreset),O)
∣∣ (by Assumption 1)

≤ 1

γξπ(sreset)
Es∼ξπ

∣∣V π(s,O)− V π(ϕ(s),O)
∣∣

≤ LP

ξπ(sreset)(1−γ)
. (by Lem. 1)

15

Proof of Lem. 2. By definition of the total variation distance, we have

LP = Es,a∼ξπ D
(
ϕP(· | s, a),P(· | ϕ(s), a)

)
= Es,a∼ξπ

1
2

∑
s′∈S

∣∣Ps′∼P(·|s,a) [ϕ(s
′) = s′]−P(s′ | s, a)

∣∣
= Es,a∼ξπ

1
2

∑
s′∈S

∣∣Es′∼P(·|s,a) 1 {ϕ(s′) = s′} −P(s′ | s, a)
∣∣ .

Notice that this quantity cannot be approximated from samples distributed according to ξπ alone:
intuitively, we need to have access to the original transition function P to be able to estimate the
expectation Es′∼P(·|s,a) 1 {ϕ(s′) = s′} for each single point drawn from ξπ .

Instead, consider now the following upper bound on LP:

LP ≤ Es,a∼ξπ Es′∼P(·|s,a)D
(
ϕ(· | s′),P(· | s, a)

)
= L↑

P,

where ϕ(s′ | s′) is defined as 1 {ϕ(s′) = s′} for any s′ ∈ S. This bound directly follows from
Jensen’s inequality. We know from [16] that L̂P + ε ≤ L↑

P with probability at most exp
(
−2T ε2

)
.

We recall the proof for the sake of presentation:

L↑
P

= Es,a,s′∼ξπ D
(
ϕ(· | s′),P(· | ϕ(s), a)

)
= Es,a,s′∼ξπ

[
1

2

∑
s′∈S

∣∣ϕ(s′ | s′)−P(s′ | ϕ(s), a)
∣∣]

= Es,a,s′∼ξπ

1
2
·

(1−P(ϕ(s′) | ϕ(s), a)
)
+

∑
s′∈S\{ϕ(s′)}

∣∣0−P(s′ | ϕ(s), a)
∣∣

(because ϕ(s′ | s′) = 1 if ϕ(s′) = s′ and 0 otherwise)

= Es,a,s′∼ξπ

1
2
·

(1−P(ϕ(s′) | ϕ(s), a)
)
+

∑
s′∈S\{ϕ(s′)}

P(s′ | ϕ(s), a)

= Es,a,s′∼ξπ

[
1

2
· 2 ·

(
1−P(ϕ(s′) | ϕ(s), a)

)]
= Es,a,s′∼ξπ

[
1−P(ϕ(s′) | ϕ(s), a)

]
.

By Hoeffding’s inequality, we obtain that L̂P + ε ≤ L↑
P with probability at most exp

(
−2T ε2

)
.

Equivalently, this means that L̂P+ ε > L↑
P with at least probability 1− exp

(
−2T ε2

)
. The fact that

L̂P + ε > L↑
P ≥ LP finally yields the bound.

By applying Hoeffding’s inequality again, we obtain that with at most probability exp
(
−2T ε2

)
, we

have ξ̂reset − ε ≥ ξπ(sreset). By the union bound, we have

P
(
L̂P + ε ≤ L↑

P or ξ̂reset − ε ≥ ξπ(sreset)
)
≤ exp

(
−2T ε2

)
+ exp

(
−2Tε2

)
.

Finding a T ≥ 0 which yields δ ≥ 2 exp
(
−2T ε2

)
is sufficient to ensure the bound. In that case, we

have

δ ≥ 2 exp
(
−2T ε2

)
⇔ δ/2 ≥ exp

(
−2T ε2

)
⇔ log(δ/2) ≥ −2T ε2 ⇔ T ≥ − log(δ/2)

2ε2
. (2)

Then, we have that with at least probability 1 − δ, L̂P + ε > LP and ξ̂reset − ε < ξπ(sreset) if
T ≥ ⌈− log(δ)/2ε2⌉.

16

Proof of Thm. 2. Let ζ, δ > 0, then we know by Lem. 1, Thm. 1, and Lem. 2 that

(i) Es∼ξπ

∣∣V π(s)− V π(ϕ(s))
∣∣ ≤ γLP

1−γ ≤
γ(L̂P+ζ)

1−γ , with probability 1 − δ. Then, to ensure
an error of at most ε > 0, we need to set ζ such that:

γ
(
L̂P + ζ

)
1− γ

≤ γL̂P

1− γ
+ ε ⇐⇒ γζ

1− γ
≤ ε ⇐⇒ ζ ≤ ε(1− γ)

γ
.

Then, by Lem. 2, we need T ≥
⌈
− log δ
2ζ2

⌉
=
⌈

−γ2 log δ
2ε2(1−γ)2

⌉
samples to provide an error of at

most ε with probability 1− δ.

(ii)
∣∣∣V π

I − V π
I

∣∣∣ ≤ LP

ξπ(sreset)(1−γ) ≤
L̂P+ζ

(ξ̂reset−ζ)(1−γ)
with probability at least 1 − δ. Then, to

ensure an error of at most ε > 0, we need to set ζ such that:

L̂P

ξ̂reset · (1− γ)
+ ε ≥ L̂P + ζ(

ξ̂reset − ζ
)
(1− γ)

⇐⇒
(
ξ̂reset − ζ

)(L̂P

ξ̂reset
+ ε(1− γ)

)
≥ L̂P + ζ

⇐⇒ L̂P + ξ̂reset · ε(1− γ)− L̂P · ζ
ξ̂reset

− ε · ζ(1− γ) ≥ L̂P + ζ

⇐⇒ ξ̂reset · ε(1− γ) ≥ ζ +
L̂P · ζ
ξ̂reset

+ ε · ζ(1− γ) = ζ

(
1 +

L̂P

ξ̂reset
+ ε(1− γ)

)

⇐⇒ ξ̂reset · ε(1− γ)

1 +
L̂P

ξ̂reset
+ ε(1− γ)

≥ ζ ⇔ ξ̂2reset · ε(1− γ)

L̂P + ξ̂reset · (1 + ε(1− γ))
≥ ζ.

Notice that this upper bound on ζ > 0 is well defined since

(a) ξ̂2reset · ε(1− γ) > 0, and (b) L̂P + ξ̂reset(1 + ε(1− γ)) > 0.

Then, setting ζ ≤ ξ̂2reset·ε·(1−γ)

L̂P+ξ̂reset(1+ε(1−γ))
means by Lem. 2 that we need

T ≥
⌈
− log(δ/2)

2ζ2

⌉
≥

− log(δ/2)

(
L̂P + ξ̂reset(1 + ε(1− γ))

)2
2ξ̂4reset · ε2(1− γ)

2

samples to provide an error of at most ε with probability at least 1− δ.

D WAE-DQN

In this section, we give additional details on WAE-DQN, which combines representation (WAE-
MDP) and policy (DQN) learning. Before presenting the algorithm, we briefly recall basic RL
concepts.

Q-Learning. Q-learning is an RL algorithm whose goal is to learn the optimal solution of the
Bellman equation [49]: Q∗(s, a) = Es′∼P(·|s,a) [rew(s, a, s′) + γ ·maxa′∈A Q∗(s′, a′)] for any
(s, a) ∈ S ×A, with

Es0∼I

[
max
a∈A

Q∗(s0, a)

]
= max

π
Eρ∼PrMπ

∑
i≥0

γi · ri

 .

17

To do so, Q-learning relies on learning Q-values iteratively: at each step i ≥ 0, a transition
⟨s, a, r, s′⟩ is drawn inM, and Qi+1(s, a) = Qi(s, a) + α(r + γmaxa′∈A Qi(s

′, a′) − Qi(s, a))
for a given learning rate α ∈ (0, 1). Under some assumptions, Qi is guaranteed to converge to
Q∗ [58]. Q-learning is implemented by maintaining a table of size |S × A| of the Q-values. This is
intractable for environments with large or continuous state spaces.

Deep Q-networks (DQN, [43]) is an established technique to scale Q-learning (even for continuous
state spaces), at the cost of convergence guarantees, by approximating the Q-values in parameterized
NNs. By fixing a network Q(·, θ) and, for stability [59], periodically fixing a parameter assignment
θ̂, DQN obtains the target network Q(·, θ̂). Q-values are then optimized by applying gradient de-
scent on the following loss function:

LDQN(θ) = Es,a,r,s′∼B

(
r + γmax

a′∈A
Q(s′, a′ ; θ̂)−Q(s, a ; θ)

)2

, (3)

where πϵ is an ϵ-greedy exploration strategy, i.e., πϵ(a | s) = (1− ϵ)1 {a = argmaxa′ Q(s, a′)}+
ϵ/|A| for some ϵ ∈ (0, 1). In practice, ξπ is emulated by a replay buffer B where encountered
transitions are stored and then sampled later on to minimize LDQN(θ).

Wasserstein auto-encoded MDP (WAE-MDP, [17]) is a distillation technique providing PAC guar-
antees. Given an MDP M, a policy π trained using DRL, and the number of states in M, the
transition probabilities and embedding function ϕ (both modeled by NNs) are learned by minimiz-
ing LP via gradient descent. Also, a policy π in M is distilled such that M exhibits bisimilarly
close [38, 25, 16] behaviors toM when executing π, providing PAC guarantees on the difference of
the two values from Lem. 1. WAE-MDPs enjoy representation guarantees that any states clustered
to the same latent representation yield close values when LP is minimized [16]: for any latent policy
π and s1, s2 ∈ S, ϕ(s1) = ϕ(s2) implies

∣∣V π(s1)− V π(s2)
∣∣ ≤ γLP

1−γ (
1/ξπ(s1) + 1/ξπ(s2)).

WAE-DQN. Our procedure (Fig. 8) unifies the training and distillation steps (Alg. 1). Intuitively, a
WAE-MDP and a (latent) DQN policy are learned in round-robin fashion: the WAE-MDP produces
the input representation (induced by ϕ) that the DQN agent uses to optimize its policy π. At each
step t = 1, . . . , T , the environment is explored via a strategy to collect transitions in a replay buffer.
Each training step consists of two optimization rounds. First, we optimize the parameters of P
and ϕ. Second, we optimize DQN’s parameters to learn the policy as in DQN. DQN may further
backpropagate gradients through ϕ. We use a target embedding function ϕ̂ for stability purposes,
similar to [66]. This is consistent with DQN’s target-networks approach: the weights of ϕ̂ are
periodically synchronized with those of ϕ. Then, ϕ̂ is paired with the DQN’s target network, which
allows avoiding oscillations and shifts in the representation (a.k.a. moving target issues).

WAE-DQN learns a tractable model of the environment in parallel to the agent’s policy (Algo-
rithm 1). Precisely, the algorithm alternates between optimizing the quality of the abstraction as
well as the representation of the original state space via a WAE-MDP, and optimizing a latent policy
via DQN. We respectively denote the parameters of the state embedding function ϕ, those of the
latent transition function P, and those of the Deep Q-networks by ι, θWAE, and θDQN.

H,O

WAE-DQN

WAE-MDP on

s̄
ϕ
sa

R

DQN
πR,d

⟨τ,Π⟩
π

∀d ∈ D

S
y
n
th
es
is

MG
Π

MR

Π

O

∀R ∈ R

Figure 8: GivenH and O, we run WAE-DQN in each room R ∈ R and direction d ∈ D in parallel,
yielding embedding ϕ, latent MDPs, and policies Π with PAC guarantees. We then synthesize
planner τ to maximize O in succinct modelMG

Π, aggregated as per the map ofH, given as graph G.

18

Algorithm 1: WAE-DQN
Input: steps T , model updates N , batch sizes BWAE, BDQN, and α, ϵ ∈ (0, 1);

Initialize the taget parameters: ⟨ι̂, θ̂DQN⟩ ← copy the parameters ⟨ι, θDQN⟩
Initialize replay buffer B with transitions from random exploration ofM
for t ∈ {1, . . . , T } with s0 ∼ I do

Embed st into the latent space: s← ϕ(st)

Choose action at:
{

w.p. (1−ϵ), define at = argmaxa Q(s, a), and
w.p. ϵ, draw at uniformly from A

Execute at in the environmentM, receive reward rt, and observe st+1

Store the transition in the replay buffer: B ← B ∪ {⟨st, at, rt, st+1⟩}
repeat N times

Sample a batch of size BWAE from B: X ← {⟨s, a, r, s′⟩i}BWAE
i=1 ∼ B

Update ι and θWAE on the batch X by minimizing the WAE-MDP loss (including LP)
for the latent policy πϵ ▷ details in [17]

for i ∈ {1, . . . , BDQN} do
Sample a transition from B: s, a, r, s′ ∼ B
Compute the target: ŷ ← r + γmaxa′∈A Q

(
ϕ(s′; ι̂), a′; θ̂DQN

)
Compute the DQN loss (Eq. 3): Li ← (Q(ϕ(s; ι), a; θDQN)− ŷ)

2

Update ι and θDQN by minimizing 1/BDQN

∑BDQN
i=1 Li

Update the target params.: ι̂← α · ι+ (1− α) · ι̂; θ̂ ← α · θDQN + (1− α) · θ̂
return ϕ,M, and π

E Explicit Construction of the MDP Plan

Along this section, fix a two-level model H = ⟨G, ℓ,R, v0, ⟨d0, d1⟩⟩ with its explicit MDP repre-
sentationM = ⟨S,A,P, I⟩.
To enable high-level reasoning when the rooms are aggregated into a unified model, we add the
following assumption.
Assumption 3. All rooms R ∈ R share the same reset state sreset inH.

Note that Assumption 3 is a technicality that can be trivially met in every two-level modelH: it just
requires that when a reset is triggered in a room R of H, the whole model is globally reset, and not
only R, locally.

We define an MDP MΠ, called an MDP plan, such that policies in MΠ correspond to planners.
Recall that the actions that a planner performs consist of choosing a policy once entering a room.
Accordingly, we defineMΠ = ⟨SΠ,AΠ,PΠ, IΠ⟩. States in SΠ keep track of the location in a room
as well as the target of the low-level policy that is being executed. Formally,

SΠ = (∪R∈R(SR \ {sreset})× E) ∪ {sreset,⊥} ,
where a pair ⟨s, v, u⟩ ∈ SΠ means that the current room is v, the target of the low-level pol-
icy is to exit the room in direction d = ⟨v, u⟩, and the current state is s ∈ Sℓ(v). Follow-
ing Assumption 3, the rooms share the reset state sreset, and ⊥ is a special sink state that we
add for technical reasons to disable actions in states. The initial distribution IΠ has for sup-
port {⟨s, v, u⟩ ∈ SΠ | v = v0 and ⟨v, u⟩ = d1} where states s ∈ Sℓ(v0) are distributed according
to Iℓ(v0)(· | d0). Actions chosen correspond to those of the planner — only required when entering
a room — so the action space is AΠ = E ∪ {∗}, where d ∈ E means that the low-level policy that
is executed exits via direction d, and ∗ is a special action that is used inside a room, indicating no
change to the low-level policy. Note that once d is chosen, we only allow exiting the room through
direction d. We define the transition function. Let P be the transition function of the explicit MDP
M. For a state ⟨s, v, u⟩ ∈ SΠ with d = ⟨v, u⟩,

(i) if s is not an exit state, i.e., s ̸∈ Oℓ(v)(d), then the action is chosen by the low-level
policy πℓ(v),d, and the next state is chosen according to the transitions of ℓ(v): for every

19

s′ ∈ Sℓ(v) \ {sreset},

PΠ(⟨s′, v, u⟩ | ⟨s, v, u⟩, ∗) = Ea∼πℓ(v),d(·|s)P(⟨s′, v⟩ | ⟨s, v⟩, a); (4)

(ii) if s is an exit state in direction d, i.e., s ∈ Oℓ(v)(d), the next room is entered according
to the entrance function from direction d and the planner needs to choose a new target
direction d′: for every s′ ∈ Sℓ(u) \ {sreset} and edge d′ = ⟨u, t⟩ ∈ out(u):

PΠ(⟨s′, u, t⟩ | ⟨s, v, u⟩, d′) = P(⟨s′, u⟩ | ⟨s, v⟩, aexit) = Iℓ(u)(s′ | d) (5)

(iii) the reset state is handled exactly as in the explicit model M: PΠ(sreset | ⟨s, v, u⟩, ∗) =
Ea∼πℓ(v),d

P(sreset | ⟨s, v⟩, a), and PΠ(· | sreset, a) = IΠ for any a ∈ AΠ;

(iv) any other undefined distribution transitions deterministically to the sink state ⊥ so that
PΠ(⊥ | ⊥, a) = 1 for any a ∈ AΠ.

Proper policies. We say that a policy π for MΠ is proper if the decisions of π ensure to al-
most surely avoid ⊥, i.e., V π(s,O(T = {⊥} , B = ∅)) = 0 for all states s ∈ SΠ \ {⊥}. Note
that improper policies strictly consist of those which prescribe to not follow the low-level policy
corresponding to the current objective and do not select a new target direction when exiting.

In the following proofs, we restrict our attention to proper policies.

Property 1 (High-level objective in the MDP plan). In MΠ, the high-level objective O trans-
lates to the reach-avoid objective O(T,B) where T = {⟨s, v, u⟩ ∈ SΠ | v ∈ T} and B ={
⟨s, v, u⟩ ∈ SΠ | s ̸∈ Bℓ(v)

}
for the high-level objective ♢T so that BR is the set to avoid in room

R.

F Proofs from Sect. 5

Lemma 3 (Equivalence of policies in the two-level model and plan). There exists an equivalence
between planners with memory of size |V| in the two-level model H and proper deterministic sta-
tionary policies in the MDP planMΠ that preserves the values of their respective objective under
equivalent planners and policies.

Proof. Let τ be a planner forH with memory of size |V|. Let us encode τ as a finite Mealy machine
whose inputs are graph vertices V and outputs are directions, i.e., τ = ⟨Q, τa, τu, q0⟩whereQ is a set
of memory states with |Q| = |V|, τa : V ×Q → E is the next action function, τu : V ×Q×E → Q
is the memory update function, and q0 is the initial memory state.

Let us consider the high-level controller ⟨τ,Π⟩ as a policy in the explicit MDP M. Since τ is a
planner, we require that

1. τa(v0, q0) = d1, and

2. if τa(v, q) = d, then d ∈ out(v) for any v ∈ V, q ∈ Q.

Intuitively, τa chooses the direction to follow in the current room based on the current memory state
q, and τu describes how to update the memory, based on the current room, the current memory state,
and the direction chosen. By definition of the high-level controller ⟨τ,Π⟩ (see Sect. 3), τa is used at
each time step in the current room, to know which low-level policy to execute, and τu is triggered
once an exit state is reached, to switch to the next memory state that will determine the direction to
follow in the next room.

Then, PrM⟨τ,Π⟩ is a distribution over the product of the paths of M and the sequence of memory
states of τ . Following the definition of the controller ⟨τ,Π⟩ (cf. Sect. 3), the measure PrM⟨τ,Π⟩
can be obtained inductively as follows. For a state ⟨s, v⟩ ∈ S, PrM⟨τ,Π⟩(s, v, q) = Iℓ(v0)(s | d0)
if v0 = v and q = q0, and assigns a zero probability otherwise. The probability of a path
ρ = s0, v0, q0, . . . , st−1, vt−1, qt−1, st, vt, qt is given as follows

20

(a) if st−1 is not an exit state, the low-level policy is executed in direction d = τa(vt−1, qt−1)
and both the current vertex and memory state must remain unchanged:

PrM⟨τ,Π⟩(s0, v0, q0, . . . , st−1, vt−1, qt−1) · Ea∼πℓ(vt),d
(·|s)P(⟨st, vt⟩ | ⟨st−1, vt−1⟩, a)

if st−1 ̸∈ Oℓ(vt−1)(d) with d = τa(vt−1, qt−1), vt = vt−1, and qt = qt−1;

(b) if st−1 is an exit state in the direction prescribed in qt−1, then this direction should point to
vt and the memory state must be updated to qt:

PrM⟨τ,Π⟩(s0, v0, q0, . . . , st−1, vt−1, qt−1) · Iℓ(vt)(st | d)

if st−1 ∈ Oℓ(vt−1)(d) with d = τa(vt−1, qt−1) = ⟨vt−1, vt⟩, and qt = τu(vt−1, qt−1, d);

(c) if st−1 is the reset state, by Assumptions 1 and 3, the planner must be reset as well:

PrM⟨τ,Π⟩(s0, v0, q0, . . . , st−1, vt−1, qt−1) · Iℓ(v0)(st | d0)

if st−1 = sreset, vt = v0, and qt = q0;

(d) zero otherwise.

Notice that renaming Q to V so that for all q ∈ Q, q is changed to u ∈ V (i.e., q 7→ u) whenever
τa(v, q) = ⟨v, u⟩ is harmless, since the probability measure remains unchanged. From now on, we
consider that Q has been renamed to V in this manner.

Now, define the relation ≡ between planners inM and policies inMΠ as2

τ ≡ π if and only if

π(⟨s, v, u⟩) =
{
τa(u, ·) ◦ τu(v, u, d = ·) ◦ τa(v, u) if s ∈ Oℓ(v)(⟨v, u⟩)
∗ otherwise.

By construction ofMΠ, modulo the renaming of Q to V , PrM⟨τ,Π⟩ = PrMΠ
π for any τ , π in relation

τ ≡ π: condition (i) is equivalent to (a), condition (ii) is equivalent to (b), and condition (iii) is
equivalent to (c). Note that the only policies π which cannot be in relation with some planner τ are
improper policies, i.e., those choosing actions leading to the sink state ⊥ (see condition (iv)). Such
policies are discarded by assumption.

The result follows from the fact that, modulo the renaming of Q to V , planners and policies in
relation ≡ lead to the same probability space.

Theorem 6. For a fixed collection of low-level policies Π, a memory of size |V| is necessary and
sufficient for the planner to maximize the values of O in the two-level modelH.

Proof. The necessity of a memory of size |V| is shown in Example 2. The sufficiency follows
from Thm. 3 and the fact that a deterministic stationary policy is sufficient to maximize constrained,
discounted reachability objectives in MDPs [49, 9] (in particular inMΠ).

To see how, let π∗ be a proper optimal deterministic stationary policy in MΠ. Note that one can
always find a proper optimal policy from an improper one: if π∗ is improper, it is necessarily because
a prohibited action has been chosen after having reached the target, which can be replaced by any
other action without changing the value of the objective. Consider a planner τ in the two-level model
H which is equivalent to π∗ (Lem. 3). Then, τ is optimal for the high-level objective inH (since the
probability space of the two models is the same), and τ uses a memory of size |V|.

Succinct MDP. In the following, we take a closer look at the construction of the succinct MDP
MG

Π. We then prove Thm. 4.

2Notice the slight asymmetry induced by Mealy machines: while the policy must decide the next direction
in exit states, the planner just need update its memory state (Eq. (b)).

21

Explicitly, the transition function can be re-formalized as follows. Let v, u ∈ V , d ∈ E, and
d′ ∈ E ∪ {⊥}, P defined as

P(d′ | ⟨v, u⟩, d) =

Es∼Iℓ(u)(·|⟨v,u⟩) V

πℓ(u),d(s) if d = d′ ∈ out(u),

1−P(d | ⟨v, u⟩, d) if d′ = ⊥ and d ∈ out(u),
1 if d′ = ⊥ and d ̸∈ out(u), and
0 otherwise,

(6)

while P(⊥ | ⊥, d) = 1.

We illustrate the idea behind the construction of P via the following example.
Example 4 (Composed trajectories). Consider the explicit model of Fig. 3(a), which we project on
two dimensions in Fig. 9.
Each directed arrow corresponds to a
transition with a non-zero probability.
A state of the form ⟨s, v⟩ indicates that
the agent is in state s of room ℓ(v). Con-
sider a trajectory τ that enters ℓ(v0) =
R0, exits after i = 3 steps (s0 → s1 →
s2

aexit−−→), enters ℓ(u) = R1, exits af-
ter j = 3 steps (s0 → s1 → s2

aexit−−→),
and finally reaches the high-level goal.

s2, v0

s0, v0 s1, v0

s3, v0

s2, us1, u

s3, us0, u
aexit

R0 R1

aexit goal

Figure 9: Projection of Fig. 3(a) on two dimen-
sions

Once in the goal, the agent gets a “reward" of one (the goal is reached). The discounted reward of τ
is thus γi+j = γ6. In expectation, this corresponds to multiplying the values in the individual rooms
and, in turn, with the semantics ofMG

Π where probabilities are multiplied along a trajectory.

For convenience, in the following, we assume that sreset ∈ BR for each room R, which is consistent
with the remark made in Appendix B. The construction ofMG

Π and Theorem 4 can be generalized
by additionally wisely handling the reset state in P.

For the sake of clarity, we formally restate Thm. 4:

Theorem 7 (Value equality in the succinct model). Let ⟨τ,Π⟩ be a hierarchical controller for H
with a |V|-memory planner τ . Denote by V π

MΠ
(O) the initial value of MΠ running under a pol-

icy π equivalent3 to τ inMΠ for the reach-avoid objective O of Property 1. Moreover, denote by
V τ
MG

Π

(♢T) the initial value obtained inMG
Π when the agent follows the decisions of τ for the reach-

ability objective to states of the set V × T — i.e., the reach-avoid objective O(V × T, ∅). Then,
assuming v0 ̸∈ T (the case where v0 ∈ T is trivial),

V π
MΠ

(O) = V τ
MG

Π
(♢T).

Proof. Given any MDPM = ⟨S,A,P, I⟩, we start by recalling the definition of the value function
of any reach-avoid objective of the form O(T,B) with T,B ⊆ S for a discount factor γ ∈ (0, 1)
and a policy π:

V π
I (O) = Eρ∼PrMπ

[
sup
i≥0

γi1 {si ∈ T} · 1 {∀j ≤ i, sj ̸∈ B}
]
, (7)

where si denotes the ith state of ρ. Intuitively, this corresponds to the expected value of the discount
scaled to the time step of the first visit of the set T , ensuring that the set of bad states B is not
encountered before this first visit.

First, notice that the reach-avoid property can be merely reduced to a simple reachability property
by making absorbing the states of B [9]. Precisely, writeM ⟳B for the MDPM where we make all
states from B absorbing, i.e., where P is modified so that P(s | s, a) = 1 for any s ∈ B and a ∈ A.

3cf. Lemma 3.

22

Then, one can get rid of the indicator 1 {∀j ≤ i, sj ̸∈ B} in Eq. 7 by considering infinite paths of
M ⟳B :

V π
I (O) = Eρ∼PrMπ

[
sup
i≥0

γi1 {si ∈ T} · 1 {∀j ≤ i, sj ̸∈ B}
]

= E
ρ∼PrM ⟳B

π

[
sup
i≥0

γi1 {si ∈ T}
]
.

Second, define

Paths fin
♢T = {ρ = s0, s1, . . . , si | si ∈ T and sj ̸∈ T for all j < t}

as the set of finite paths that end up in T , with T being visited for the first time. Then, on can get rid
of the supremum of Eq. 7 follows:

V π
I (O) = E

ρ∼PrM ⟳B
π

[
sup
i≥0

γi1 {si ∈ T}
]

= E
ρ∼PrM ⟳B

π

[∞∑
t=0

γt · 1
{

pref (ρ, t) ∈ Paths fin
♢T

}]
, (8)

where pref (ρ, t) = s0, s1, . . . , st yields the prefix of ρ = s0, s1, . . . which ends up in the tth state st.
The attentive reader may have noticed that the resulting expectation can be seen as the expectation
of a discounted cumulative reward signal (or a discounted return, for short), where a reward of one
is incurred when visiting T for the first time. Taking it a step further, define the reward function

rew(s, a, s′) =

{
1− γ if s ∈ T, and
0 otherwise.

Then, the value function can be re-written as

V π
I (O) = E

ρ∼PrM ⟳B
π

[∞∑
t=0

γt · 1
{

pref (ρ, t) ∈ Paths fin
♢T

}]

= E
ρ∼PrM ⟳T∪B

π

[∞∑
t=0

γt · rt

]
.

For any state s ∈ T , notice that since T is absorbing inM ⟳T∪B ,

V π(s,O) = 1. (9)

It is folklore that the discounted return is the solution of the Bellman equation V π(s,O) =
γEa∼π(·|s)Es′∼P(·|s,a) [rew(s, a, s′) · V π(s′,O)] for any s ∈ S [49]. In particular, considering
the reach-avoid objective O, we have by Eq. 9

V π(s,O) =

γEa∼π(·|s)Es′∼P(·|s,a) [V

π(s′,O)] if s /∈ T ∪B,

1 if s ∈ T \B, and
0 otherwise, when s ∈ B.

Now, let us consider the values of the MDP planMΠ for the reach-avoid objective O(T,B) where
T = {⟨s, v, u⟩ | v ∈ T} and B =

{
⟨s, v, u⟩ | s ̸∈ Bℓ(v)

}
for the high-level objective ♢T and set

of low-level objectives
{
Od

R : R ∈ R, d ∈ DR

}
so that BR is the set of states to avoid in room R.

Fix a |V|-memory high-level controller π = ⟨τ,Π⟩ in for two-level model H (which is compliant
withMΠ, see Thm. 3 and the related proof). We take a close look to the value of each state inMΠ
by following the same structure as we used for the definition ofMΠ (cf. Sect. 5). For the sake of
presentation, given any pair of vertices v, u ∈ V , we may note ⟨sreset, v, u⟩ to refer to the (unified,
cf. Assumption 3) reset state sreset ∈ SΠ. Given a state ⟨s, v, u⟩ ∈ SΠ with direction d = ⟨v, u⟩,

23

(i) if s is not an exit state, i.e., if s ̸∈ Oℓ(v)(d), then

V π(⟨s, v, u⟩,O)

=γE⟨s′,v,u⟩∼PΠ(·|⟨s,v,u⟩,∗) [V
π(⟨s′, v, u⟩,O)] (by Eq. 4)

=γ
∑

s′∈Sℓ(v)

PΠ(⟨s′, v, u⟩ | ⟨s, v, u⟩, ∗) · V π(⟨s′, v, u⟩,O)

=γ
∑

s′∈Sℓ(v)

∑
a∈Aℓ(v)

πℓ(v),d(a | s) ·Pℓ(v)(s
′ | s, a) · V π(⟨s′, v, u⟩,O);

(ii) if s is an exit state in the direction d, i.e., s ∈ Oℓ(v)(d), given the direction chosen by the
planner d′ = τ(v, u) = ⟨u, t⟩ for some neihbor t ∈ N(u), we have

V π(⟨s, v, u⟩,O)

=γE⟨s′,u,t⟩∼PΠ(·|⟨s,v,u⟩,d′) [V
π(⟨s′, u, t⟩,O)]

=γEs′∼Iℓ(u)(·|d) [V
π(⟨s′, u, t⟩,O)] (by Eq. 5)

=γ
∑

s′∈Sℓ(u)

Iℓ(u)(s′ | d) · V π(⟨s′, u, t⟩,O); (10)

(iii) if v is the target, i.e., v ∈ T , V π(s,O) = 1; and

(iv) otherwise, when s is a bad state, i.e., s ∈ Bℓ(v), V π(s,O) = 0.

Take R = ℓ(v). By (i) and (ii), when s is not an exit state, i.e., s ̸∈ Oℓ(v)(d), we have

V π(⟨s, v, u⟩,O) =
∑

s0,s1,...,si∈Path fin

Od
R

γiPrRs

πR,d
(s0, s1, . . . , si) · V π(⟨si, v, u⟩,O),

so that
Path fin

Od
R

= Path fin
♢OR(d) \ {ρ = s0, s1, . . . , sn | ∃1 ≤ i ≤ n, si ∈ BR} ,

where we denote by Rs the room R where we change the initial distribution by the Dirac IR(s0) =

1 {s0 = s}, and PrRs

πR,d
is the distribution over paths of R which start in state s which is induced by

the choices of the low-level latent policy πR,d.

Following Eq. 10, notice that V π(⟨sexit, v, u⟩,O) = V π(⟨s′exit, v, u⟩,O) for any sexit, s
′
exit ∈

OR(d = ⟨v, u⟩): the probability of going to the next room R′ = ℓ(u) from an exit state of the
current room R only depends on the entrance function IR′ and is independent from the exact exit
state which allowed to leave the current room R. Therefore, we further denote by V π(⟨·, v, u⟩,O)
the value of any exit state of R in direction d, i.e., V π(⟨·, v, u⟩,O) = V π(⟨sexit, v, u⟩,O) for all
sexit ∈ OR(d). Then, we have

V π(⟨s, v, u⟩,O)

=
∑

s0,s1,...,si∈Path fin

OR
d

γiPrRs

πR,d
(s0, s1, . . . , si) · V π(⟨si, v, u⟩,O)

=
∑

s0,s1,...,si∈Path fin

Od
R

γiPrRs

πR,d
(s0, s1, . . . , si) · V π(⟨·, v, u⟩,O)

=V π(⟨·, v, u⟩,O) ·
∑

s0,s1,...,si∈Path fin

Od
R

γiPrRs

πR,d
(s0, s1, . . . , si)

=V π(⟨·, v, u⟩,O) · V πd,R(s, γ), (by Eq. 8)

where V πR,d(s, γ) denotes the value of the reach-avoid objective Od
R = O(OR(d), BR) in the room

R from state s ∈ R. Then, by (ii), assuming v ̸∈ G, we have

24

1. if u ̸∈ G,

V π(⟨·, v, u⟩,O)

=γ ·
∑

s′∈Sℓ(u)

Iℓ(u)(s′ | d = ⟨v, u⟩) · V π(⟨s′, τ(v, u)⟩,O) (11)

=γ ·
∑

s′∈Sℓ(u)

Iℓ(u)(s′ | d = ⟨v, u⟩) · V πℓ(u),τ(v,u)
(
s,Od

R

)
· V π(⟨·, τ(v · u)⟩,O)

=γ ·P(τ(v, u) | ⟨v, u⟩, τ(v, u)) · V π(⟨·, τ(v · u)⟩,O)
(where P is the transition function ofMG

Π, see Eq. 1)

2. if u ∈ G,

V π(⟨·, v, u⟩,O)

=γ ·
∑

s′∈Sℓ(u)

Iℓ(u)(s′ | d = ⟨v, u⟩) · V π(⟨s′, τ(v, u)⟩,O)

=γ ·
∑

s′∈Sℓ(u)

Iℓ(u)(s′ | d = ⟨v, u⟩) · 1 (since τ(v, u) = ⟨u, t⟩ for some t ∈ N(u))

=γ.

Now, respectively denote by V π
MΠ

(·,O) := V π(·,O) and V τ
MG

Π

(·,♢T) the value functions ofMΠ

andMG
Π for the objectives O and ♢T . By 1 and 2, and by construction ofMG

Π, we have for any pair
of vertices v, u ∈ V that

V π
MΠ

(⟨·, v, u⟩,O) = γ · V τ
MG

Π
(⟨v, u⟩,♢T),

On the one hand, notice that, by construction ofMG
Π, we have for any pair of vertices ⟨v, u⟩ ∈ E

that the initial values V τ
MG

Π

(♢T) are Ed∼I V
τ
MG

Π

(d,♢T) = V τ
MG

Π

(d0,♢T). On the other hand, we
have

V π
MΠ

(O) = Es′∼Iℓ(v0)(·|d0) V
π
MΠ

(⟨s′, τ(d0)⟩,O) = 1/γ · V π
MΠ

(·, d0,O). (by Eq. 11)

Then, we finally have:

V π
MΠ

(O) = 1/γ · V π
MΠ

(·, d0,O) = γ/γ · V τ
MG

Π
(d0,♢T) = V τ

MG
Π
(♢T),

which concludes the proof.

G Initial Distribution Shifts: Training vs. Synthesis

Our high-level controller construction occurs in two phases. First, we create a set of low-level
policies Π by running Algorithm 1 in each room (Sect. 4.3). Notably, training in each room is in-
dependent and can be executed in parallel. However, independent training introduces a challenge:
an initial distribution shift emerges when combining low-level policies using a planner. Our value
bounds for a room R in direction d depend on a loss LR,d

P , computed based on the stationary distri-
bution. This distribution may significantly change depending on a planner’s choices. In this section,
we address this challenge by showing, under mild assumptions on the initial distribution of each
room R, that their transition losses LR,d

P obtained under any latent policy πR,d for direction d still
guarantee to bound the gap between the values of the original and latent two-level models.

Training rooms. To construct Π, we train low-level policies via Algorithm 1 by simulating each
room individually. Precisely, for room R ∈ R and direction d ∈ DR, we train a WAE-DQN agent
by considering R as episodic MDP with some initial distribution IR, yielding (i) low-level latent
policy πR,d, (ii) latent MDPMR, and (iii) state-embedding function ϕR. Since πR,d must learn to
maximize the values of the objective Od

R, which asks to reach the exit state in direction d, we restart
the simulation when the latter is visited. Formally, the related training room is an episodic MDP
Rd = ⟨SR,AR,P

d
R, IR⟩, where sreset ∈ SR, Pd

R(· | s, a) = PR(· | s, a) when s ̸∈ OR(d), and
Pd

R(sreset | s, a) = 1 otherwise. We define Pd
R similarly forMR when the direction d is considered.

25

Distribution shift. Crucially, by considering rooms individually, a noticeable initial distribution
shift occurs when switching between training and synthesis phases. During training, there is no
high-level controller, so the initial distribution of room R is just IR. During synthesis, room entries
and exits are determined by the distributions influenced by the choices made by the controller in the
hierarchical MDP H. This implies that the induced initial distribution of each room depends on the
likelihood of visiting other rooms and is further influenced by the other low-level policies.

We contend that this shift may induce significant consequences: denote by LR,d
P the transition loss

of the room Rd operating under πR,d and by Lτ,Π
P the transition loss of the two-level model H

operating under ⟨τ,Π⟩. Then, in the worst case, Lτ,Π
P and LR,d

P might be completely unrelated
whatever the room R and direction d. To see why, recall that transition losses are defined over
stationary distributions of the respective models (Eq. ??). One can see this shift as a perturbation
in the transition function of the rooms. Intuitively, by Assumption 1, each room is almost surely
entered infinitely often, meaning that such perturbations are also repeated infinitely often, possibly
leading to completely divergent stationary distributions [46], meaning that we loose the abstraction
quality guarantees possibly obtained for each individual training room.

Entrance loss. Fortunately, we claim that under some assumptions, when the initial distribution
of each training room IR is wisely chosen, we can still link the transition losses LR,d

P minimized in
the training rooms to Lτ,Π

P . To provide this guarantee, the sole remaining missing component to our
framework is learning a latent entrance function: we define the entrance loss as

LI = ER,d∼ξπ D
(
ϕIR(· | d), IR(· | d)

)
, (12)

where ϕIR(· | d) = Es∼IR(·|d) 1 {s = ϕR(s)}, IR : DR → ∆
(
S
)

is the latent entrance function,
π is the stationary policy in MΠ corresponding to the high-level controller ⟨τ,Π⟩ where τ has a
memory of size |V|, D is total variation, and and ξπ is the stationary distribution induced by π in
MΠ. The measure ξπ can also be seen as a distribution over rooms and directions chosen under the
controller:4

ξπ(R, d) = Es,v,u∼ξπ [1 {s = sreset, R = ℓ(v), d = d0}+ 1 {R = ℓ(v), d = ⟨v, u⟩}] .

Theorem 8 (Reusable RL components). Let ⟨τ,Π⟩ be a high-level controller inH where τ has finite
memory of size |V| and let π be the equivalent stationary policy in the MDP plan MΠ. Assume
(i) Π only consists of latent policies and (ii) for any training room R ∈ R and direction d ∈ DR,
the projection5of the BSCC ofMΠ under π to SR is included in the BSCC of Rd under low-level
policy πR,d. Let

SR,d = {⟨s, v, u⟩ ∈ SΠ | ℓ(v) = R and ⟨v, u⟩ = d} ,
ξπ(sreset | R, d) = E⟨s,v,u⟩,a∼ξπ [PΠ(sreset | ⟨s, v, u⟩, a) | SR,d] , and

ξmin
continue = 1− max

R∈R,d∈D
(ξπ(sreset | SR,d) + ξπ(OR(d)× {d} | SR,d)).

Then, there is a κ ≥ 0 with Lτ,Π
P ≤ LI + κ

ξmin
continue

ER,d∼ξπ L
R,d
P . Define the expected entrance

function in room R as IπR(s) = Eṡ,⟨u,v⟩∼ξπ

[
IR(s | d = ⟨u, v⟩) | ṡ ∈ Oℓ(u)(⟨u, v⟩) and ℓ(v) = R

]
for any s ∈ SR. With supp(P) = {x ∈ X | P (x) > 0} the support of distribution P , if supp(IR) =
supp(IπR), κ can be set to the maximum probability ratio of room entry during training and synthesis:

κ = max
R∈R

(
max

s∈supp(IR)
max

{
IπR(s)

IR(s)
,
IR(s)

IπR(s)

})|S|

.

Proof. For simplicity, assume that the reset state in SΠ is a triplet of the form ⟨sreset, v, v0⟩ so that
⟨v, v0⟩ = d0 and Oℓ(vreset)(d0) = {sreset}. We also may write ϕ(s) for ϕR(s) when it is clear from

4For simplicity, we consider here the special state ⟨sreset, v, v0⟩ with ⟨v, v0⟩ = d0 as the joint reset state of
the model (Assumption 3).

5Formally speaking, this is the projection to SR of the intersection of the BSCC of MΠ operating under π
with SR ×DR.

26

the context that s ∈ SR. We respectively denote the marginal stationary distribution of states and di-
rections by ξπ(s) = Es′,v,u∼ξπ [1 {s = s′}] and ξπ(d) = Es,v,u∼ξπ [1 {d = ⟨v, u⟩}]. Furthermore,
given a direction d ∈ E, we denote the conditional stationary distribution by

ξπ(s, a | d) = Es′,v,u∼ξπ

[
πℓ(v),d(a | ϕ(s)) · 1 {s = s′} | {⟨s′, v, u⟩ ∈ SΠ | ⟨v, u⟩ = d}

]
= Es′,v,u∼ξπ

[
πℓ(v),d(a | ϕ(s)) · 1 {s = s′} 1 {d = ⟨v, u⟩}

ξπ(v, u)

]
In the following, we also write P(s′ | s, a) as shorthand for P(⟨s′, v⟩ | ⟨s, v⟩, a) (the transition
function of the explicit MDP of H) if and only if s, s′ ∈ Sℓ(v) and s ̸∈ Oℓ(v)(d) for some v ∈ V ,
d ∈ out(v). Denote by PΠ the latent transition function of the latent MDP planMΠ, constructed
from the collection of low-level policies Π, the latent rooms

{
MR : R ∈ R

}
, and the latent entrance

functions
{
IR : R ∈ R

}
. Then:

Lτ,Π
P

=
1

2
E⟨s,v,u⟩,a∼ξπ

∥∥ϕPΠ(· | ⟨s, v, u⟩, a)−PΠ(· | ⟨ϕ(s), v, u⟩, a)
∥∥
1

=
1

2
Es,v,u∼ξπ

[
1 {s ̸= sreset} 1

{
s ̸∈ Oℓ(v)(⟨v, u⟩)

} ∥∥ϕPΠ(· | ⟨s, v, u⟩, ∗)−PΠ(· | ⟨ϕ(s), v, u⟩, ∗)
∥∥
1

]

+
1

2
E⟨s,v,u⟩,d′∼ξπ

[
1 {s ̸= sreset} 1

{
s ∈ Oℓ(v)(⟨v, u⟩)

}∥∥ϕPΠ(· | ⟨s, v, u⟩, d′)−PΠ(· | ⟨ϕ(s), v, u⟩, d′)
∥∥
1

]

+
1

2
Es,v,u∼ξπ

[
1 {s = sreset}

∥∥ϕPΠ(· | ⟨s, v, u⟩, ∗)−PΠ(· | ⟨ϕ(s), v, u⟩, ∗)
∥∥
1

]
(π is proper)

=
1

2
Es,v,u∼ξπ

[
1 {s ̸= sreset} 1

{
s ̸∈ Oℓ(v)(⟨v, u⟩)

} ∥∥∥∥Ea∼πℓ(v),⟨v,u⟩(·|ϕ(s))

[
ϕP(· | s, a)−P(· | ϕ(s), a)

]∥∥∥∥
1

]
(by definition ofMΠ (i))

+
1

2
E⟨s,v,u⟩,d′∼ξπ

[
1 {s ̸= sreset} 1

{
s ∈ Oℓ(v)(⟨v, u⟩)

}∥∥ϕIℓ(u)(· | ⟨v, u⟩)− Iℓ(u)(· | ⟨v, u⟩)∥∥1
]

(by definition ofMΠ (ii))

+
1

2
Es,v,u∼ξπ

[
1 {s = sreset}

∥∥ϕIℓ(v0)(· | d0)− Iℓ(v0)(· | d0)∥∥1] (by definition ofMΠ (iii))

=
1

2
Es,v,u∼ξπ

[
1 {s ̸= sreset} 1

{
s ̸∈ Oℓ(v)(⟨v, u⟩)

} ∥∥∥∥Ea∼πℓ(v),⟨v,u⟩(·|ϕ(s))

[
ϕP(· | s, a)−P(· | ϕ(s), a)

]∥∥∥∥
1

]
+

1

2
ER,d∼ξπ

∥∥ϕIR(· | d)− IR(· | d)∥∥1
=

1

2
Es,v,u∼ξπ

[
1 {s ̸= sreset} 1

{
s ̸∈ Oℓ(v)(⟨v, u⟩)

} ∥∥∥∥Ea∼πℓ(v),⟨v,u⟩(·|ϕ(s))

[
ϕP(· | s, a)−P(· | ϕ(s), a)

]∥∥∥∥
1

]
+ LI

≤ 1

2
Es,v,u∼ξπ Ea∼πℓ(v),⟨v,u⟩(·|ϕ(s))

[
1 {s ̸= sreset} 1

{
s ̸∈ Oℓ(v)(⟨v, u⟩)

} ∥∥ϕP(· | s, a)−P(· | ϕ(s), a)
∥∥
1

]
+ LI

(Jensen’s inequality)

=
1

2
Ed∼ξπ Es,a∼ξπ(·|d)

[
1 {s ̸= sreset} 1

{
s ̸∈ Oℓ(v)(d)

} ∥∥ϕP(· | s, a)−P(· | ϕ(s), a)
∥∥
1

]
+ LI

(⋆)

Now, let d = ⟨v, u⟩ ∈ E be a target direction for the room R = ℓ(v). We consider the room R as
an episodic MDP (cf. Assumption 1) where (i) the initial distribution corresponds to the expected
entrance probabilities in R under π: for any s ∈ SR

IπR(s) = Eṡ,⟨u̇,v̇⟩∼ξπ

[
IR(s | dI = ⟨u̇, v̇⟩) | ṡ ∈ Oℓ(u̇)(⟨u̇, v̇⟩) and v̇ = v

]
27

v

SR

sOd

S \ (SR × {v})

v

sreset

ξπ(· | d)

sOd

ξ
Rd,π
π̄R,d

SR

= ℓ−1(R)

Figure 10: Room R = ℓ(v) in the two-level model (left) and the same room taken individually
(right). Both distributions ξπ(· | d) and ξ

Rd,π

πR,d
correspond to the limiting distributions over SR when

πR,d is executed in R. The sole difference remains in the fact that the reset is considered outside R
in the two-level model (Assumption 3) while it is considered to be part of the state space when R is
taken individually (Assumption 1).

(where dI is the direction from which R is entered); and (ii) the room is reset when an exit state in
direction d is visited: for any s, s′ ∈ SR, a ∈ AR,

Pd,π
R (s′ | s, a) =

1 if s′ = sreset and s ∈ OR(d),

IπR(s
′) if s = sreset, and

PR(s
′ | s, a) otherwise.

(13)

We call the resulting MDP the individual room version of R that we denote by Rd,π . The stationary
distribution of the room Rd,π for the low-level policy πR,d is ξRd,π

πR,d
. Observe that ξRd,π

πR,d
is over SR,

which includes the reset state sreset, while ξπ(· | d) is over the exact same state space but without the
reset state (since the reset state is a special state outside R, shared by all the rooms in the two-level
model; cf. Assumption 3 and the definition of MΠ). Furthermore, notice that, modulo this reset
state, the two distributions are the same (see Fig. 10): they both consist of the limiting distribution
over SR when πR,d is executed in R. All the transition distributions remain the same, except those
of the exit states: in the two-level model H, every state s ∈ OR(d = ⟨v, u⟩) transitions to u deter-
ministically, while in the individual room Rd,π , they transition to the reset state deterministically.
Still, in both cases, R is entered and exited with the same probability (respectively from and to
(S \ SR × {v}) inH and sreset in the individual room Rd,π). Therefore, we have:

ξπ(s | d) = ξ
Rd,π

πR,d
(s | SR \ {sreset}) =

ξ
Rd,π

πR,d
(s) · 1 {s ̸= sreset}

1− ξ
Rd,π

πR,d
(sreset)

. (14)

Instead of sampling from ξπ(s | d) in Eq. ⋆, we would rather like to sample from the distribution of
the individual room ξ

Rd,π

πR,d
(s | SR \ {sreset}). We have:

Es,a∼ξπ(·|d)
[
1 {s ̸= sreset} 1

{
s ̸∈ Oℓ(v)(d)

}∥∥ϕP(· | s, a)−P(· | ϕ(s), a)
∥∥
1

]
=
∑
s∈S

∑
a∈A

[ξπ(s | d)πR,d(a | ϕ(s)) 1 {s ̸= sreset} 1
{
s ̸∈ Oℓ(v)(d)

} ∥∥ϕP(· | s, a)−P(· | ϕ(s), a)
∥∥
1

]
(15)

=
∑
s∈S

∑
a∈A

[
ξ
Rd,π

πR,d
(s)1 {s ̸= sreset}

1− ξ
Rd,π

πR,d
(sreset)

πR,d(a | ϕ(s)) 1 {s ̸= sreset} 1
{
s ̸∈ Oℓ(v)(d)

} ∥∥ϕPR(· | s, a)−PR(· | ϕ(s), a)
∥∥
1

]
(16)

28

= E
s,a∼ξ

Rd,π
πR,d

[
1 {s ̸= sreset}

1− ξ
Rd,π

πR,d
(sreset)

1
{
s ̸∈ Oℓ(v)(d)

}∥∥ϕPR(· | s, a)−PR(· | ϕ(s), a)
∥∥
1

]
Notice that we can pass from Eq. 15 to (16) because we only consider states s ̸= sreset and s ̸∈
Oℓ(v)(d). States that do not satisfy both constraints are the only ones for which P(· | s, a) differs
from Pd,π

R (· | s, a) (Eq. 13). Furthermore, in that case, we have Pd,π
R (· | s, a) = PR(· | s, a). Then

we have:

E
s,a∼ξ

Rd,π
πR,d

[
1 {s ̸= sreset}

1− ξ
Rd,π

πR,d
(sreset)

1
{
s ̸∈ Oℓ(v)(d)

}∥∥ϕPR(· | s, a)−PR(· | ϕ(s), a)
∥∥
1

]

= E
s,a∼ξ

Rd,π
πR,d

[
1 {s ̸= sreset}

1− ξ
Rd,π

πR,d
(sreset)

∥∥ϕPd
R(· | s, a)−Pd

R(· | ϕ(s), a)
∥∥
1

]
(by definition of Pd

R and Pd
R)

=
1

1− ξ
Rd,π

πR,d
(sreset)

E
s,a∼ξ

Rd,π
πR,d

[
1 {s ̸= sreset}

∥∥ϕPd
R(· | s, a)−Pd

R(· | ϕ(s), a)
∥∥
1

]
≤ 1

1− ξ
Rd,π

πR,d
(sreset)

E
s,a∼ξ

Rd,π
πR,d

∥∥ϕPd
R(· | s, a)−Pd

R(· | ϕ(s), a)
∥∥
1

Assuming that the projection of the BSCC of MΠ under π to SR is included in the BSCC of R

when it operates under πR,d, we have that supp
(
ξ
Rd,π

πR,d

)
⊆ supp

(
ξRπR,d

)
, where ξRπR,d

denotes the
stationary distribution of the training room Rd under the latent policy πR,d. Then:

1

1− ξ
Rd,π

πR,d
(sreset)

E
s,a∼ξ

Rd,π
πR,d

∥∥ϕPd
R(· | s, a)−Pd

R(· | ϕ(s), a)
∥∥
1

=
1

1− ξ
Rd,π

πR,d
(sreset)

∑
s∈supp

(
ξ
Rd,π
πR,d

)
∑

a∈AR

[
ξ
Rd,π

πR,d
(s)πR,d(a | ϕ(s))

∥∥ϕPd
R(· | s, a)−Pd

R(· | ϕ(s), a)
∥∥
1

]

=
1

1− ξ
Rd,π

πR,d
(sreset)

∑
s∈supp

(
ξRπR,d

)
∑

a∈AR

[
ξ
Rd,π

πR,d
(s)

ξRπR,d
(s)

ξRπR,d
(s)πR,d(a | ϕ(s))

∥∥ϕPd
R(· | s, a)−Pd

R(· | ϕ(s), a)
∥∥
1

]

=
1

1− ξ
Rd,π

πR,d
(sreset)

Es,a∼ξRπR,d

[
ξ
Rd,π

πR,d
(s)

ξRπR,d
(s)

∥∥ϕPd
R(· | s, a)−Pd

R(· | ϕ(s), a)
∥∥
1

]

≤ 1

1− ξ
Rd,π

πR,d
(sreset)

Es,a∼ξRπR,d

 max
s′∈supp

(
ξRπR,d

)
(
ξ
Rd,π

πR,d
(s′)

ξRπR,d
(s′)

) ∥∥ϕPd
R(· | s, a)−Pd

R(· | ϕ(s), a)
∥∥
1

]

=
1

1− ξ
Rd,π

πR,d
(sreset)

max
s∈supp

(
ξRπR,d

)
(
ξ
Rd,π

πR,d
(s)

ξRπR,d
(s)

)
Es,a∼ξRπR,d

[∥∥ϕPd
R(· | s, a)−Pd

R(· | ϕ(s), a)
∥∥
1

]

= max
s∈supp

(
ξRπR,d

)
(
ξ
Rd,π

πR,d
(s)

ξRπR,d
(s)

)
2LR,d

P

1− ξ
Rd,π

πR,d
(sreset)

If the initial distributions of the individual room Rd,π and the training room Rd have the same
support, then the projection and the BSCCs coincide since the same set of states is eventually visited
under π from states of supp(IR) = supp(IπR). Furthermore, by [46, Thm. 1], we have

max
s∈supp

(
ξRπR,d

)
(
ξ
Rd,π

πR,d
(s)

ξRπR,d
(s)

)
(17)

29

≤ max
s∈supp

(
ξRπR,d

)max

{
ξ
Rd,π

πR,d
(s)

ξRπR,d
(s)

,
ξRπR,d

(s)

ξ
Rd,π

πR,d
(s)

}

≤
(

max
s∈supp(IR)

max

{
IπR(s)

IR(s)
,
IR(s)

IπR(s)

})|S|

(cf. Eq. 13)

= κR,d; (18)

otherwise, we set κR,d to max
s∈supp

(
ξRπR,d

)
(

ξ
Rd,π
πR,d

(s)

ξRπR,d
(s)

)
. Moreover, let SR,d =

{⟨s, v, u⟩ ∈ SΠ | ℓ(v) = R and ⟨v, u⟩ = d} and define

ξπ(sreset | R, d) = E⟨s,v,u⟩,a∼ξπ [PΠ(sreset | ⟨s, v, u⟩, a) | SR,d] .

Notice that

ξ
Rd,π

πR,d
(sreset) = E⟨s,v,u⟩,a∼ξπ [PΠ(sreset | ⟨s, v, u⟩, a) + 1 {s ∈ OR(d)} | SR,d]

= ξπ(sreset | R, d) + ξπ(OR(d)× {d} | SR,d)

by (i) the stationary property, (ii) definition of Pd,π
R (cf. Eq. 13 and Fig. 10), (iii) the fact that the

probability of exiting the room is equal to the probability of visiting an exit state, and (iv) the fact
that resetting the room and visiting an exit state are disjoint events (when an exit state is visited, it
always transitions to the next room, never to the reset state).

By putting all together, we have

Lτ,Π
P

≤ LI +
1

2
Ed∼ξπ Es,a∼ξπ(·|d)

[
1 {s ̸= sreset} 1

{
s ̸∈ Oℓ(v)(d)

} ∥∥ϕP(· | s, a)−P(· | ϕ(s), a)
∥∥
1

]
≤ LI + ER,d∼ξπ

κR,dL
R,d
P

1− ξ
Rd,π

πR,d
(sreset)

= LI + ER,d∼ξπ

κR,dL
R,d
P

1− ξπ(sreset | R, d)− ξπ(OR(d)× {d} | SR,d)

≤ LI + ER,d∼ξπ

max {κR⋆,d⋆ : R⋆ ∈ R, d⋆ ∈ DR⋆} LR,d
P

1−maxR⋆∈R,d⋆∈DR
(ξπ(sreset | R⋆, d⋆) + ξπ(OR⋆(d⋆)× {d⋆} | SR⋆,d⋆))

≤ LI +
κ

ξmin
continue

ER,d∼ξπ L
R,d
P

where κ = max {κR⋆,d⋆ : R⋆ ∈ R, d⋆ ∈ DR⋆} and

ξmin
continue = 1− max

R∈R,d∈DR

(ξπ(sreset | R, d) + ξπ(OR(d)× {d} | SR,d)). (19)

This concludes the proof.

Discussion. Assumption (ii) boils down to design an initial distribution for the simulator of each
room that provides a sufficient coverage of the state space: the latter should include the states likely
to be seen when the room is entered under any planner. Then, if this initial distribution is powerful
enough to provide an exact coverage of the entrance states visited under the planner τ , the multiplier
of the transition loss κ can be determined solely based on the ratio of the initial distributions obtained
during training and synthesis. We summarize the results as follows.
Theorem 9 (Value bound inH). Under the assumptions of Thm. 8,∣∣V π

I − V π
I

∣∣ ≤ LI + κ/ξmin
continue ER,d∼ξπ L

R,d
P

ξπ(sreset)(1−γ)
. (20)

H Experiments

In this section, we provide additional details on the experiments we performed.

30

agent

adversary

exit

goal

power-up

Figure 11: Two rooms of 20× 20 cells (9 rooms in Figure 13).6

Setup. Models have been trained on a cluster running under CentOS Linux 7 (Core) com-
posed of a mix of nodes containing Intel processors with the following CPU microarchitectures: (i)
10-core INTEL E5-2680v2, (ii) 14-core INTEL E5-2680v4, and (iii) 20-core INTEL Xeon
Gold 6148. We used 8 cores and 42 GB of memory for each run during the hyperparameter search.

Environment. We provide additional details on the state space of our environment. The agent
has LP life points, decrementing upon adversary contact or timeout. Collecting power-ups (appear-
ing randomly) shortly makes the agent invincible. The state space comprises two components: (i) A
4-dimensional bitmap M ∈ {0, 1}N×l×m×n, where each layer in k ∈ {1, . . . , l} corresponds to an
item type on the grid; entry MR,k,i,j is 1 iff room R has item k in cell (i, j); (ii) step, power-up, and
life-point counters ⟨a, b, c⟩. Figure 11 shows examples of rooms composed of 20× 20 cells.

DRL components. We use CNNs [39] to process bitmaps M and a sparse reward signal
rew(s, a, s′) = r∗ · 1 {s ∈ T} − r∗ · 1 {s ∈ B}, where r∗ > 0 is an arbitrary reward (or con-
versely, a penalty) obtained upon reaching the target T (or an undesirable state in B). To guide the
agent, we add a potential-based reward shaping [45, 62] based on the L1 distance to the target. The
resulting reward function is rewΦ(s, a, s

′) = γΦ(s′)− Φ(s) + rew(s, a, s′) where

Φ(s) = 1− min {|x(t1)− x(s)|+ |y(t2)− y(s)| : t1, t2 ∈ T}
N · (m+ n)

,

and x(s), y(s) respectively return the Euclidean coordinates along the horizontal and vertical axes
corresponding to state s ∈ S. Intuitively, |Φ(s)− 1| reflects the normalized distance of state s to
the targets T . When the agent gets closer (resp. further) to T when executing an action, the resulting
reward is positive (resp. negative). Our DQN implementation uses state-of-the-art extensions and
improvements from [29]. Nevertheless, as demonstrated in Fig. 7, while DQN reduces contact with
adversaries, the two-level nature of the decisions required to reach a target hinders learning the
high-level objective.

Learning the low-level policies. We run WAE-DQN to learn the set of low-level policies Π along
with their latent-space models. Recall the representation quality guarantees of our algorithm (cf.
Sect. 4.3): the same latent space can be used for rooms sharing similar features. For instance, in
an environment composed of 9 rooms with similar shapes, we only train one latent policy per exit
direction {←,→, ↑, ↓} instead of 9 ·4 = 36. For training in a room R, we let IR uniformly distribute
the agent’s possible entry positions. Adversaries’ initial positions are randomly set by IR but may
vary according to the function IR in the high-level model (unknown at training time). Objectives Od

R
specify reaching the target exit while avoiding adversaries before the episode ends.

DQN and WAE-DQN experiments. We provide a more detailed version of Figure 7 in Figure 12,
where the WAE-DQN performance is specified per direction. Precisely, we trained five different

6Demonstration with 9 rooms: https://youtu.be/crowN8-GaRg

31

https://youtu.be/crowN8-GaRg

(a) Goal reached (average over 30 episodes). (b) Failures: adversaries hit (averaged over 30
episodes).

Figure 12: A more detailed version of Figure 7, where the WAE-DQN performance is specified per
direction. We train five different instances of the algorithm per policy with different random seeds,
where the solid line corresponds to the mean and the shaded interval to the standard deviation. To
train the DQN agent, we set a time limit five times longer than that used for training rooms with the
WAE-DQN agents. Note that the DQN agent is equipped with 3 life points, while the WAE-DQN
agents are limited to one.

instances of the algorithm per policy with different random seeds, where the solid line is the mean
and the shaded interval is the standard deviation. To train the DQN agent, we set a time limit five
times longer than that used for training rooms with the WAE-DQN agents. Furthermore, the DQN
agent is equipped with 3 life points, while the WAE-DQN agents are limited to one.

Synthesis. To estimate the latent entrance function, we explore the high-level environment through
random execution of the low-level latent policies. We further consider Masked Autoencoders
(MADEs, [23]), which allow to learn complex distributions from a dataset. With the data collected
via this exploration, we train a MADE to learn IR for any room R. To learn those latent entrance
functions, consistently with WAE-MDPs, we use the same kind of MADE as the one introduced
by [17] for estimating the probability of the latent transition function. We finally construct MG

Π
(cf. Sect. 5) and apply the synthesis procedure to obtain a high-level controller π = ⟨τ,Π⟩. Tab. 1
reports the values of π obtained for various environment sizes.

Hyperparameter search. To train our WAE-DQN agent, we ran 4 environments in parallel per
training instance and used a replay buffer of capacity 7.5·105. We performed a grid search to find the
best parameters for our WAE-DQN algorithm. Tab. 3 presents the range of hyperparameters used. In
particular, we found that prioritized experience replay [54] and a categorical Q-network [12] did not
improve the results in our environment significantly. We used a batch size of 128 for the WAE-MDP.

For synthesizing the high-level controller, we used the hyperparameters that worked the best for each
specific direction. We used the same parameters for the DQN training instances shown in Figure 7.

For the MADE modeling the latent entrance function, we used a dataset of size 25600, and the
training was split into 100 epochs (i.e., the model performed 100 passes through the entire dataset)
with a learning rate of 10−3. We used a batch size of 32 or 64, and two hidden layers, either with 64
or 128 neurons.

I Broader Impact

Our work presents primarily theoretical and fundamental results, enhancing the reliability of RL so-
lutions. Our claims are also illustrated experimentally with an experimental environment (involving
an agent moving within a grid world amid moving adversaries). Specifically, our approach focuses
on providing performance (“reach-”) and safety (“avoid”) guarantees with RL policies. We believe

32

Figure 13: Environment for N = 9 rooms of 20 × 20 cells. The agent is depicted in yellow (top
left), adversaries in red, power-ups as cherries, and the goal at the bottom right.

our work may have positive societal impacts in the long-term, including (i) safety-critical applica-
tions: prevent failures (in, e.g., autonomous driving, healthcare, robotics); (ii) trust and wide adop-
tion: builds and improves confidence in RL solutions; (iii) avoiding harmful behavior: mitigates
unintended, risky actions; and (iv) performance compliance: check whether performance standard
are met (e.g., in industry).

33

Table 3: Hyperparameter range used for (WAE-)DQN. Parameters in green worked best on average
(for optimizing the average return). For details about the WAE-MDP parameters, see [17].

Parameter Value
Common to DQN and WAE-DQN

Activation {ReLU, leaky ReLu,ELU, tanh, sigmoid}
Hidden layers per network {1, 2, 3}
Neurons per layer {128, 256, 512}
CNN filters (3 layers) {3→ 5→ 7, 3→ 3→ 3}
CNN kernels (3 layers) {32→ 64→ 16, 64→ 32→ 16}

DQN

Use Boltzmann exploration {Yes,No}
Boltzmann temperature {0.25, 0.10, 0.75, 1, 10, 100}
Use ϵ-greedy exploration (decay to ϵ = 0.1) {Yes,No}
Target update period {1, 250, 500, 1000}
Target update scale (α in Algorithm 1)

{
10−4, 5 · 10−4, 10−3, 5 · 10−3

}
Reward scaling {1, 10, 25, 100}
Learning rate

{
6.25 · 10−5, 10−4, 2.5 · 10−4, 10−3

}
Batch size {32, 64, 128}
Use double Q-networks [60] {Yes,No}

WAE-MDP

Latent state size (power of 2) {12, 13, 14, 15}
State embedding function temperature {1/3, 1/2, 2/3, 3/4, 0.99}
Transition function temperature {1/3, 1/2, 2/3, 3/4, 0.99}
Steady-state regularizer scale factor {10, 25, 50, 75}
Transition regularizer scale factor {10, 25, 50, 75}
Minimizer learning rate

{
10−4, 5 · 10−4, 10−3

}
Maximizer learning rate

{
10−4, 5 · 10−4, 10−3

}
State embedding function learning rate

{
10−4, 5 · 10−4, 10−3

}
critic updates {5, 10, 15}
State reconstruction function {L2, binary cross entropy (for M)}

34

	Introduction
	Preliminaries
	Problem Formulation
	Obtaining Low-Level Policies via DRL
	Quantifying the quality of the abstraction
	PAC estimates of the abstraction quality
	Obtaining latent policies during training

	Obtaining a Planner
	Experimental Evaluation
	Conclusion
	Other Related Work
	Remark about Episodic Processes and Ergodicity
	Proofs from Sect. 4
	WAE-DQN
	Explicit Construction of the MDP Plan
	Proofs from Sect. 5
	Initial Distribution Shifts: Training vs. Synthesis
	Experiments
	Broader Impact

